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POISSON’S FORMULA

In this section we will show that for every continuous function
¢:0Br — R
on the (d — 1)-dimensional sphere of radius R in RY, there is a continuous function
u:Br =R,
which is C'*° in the interior of the ball B and solves the problem
Au=0 in Bpg;
{u =¢ on OBp.
Before proving the main theorem (Theorem 4) we will need several preliminary lemmas.

Lemma 1 (Two identities for the Green function). Let Y € R? be fived and let
1
X)i=—o>>—.

Then:

(1) G is harmonic in R4\ {Y'};

(2) for every r > |Y| we have

X -VG(X)dH"HX) = —(d — 2)dwar ;
OB,
(8) for every r > |Y| we have

G(X)dH Y (X) = dwar ;
8B,

where wq is the volume of the unit ball in R?.

Proof. We compute

VG(X) = ~(d-2) 5y
and
AG(X) = —(d — 2)divy (é:yyd)
divy(X —Y 1
- -0 (S -1 Vs ()
d —d(X -Y
- =2 (G + -0 (g ) ) =0
Next, we set
¢(r) == Td%l GX)dH“ (X)= [  GErX)dH*(X)
OB, 9B,
and we compute
¢'(r) = d% - G(rX)dH" ' (X)

= X -VG(rX)dHH(X)
8B1

_ ! X d-1
= /aB,. V(X)) AT (X)),

1



2

Now, by the divergence theorem, we have that for every € > 0

X VG(X)dH* 1 (X) = / X-v -VG(X)dHI1(X)
oB, T oB.(Y) €

X-Y X-Y
:fde/ . dHHX) = —(d — 2)dw,.
( ) 9B.(v) € X —Yl[? %) ( )

Thus, we have that

(d — 2)dwd

¢'(r) = BT

Integrating between r and R, we get
R R _(d—2)dwqg dwg  dwq
oR) = o(r) = [ o(s)ds = [F T s 22 - G
Since
Al 0 =0
we get that
dwd
(j)(?") = 7“(17_2’

which concludes the proof. O

Lemma 2 (Harmonicity of the Poisson’s kernel). For any fized vector Y € R?, the function

Y2 —|x]?
F(X) = W )
is harmonic in R4\ {Y'}.
Proof. We compute
Y2 — X2
F(X)= v =X
| X[* = Y2
e
. (X-Y)-(X+Y)
Y — X
1 (X-Y)-2v
TTX v [y _x4
1 2 1
vt v ()
Since the function
Xy b
| X —Y]d-2
and its partial derivatives are harmonic in R?\ {Y'}, we get the claim. O

Lemma 3 (The integral of the Poisson’s kernel over the sphere). Let By be the ball of radius R in R and let
wq := |B1|. Then, for every Y € Bpg it holds

R? — |Y|2/ dHHX) )
19)

dwgR B Y —X|d
Proof. Proof in dimension d = 2. We suppose that Y = (Rz,0) for some x < 1. Then

R? — |Y2/ dHHX) 1 —a? /2” do
Rdwq Jop, 1X =YY" 21 Jy (z—cosf)?+sin’6

_1—x2/7r de
7 Jy 1+22—2xc0s6

t = tan —

Applying the change of variables



we have

1—1;2/” db _1—x2/+°0 1 2dt
T o 1+22—2xcosd 7 0 1422 —2pi=t2 1 442

1+t2
1-a? /+°° 2dt
oo o (T4 a)22 4+ (1—2)?
C1-z? 2 /*00 dt
T (=2 (}t—;t)2+1

1—-22 2 1-z 1+2 )\
= arctan t =1.
™ (1—2)21+=x 1—z )],

Proof in dimension d > 3. As above we compute

(XP -2 _ YR X
X -yl Y -X[
77(Y7X)o(Y+X)
Y — X[
_ 1 +(X—Y)-2X
TV Ty - XP
1 2 1
= — —_— X. —
X—v[? a2 VX<|X—Y|d2)
2
=-GX)-—X -VGX
G(X) ~ ==X - VG(X),
where )
X)i=———7—.
G(X) = =y
By the lemma above, we get that
2 Y2 d—1 X 1 X2_ Y2
R \I/ dH (d):7 RY ‘dedel(X)
dwq oBp |Y — X| dwq Jop, Y —X]|
1
=—— G(X)dH*H(X
o Jos, (X) (X)
L[ A X vex)ant(x)
dLUd 8BRd72
L der+ Lt G- dwr =R
T dwg T dwgd =2 e
which concludes the proof. O

Teorema 4 (Poisson’s formula). Let Br C R? and let ¢ € C(OBR). We define the function u: Br — R as

R? — |X|? oY) -1
X) = Y X € Bp.
u(X) doiRk /E)BR X v dH*™HY), for every € Bgr

Then, the following holds:

(i) uw € C?*(Bg) and Au =0 in Bg.
(i) for every Xo € 0Br we have that lim u(X) = ¢(Xo).

X*}XQ

Proof. The proof of (i) follows by Lemma 2. In order to prove (ii), we fix € > 0 and we aim to show that

‘ lim u(X) — ¢(Xp)| <e.

X%Xo

Let § > 0 be chosen in such a way that for all Y € 0By satisfying |Y — Xo| < 6 we have |¢p(Y) — ¢(Xy)| < e.
By the definition of u and by the fact that (by Lemma 3)

R? — |X]? 1 -1
dHH(Y) =1
Rdwg /BBR X v M ¥)=1
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we have that for every X € Bpg it holds
R? — X oY) i1 R? —|X|? ¢(Xo) a1
X)—o(Xg) = ——— ————d Y)— d Y
uX) —o(x0) = S | ) S | e )
2 X2 V) — ¢(X,
— R |X| / (QS( ) ¢( O)) d'Hdil(Y).
Rde OBr |X — Y|d

Then, for every X € Bg N Bs/2(Xo), we have

2 1y2 B
) = o) < S [ gt )

2 |1v|2 _
Rdwa (0BR)\Bs(Xo) X Y]

Bs(X0)NOBR

Rdwd |X — Y‘d
2 |y2 _
Rdwa (0BRr)\Bs(Xo) X —Y|
R? — |X|? € d—1
d Y
T Rawy /83R Xy W
R? — |X? 2(|¢l| L (am,

) d—1

dH Y)+e
Rdwq /(63R)\B5(Xo) (6/2)4 )
Rd_22H¢||L°°(8BR)

021 T °

< (R*—|X/?)
Passing to the limit as X — Xy, we obtain
2 oo
limsup |[u(X) — ¢(Xo)| < & + limsup (R* — | X|?) Rd—QM(gBl) —
X+o XX (65/2)

Since ¢ is arbitrary, we get that
lim sup [u(X) — ¢(Xo)| =0,
X‘)XO

which concludes the proof.
More generally, we have the following Poisson formula for more general traces.

Teorema 5. Let Br C R? and let ¢ € L*(OBR). We define the function u : B — R as

_ R*-XP? oY) d—1
w(X) = JonRR /83R X v dH*H(Y), for every X € Bp.

Then, the following holds:

(i) u € C*(Br) and Au=0 in By ;

(ii) if Xo € OBg is a Lebesgue point for ¢ (on OBg) such that
limsup [¢(X) — ¢(Xo)| =0,
X — Xo
X € 0BRr

then

limsup |u(X) — ¢(Xo)| = 0.

X — Xo
X € Br



