Poisson's formula

In this section we will show that for every continuous function

$$\phi: \partial B_R \to \mathbb{R}$$

on the (d-1)-dimensional sphere of radius R in \mathbb{R}^d , there is a continuous function

$$u: \overline{B}_R \to \mathbb{R}$$
,

which is C^{∞} in the interior of the ball B_R and solves the problem

$$\begin{cases} \Delta u = 0 & \text{in } B_R; \\ u = \phi & \text{on } \partial B_R \end{cases}$$

Before proving the main theorem (Theorem 4) we will need several preliminary lemmas.

Lemma 1 (Two identities for the Green function). Let $Y \in \mathbb{R}^d$ be fixed and let

$$G(X) := \frac{1}{|X - Y|^{d-2}}$$
.

Then:

- (1) G is harmonic in $\mathbb{R}^d \setminus \{Y\}$;
- (2) for every r > |Y| we have

$$\int_{\partial B_{-}} X \cdot \nabla G(X) \, d\mathcal{H}^{d-1}(X) = -(d-2)d\omega_{d} r \; ;$$

(3) for every r > |Y| we have

$$\int_{\partial B_r} G(X) d\mathcal{H}^{d-1}(X) = d\omega_d r ;$$

where ω_d is the volume of the unit ball in \mathbb{R}^d .

Proof. We compute

$$\nabla G(X) = -(d-2) \frac{X-Y}{|X-Y|^d},$$

and

$$\begin{split} \Delta G(X) &= -(d-2) \mathrm{div}_X \left(\frac{X-Y}{|X-Y|^d} \right) \\ &= -(d-2) \left(\frac{\mathrm{div}_X (X-Y)}{|X-Y|^d} + (X-Y) \cdot \nabla_X \left(\frac{1}{|X-Y|^d} \right) \right) \\ &= -(d-2) \left(\frac{d}{|X-Y|^d} + (X-Y) \cdot \left(\frac{-d(X-Y)}{|X-Y|^{d+2}} \right) \right) = 0. \end{split}$$

Next, we set

$$\phi(r) := \frac{1}{r^{d-1}} \int_{\partial B_r} G(X) \, d\mathcal{H}^{d-1}(X) = \int_{\partial B_1} G(rX) \, d\mathcal{H}^{d-1}(X)$$

and we compute

$$\phi'(r) = \frac{d}{dr} \int_{\partial B_1} G(rX) d\mathcal{H}^{d-1}(X)$$

$$= \int_{\partial B_1} X \cdot \nabla G(rX) d\mathcal{H}^{d-1}(X)$$

$$= \frac{1}{r^{d-1}} \int_{\partial B_r} \frac{X}{r} \cdot \nabla G(X) d\mathcal{H}^{d-1}(X).$$

Now, by the divergence theorem, we have that for every $\varepsilon > 0$

$$\begin{split} \int_{\partial B_r} \frac{X}{r} \cdot \nabla G(X) \, d\mathcal{H}^{d-1}(X) &= \int_{\partial B_{\varepsilon}(Y)} \frac{X - Y}{\varepsilon} \cdot \nabla G(X) \, d\mathcal{H}^{d-1}(X) \\ &= -(d-2) \int_{\partial B_{\varepsilon}(Y)} \frac{X - Y}{\varepsilon} \cdot \frac{X - Y}{|X - Y|^d} \, d\mathcal{H}^{d-1}(X) = -(d-2) d\omega_d. \end{split}$$

Thus, we have that

$$\phi'(r) = -\frac{(d-2)d\omega_d}{r^{d-1}}.$$

Integrating between r and R, we get

$$\phi(R) - \phi(r) = \int_{r}^{R} \phi'(s) \, ds = \int_{r}^{R} \frac{-(d-2)d\omega_d}{s^{d-1}} \, ds = \frac{d\omega_d}{R^{d-2}} - \frac{d\omega_d}{r^{d-2}}.$$

Since

$$\lim_{R \to +\infty} \phi(R) = 0,$$

we get that

$$\phi(r) = \frac{d\omega_d}{r^{d-2}},$$

which concludes the proof.

Lemma 2 (Harmonicity of the Poisson's kernel). For any fixed vector $Y \in \mathbb{R}^d$, the function

$$F(X) := \frac{|Y|^2 - |X|^2}{|X - Y|^d},$$

is harmonic in $\mathbb{R}^d \setminus \{Y\}$.

Proof. We compute

$$\begin{split} F(X) &= \frac{|Y|^2 - |X|^2}{|Y - X|^d} \\ &= -\frac{|X|^2 - |Y|^2}{|Y - X|^d} \\ &= -\frac{(X - Y) \cdot (X + Y)}{|Y - X|^d} \\ &= -\frac{1}{|X - Y|^{d - 2}} + \frac{(X - Y) \cdot 2Y}{|Y - X|^d} \\ &= -\frac{1}{|X - Y|^{d - 2}} + \frac{2}{d - 2}Y \cdot \nabla_X \left(\frac{1}{|Y - X|^{d - 2}}\right) \,, \end{split}$$

Since the function

$$X \mapsto \frac{1}{|X - Y|^{d - 2}}$$

and its partial derivatives are harmonic in $\mathbb{R}^d \setminus \{Y\}$, we get the claim.

Lemma 3 (The integral of the Poisson's kernel over the sphere). Let B_R be the ball of radius R in \mathbb{R}^d and let $\omega_d := |B_1|$. Then, for every $Y \in B_R$ it holds

$$\frac{R^2 - |Y|^2}{d\omega_d R} \int_{\partial R} \frac{d\mathcal{H}^{d-1}(X)}{|Y - X|^d} = 1.$$

Proof. Proof in dimension d=2. We suppose that Y=(Rx,0) for some x<1. Then

$$\frac{R^2 - |Y|^2}{Rd\omega_d} \int_{\partial B_R} \frac{d\mathcal{H}^{d-1}(X)}{|X - Y|^d} = \frac{1 - x^2}{2\pi} \int_0^{2\pi} \frac{d\theta}{(x - \cos\theta)^2 + \sin^2\theta}$$
$$= \frac{1 - x^2}{\pi} \int_0^{\pi} \frac{d\theta}{1 + x^2 - 2x\cos\theta}.$$

Applying the change of variables

$$t = \tan \frac{\theta}{2}$$

we have

$$\frac{1-x^2}{\pi} \int_0^{\pi} \frac{d\theta}{1+x^2 - 2x \cos \theta} = \frac{1-x^2}{\pi} \int_0^{+\infty} \frac{1}{1+x^2 - 2x \frac{1-t^2}{1+t^2}} \frac{2 dt}{1+t^2}$$

$$= \frac{1-x^2}{\pi} \int_0^{+\infty} \frac{2 dt}{(1+x)^2 t^2 + (1-x)^2}$$

$$= \frac{1-x^2}{\pi} \frac{2}{(1-x)^2} \int_0^{+\infty} \frac{dt}{\left(\frac{1+x}{1-x}t\right)^2 + 1}$$

$$= \frac{1-x^2}{\pi} \frac{2}{(1-x)^2} \frac{1-x}{1+x} \left[\arctan\left(\frac{1+x}{1-x}t\right)\right]_{t=0}^{+\infty} = 1.$$

Proof in dimension $d \geq 3$. As above we compute

$$\begin{split} \frac{|X|^2 - |Y|^2}{|X - Y|^d} &= -\frac{|Y|^2 - |X|^2}{|Y - X|^d} \\ &= -\frac{(Y - X) \cdot (Y + X)}{|Y - X|^d} \\ &= -\frac{1}{|Y - X|^{d - 2}} + \frac{(X - Y) \cdot 2X}{|Y - X|^d} \\ &= -\frac{1}{|X - Y|^{d - 2}} - \frac{2}{d - 2} X \cdot \nabla_X \left(\frac{1}{|X - Y|^{d - 2}}\right) \\ &= -G(X) - \frac{2}{d - 2} X \cdot \nabla G(X) \,, \end{split}$$

where

$$G(X) := \frac{1}{|X - Y|^{d-2}}.$$

By the lemma above, we get that

$$\begin{split} \frac{R^2 - |Y|^2}{d\omega_d} \int_{\partial B_R} \frac{d\mathcal{H}^{d-1}(X)}{|Y - X|^d} &= \frac{1}{d\omega_d} \int_{\partial B_R} \frac{|X|^2 - |Y|^2}{|Y - X|^d} d\mathcal{H}^{d-1}(X) \\ &= -\frac{1}{d\omega_d} \int_{\partial B_R} G(X) d\mathcal{H}^{d-1}(X) \\ &\quad - \frac{1}{d\omega_d} \int_{\partial B_R} \frac{2}{d - 2} X \cdot \nabla G(X) d\mathcal{H}^{d-1}(X) \\ &= -\frac{1}{d\omega_d} d\omega_d R + \frac{1}{d\omega_d} \frac{2}{d - 2} (d - 2) d\omega_d R = R, \end{split}$$

which concludes the proof.

Teorema 4 (Poisson's formula). Let $B_R \subset \mathbb{R}^d$ and let $\phi \in C(\partial B_R)$. We define the function $u: B_R \to \mathbb{R}$ as

$$u(X) = \frac{R^2 - |X|^2}{d\omega_d R} \int_{\partial B_R} \frac{\phi(Y)}{|X - Y|^d} \, d\mathcal{H}^{d-1}(Y), \quad \textit{for every} \quad X \in B_R.$$

Then, the following holds:

- (i) $u \in C^2(B_R)$ and $\Delta u = 0$ in B_R . (ii) for every $X_0 \in \partial B_R$ we have that $\lim_{X \to X_0} u(X) = \phi(X_0)$.

Proof. The proof of (i) follows by Lemma 2. In order to prove (ii), we fix $\varepsilon > 0$ and we aim to show that

$$\left| \lim_{X \to X_0} u(X) - \phi(X_0) \right| \le \varepsilon.$$

Let $\delta > 0$ be chosen in such a way that for all $Y \in \partial B_R$ satisfying $|Y - X_0| < \delta$ we have $|\phi(Y) - \phi(X_0)| < \varepsilon$. By the definition of u and by the fact that (by Lemma 3)

$$\frac{R^2-|X|^2}{Rd\omega_d}\int_{\partial B_R}\frac{1}{|X-Y|^d}\,d\mathcal{H}^{d-1}(Y)=1,$$

we have that for every $X \in B_R$ it holds

$$u(X) - \phi(X_0) = \frac{R^2 - |X|^2}{Rd\omega_d} \int_{\partial B_R} \frac{\phi(Y)}{|X - Y|^d} d\mathcal{H}^{d-1}(Y) - \frac{R^2 - |X|^2}{Rd\omega_d} \int_{\partial B_R} \frac{\phi(X_0)}{|X - Y|^d} d\mathcal{H}^{d-1}(Y)$$
$$= \frac{R^2 - |X|^2}{Rd\omega_d} \int_{\partial B_R} \frac{\left(\phi(Y) - \phi(X_0)\right)}{|X - Y|^d} d\mathcal{H}^{d-1}(Y).$$

Then, for every $X \in B_R \cap B_{\delta/2}(X_0)$, we have

$$|u(X) - \phi(X_{0})| \leq \frac{R^{2} - |X|^{2}}{Rd\omega_{d}} \int_{\partial B_{R}} \frac{|\phi(Y) - \phi(X_{0})|}{|X - Y|^{d}} d\mathcal{H}^{d-1}(Y)$$

$$\leq \frac{R^{2} - |X|^{2}}{Rd\omega_{d}} \int_{(\partial B_{R}) \setminus B_{\delta}(X_{0})} \frac{|\phi(Y) - \phi(X_{0})|}{|X - Y|^{d}} d\mathcal{H}^{d-1}(Y)$$

$$+ \frac{R^{2} - |X|^{2}}{Rd\omega_{d}} \int_{B_{\delta}(X_{0}) \cap \partial B_{R}} \frac{|\phi(Y) - \phi(X_{0})|}{|X - Y|^{d}} d\mathcal{H}^{d-1}(Y)$$

$$\leq \frac{R^{2} - |X|^{2}}{Rd\omega_{d}} \int_{(\partial B_{R}) \setminus B_{\delta}(X_{0})} \frac{|\phi(Y) - \phi(X_{0})|}{|X - Y|^{d}} d\mathcal{H}^{d-1}(Y)$$

$$+ \frac{R^{2} - |X|^{2}}{Rd\omega_{d}} \int_{\partial B_{R}} \frac{\varepsilon}{|X - Y|^{d}} d\mathcal{H}^{d-1}(Y)$$

$$\leq \frac{R^{2} - |X|^{2}}{Rd\omega_{d}} \int_{(\partial B_{R}) \setminus B_{\delta}(X_{0})} \frac{2||\phi||_{L^{\infty}(\partial B_{1})}}{(\delta/2)^{d}} d\mathcal{H}^{d-1}(Y) + \varepsilon$$

$$\leq (R^{2} - |X|^{2}) R^{d-2} \frac{2||\phi||_{L^{\infty}(\partial B_{R})}}{(\delta/2)^{d}} + \varepsilon.$$

Passing to the limit as $X \to X_0$, we obtain

$$\limsup_{X \to X_0} |u(X) - \phi(X_0)| \le \varepsilon + \limsup_{X \to X_0} \left(R^2 - |X|^2 \right) R^{d-2} \frac{2\|\phi\|_{L^{\infty}(\partial B_1)}}{(\delta/2)^d} = \varepsilon.$$

Since ε is arbitrary, we get that

$$\limsup_{X \to X_0} |u(X) - \phi(X_0)| = 0,$$

which concludes the proof.

More generally, we have the following Poisson formula for more general traces.

Teorema 5. Let $B_R \subset \mathbb{R}^d$ and let $\phi \in L^1(\partial B_R)$. We define the function $u: B_R \to \mathbb{R}$ as

$$u(X) = \frac{R^2 - |X|^2}{d\omega_d R} \int_{\partial B_R} \frac{\phi(Y)}{|X - Y|^d} d\mathcal{H}^{d-1}(Y), \quad \textit{for every} \quad X \in B_R.$$

Then, the following holds:

- (i) $u \in C^2(B_R)$ and $\Delta u = 0$ in B_R ;
- (ii) if $X_0 \in \partial B_R$ is a Lebesgue point for ϕ (on ∂B_R) such that

$$\lim_{\substack{X \to X_0 \\ X \in \partial B_R}} |\phi(X) - \phi(X_0)| = 0,$$

then

$$\lim_{\substack{X \to X_0 \\ X \in B_R}} |u(X) - \phi(X_0)| = 0.$$