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HARMONIC FUNCTIONS WITH CONTINUOUS BOUNDARY DATUM

Teorema 1. Let Q be a bounded open set in R? satisfying the exterior ball condition. Let g : 0Q — R be a
continuous function. Then, there is a unique continuous function

u:Q =R, uweC@Q)NC*Q),

such that
Au=0 1in and u=g on 0.

Proof. For every € > 0 we define the function

. 1
ge(r) = min {g(y) +olr—yl s ye 39}-
Step 1. For every = € 99, we have that g.(z) < g(z). Indeed,

. 1 1
9 (@) = inf {g(y) + Zle =yl : y €I < g(@) + <[a— 2| = g(a).
Step 2. g. — ¢ uniformly on 9Q2. Let € > 0 be fixed. Since g is continuous, for every x € 9 there is a point
Yo € 0N that realizes the inf in the right hand side of the definition of g.(z), that is
1
9:(%) = g(yx) + g|yx — .
Now, since
1
9(a) + Zlyz — 2] = ge(2) < g(2),
we have that
|y$ - ‘T| S EMa

where
M :=maxg—ming.
o g o0 g

As a consequence, for every x € OS2,

|92 () — g(2)| = 9(x) — ge(2) < g(x) = g(yz) Sw (eM),
where
w: (0,400) = (0,+00)
is the (uniform) modulus of continuity of g on 952, that is:

w(r) :=sup {lg(@) — g(w)| : @,y €N |x—y| <r}.
Step 3. For every fixed € > 0, the function g. : 92 — R is Lipschitz continuous. In fact, given x1,zs € OS2 let
Y1, Y2 € 0N be such that

1 _ 1
ge (i) = g(yi) + glyz- — z;| = min {g(y) + gly —zi| T Y€ 89},

for i = 1,2. Then, we have
1 1
9:(v2) = g:(01) = (9(u2) + Zlye = w21 = (9(v) + Zlr — 1]?)

= min {g(y) + éIy —xa| 1y € 3Br} - (9(@/1) + §|y1 - 1’1|)

IN

(g(yl) + élyl - wzl) - (g(yl) + é\yl - ﬂfll)

IA

1
*(|y1 - $2| - |y1 - $1|)
€

IA

1
*|£L’2 —l'1|.
3



Step 4. Existence. For every € > 0, there is a harmonic function
u. € HY(),

which solves
Au. =0 in Q, Ue = g su 08,

in the sense that u. is the minimizer of the variational problem
win{ [ [VoPde v e HY®), ¥ -7 e HY@),
Q

G- € H*(Q) being any Lipschitz extension of g. to R?. Moreover, we know that the function

i : Q- R,  U(r)= ue(®) .lf ren
ge(x) if x € 09,

is continuous on 2.
The sequence g. : 9§ — R is increasing towards g as ¢ — 0. As a consequence, by the strong maximum
principle, also the family of functions u. : 2 — R is increasing with respect to the parameter e. Moreover, since

[t — sl Lo () < 119 — g5/l (002
we have that %, : Q@ — R converges uniformly on Q to a continuous function
u:Q—R

such that v = g on 0. Finally, since u satisfies the mean value property (being a uniform limit of functions
satisfying the mean-value property), we have that u is harmonic (and smooth) in Q.

Step 5. Uniqueness. Suppose that there are two continuous functions u,v : Q — R such that

Au=0 in € and u=g on 0N,

Av=0 in and v=g on ON.
For every t > 0 consider the family of functions

v Q=R ve(x) = v(x) + 1.
Since u and vare continuous and bounded on Q, for ¢ large enough we have that
(1) vi(x) > u(x) for every x € Q.
Let t, be defined as
t, = inf {t €R : (1) holds for vt}.

‘We notice that:
e ¢, > 0. In fact, if (1) holds for ¢, then

t+g(x) =v(x) > u(r) =g(x) forevery x e I,

so necessarily ¢ > 0.
e t, is a minimum, that is,

(2) v, () > u(x) for every x € Q.
e if t < t,, then there is a point x € Q such that
v, (x) < u(z).
In particular, the last point implies that if ¢, is a sequence such that

tn, < tgst and lim t, =t.,
n——+o0o

then there is a sequence of points z,, € € such that
tn +0(xn) = vy, () < ul(xy).

Since 2 is bounded, up to extracting a subsequence, we can find a point z, € Q such that =, — =, as n — +oo0.
Now, the continuity of v and v implies that

te +u(zy) <ulxy).



which together with (2) implies that

te +0(zs) = u(wy).
We are now ready to prove that t, = 0. We suppose by contradiction that ¢, > 0 and consider two cases.
Case 1. x, € 05). Since v = u = g on 0f), we get

b+ o(a.) =+ glw.) > g(a,) = u(a.),
which is a contradiction.
Case 2. z, € (). In this case we have that v and v,, are two harmonic functions such that
vy, () = u(xy) and ve, >u in

By the strong maximum principle, we get that

v, =u in Q,

where €, is the connected component of (2 containing x.. Since v and v, are continuous up to the boundary,
we get that
v, =u on O,

*

so there is a boundary point y, € 9, C 0 such that
te +v(ys) = u(ys).

This is impossible by Case 1. Thus, we have a contradiction, so we get that
t, =0,
which implies that

Analogously

which proves that the solution u is unique. O

THE STRONG MAXIMUM PRINCIPLE

Teorema 2. Let Q be a connected open set in R?. Suppose that u : Q — R and v : Q — R are two smooth
harmonic functions in ) such that
u>v wm S

Then, one of the following holds:

(1) u(z) > v(z) for every x € Q;

(2) u=wvin Q.
Proof. Suppose that (1) does not hold. Then, there is a point z, € €2 such that u(x,) = v(z,). Consider the
coincidence set

C:={zxeQ : ulx)=v(x)}

We know that z, € C, so C is non-empty. Let y € C. By the mean value property, we have that for every ball
B, (y) C Q it holds

1
0= uly) = o(0) = [ (ula) = of))
1Bl /B, (y)
Since u — v > 0 this implies that
u=v in B.(y).

Thus, the coincidence set C is open. On the other hand, since u and v are continuous C is also relatively closed.
Since () is connected, this implies that C = (2. g



HARMONIC MEASURES

Let © C R? be a bounded open set satisfying the exterior ball condition and let the point Xy € Q be fixed.
We define the operator Lx on the space of continuous functions on 02,

Lx:C(090) = R,
as follows. Given a function
g € C(09),
we consider the harmonic extension h € C(Q) N C?(£2) solution to
Ah=0 in Q, h=g on 09,
and we define
Lx(g) = h(X)

We notice that:
e the operator Lx : C(9Q) — R is linear, that is,
Lx(g1+92) = Lx(91) + Lx(g2) for every g1,92 € C(99),
and
Lx(cg) =cLx(g) forevery g¢ge C(0Q) andevery ceR.
e the operator Lx : C(92) — R is monotone, that is, if
91,92 € C(02) such that g3 < g2 on 99,
then, by the (weak) maximum principle, the harmonic extensions hq and hy satisfy
hi <hy in Q,

and as a COnSequenCe
Lx(g1) = h1(X) < he(X) = Lx(g2)-

By the Riesz representation theorem, there is a positive Borel measure on 052 such that

/8 g dux(y) = Lx(g) forall g€ C(o0).

Moreover, px is a probability measure. In fact, if we take the boundary datum
geC(@), g=1 on 09,
then its harmonic extension is the constant function
heC(Q), h=1 on Q,
which gives (by the definition of Lx) that

This implies:
o0
Definizione 3. The measure px is called harmonic measure with pole at X .
Osservazione 4. In some special cases the harmonic measure can be computed explicitly. For instance, if £ is
the ball Br, then the Poisson’s formula implies that for every X € Bg the harmonic measure px is absolutely
continuous with respect to the surface measure ,dH%~ on OBg:
px = px dH,

and its density function px is
RZ—|X? 1

dwgR | X —Y|?

px :OBr — R, px(Y) = for all 'Y € OBg.



AN EXERCISE ABOUT A HARMONIC FUNCTION WITH DISCONTINUOUS BOUNDARY DATUM

Esercizio 5. Let Q be a bounded open set in R® and let
u. € C2(QNL>®(Q), >0,
be a family of harmonic functions,
Au, =0 in Q,
monotone (decreasing or increasing) in € and bounded in L (). Then, the pointwise limit

’LLO(X) = SIIL%UE(X) y

exists, satisfies ug € C%(Q) N L>(Q), and is a harmonic function in Q.
Osservazione 6. In the next exercice, given two points X,Y € R?, we use the notation:
(X,Y) = {(1—t)X+tY L0<t< 1};

[X,Y] :{(l—t)X+tY L0<t< 1}.

Esercizio 7. Let Q be the square  := (0,1) x (0,1) with vertices

(o (e () mer- )

u: Q=R
which is continuous on '\ {A7 B, C’,D} and which solves the PDE

Prove that there is a function

Au=0 1in Q,
u=0 on (A,B) and (C,D),
u=1 on (B,C) and (A,D).
Prove that, at the verter A = (0,0), u can be written in polar coordinates as follows:
u(r,0) = %9 +O(r?).
Precisely:

(a) prove that
1
h(’l"7 0) = ’LL(’I", 0) - 797
v
is harmonic in B N Q and has zero boundary datum on [A, B] U [A, D];
(b) prove that there is a constant C > 0 such that

|h(r,0)| < Cr* in B NQ.
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