Exterior ball condition and up-to-the-boundary continuity for harmonic functions

EXTERIOR BALL CONDITION

Definizione 1 (Exterior ball condition). Let Ω be an open set in \mathbb{R}^d . We say that Ω satisfies the exterior ball condition if for every boundary point $y \in \partial \Omega$ there is a ball $B_r(x) \subset \mathbb{R}^d$ such that

 $\overline{B}_r(x) \cap \overline{\Omega} = \{y\}.$

Esempio 2. Every convex set $\Omega \subset \mathbb{R}^d$ satisfies the exterior ball condition.

Esempio 3. If $\Omega \subset \mathbb{R}^d$ is an open set of class C^2 , then Ω satisfies the exterior ball condition.

Esempio 4. The domains

- $\Omega = B_1 \setminus \{(0,0)\},\$
- $\Omega = B_1 \setminus \{(x,0) \in \mathbb{R}^2 : x \in [0,+\infty)\},\$
- $\Omega = \{(x, y) \in \mathbb{R}^2 : xy > 0\},\$
- $\Omega = \{(x, y) \in \mathbb{R}^2 : y \ge |x|\},\$

do not satisfy the exterior ball condition. In fact, for all of them the origin (0,0) is a boundary point at which one cannot place a ball lying in the complement of Ω .

UP-TO-THE-BOUNDARY CONTINUITY OF HARMONIC FUNCTIONS

Let Ω be a bounded open set in \mathbb{R}^d and let

 $g:\overline{\Omega}\to\mathbb{R}$

be a continuous function in $g \in H^1(\Omega) \cap C(\overline{\Omega})$. We know that there is a unique weak solution $h \in H^1(\Omega)$ of the problem

$$\Delta h = 0$$
 in Ω , $h = g$ on $\partial \Omega$,

in the sense that

$$h-g \in H_0^1(\Omega),$$

and

$$\int_{\Omega} \nabla h \cdot \nabla \varphi \, dx = 0 \qquad \text{for every} \qquad \varphi \in C_c^{\infty}(\mathbb{R}^d).$$

We already know that h is C^{∞} in Ω and that

$$\Delta h(x) = 0$$
 for every $x \in \Omega$.

In this section we will show that if g is continuous and if Ω satisfies the external ball condition, then h is also continuous up to the boundary $\partial \Omega$.

Teorema 5 (Continuity up to the boundary). Let Ω be a bounded open set in \mathbb{R}^d that satisfies the exterior ball condition from Definition 1. Let $g \in H^1(\Omega) \cap C(\overline{\Omega})$ be a given function and let $h \in H^1(\Omega)$ be the weak solution to the problem

 $\Delta h = 0 \quad in \quad \Omega \ , \qquad h = g \quad su \quad \partial \Omega.$

Then, the function

$$\widetilde{h}:\overline{\Omega}\to \mathbb{R}\ ,\qquad \widetilde{h}(x):=\begin{cases} h(x) & \text{if} \quad x\in\Omega,\\ g(x) & \text{if} \quad x\in\partial\Omega \end{cases}$$

is continuous on $\overline{\Omega}$.

Dimostrazione. Suppose that x_n is a sequence of points in $\overline{\Omega}$ converging to some $x_0 \in \overline{\Omega}$. We will show that

$$\lim_{n \to +\infty} \widetilde{h}(x_n) = \widetilde{h}(x_0)$$

Since

$$h: \Omega \to \mathbb{R}$$
 and $g: \partial \Omega \to \mathbb{R}$

are both continuous, we only need to consider the case

$$x_0 \in \partial \Omega$$
 and $x_n \in \Omega$ for every $n \ge 1$

Suppose by contradiction that $h(x_n)$ do not converge to $g(x_0)$. Up to extracting a subsequence (and up to replacing h and g with -h and -g), there is $\varepsilon > 0$ such that

$$\lim_{n \to +\infty} h(x_n) \ge g(x_0) + \varepsilon.$$

By hypothesis, we know that there is a ball $B_R(y_0)$ such that

$$\overline{B}_R(y_0) \cap \overline{\Omega} = \{x_0\}.$$

We aim to construct a function

 $\varphi: \mathbb{R}^d \to \mathbb{R}$

with the following properties:

- φ is continuous on \mathbb{R}^d and Lipschitz continuous on $\overline{\Omega}$;
- $\varphi(x_0) = \frac{\varepsilon}{2} + g(x_0);$
- φ is harmonic in $\mathbb{R}^d \setminus \overline{B}_R(z_0)$;
- $\varphi(x) \ge g(x)$ on $\partial \Omega$.

Once we have such a function φ , by the maximum principle we have that $h \leq \varphi$ in Ω so that

$$g(x_0) + \varepsilon \le \lim_{n \to +\infty} h(x_n) \le \lim_{n \to +\infty} \varphi(x_n) = \varphi(x_0) = g(x_0) + \frac{\varepsilon}{2}$$

which leads to a contradiction. In the rest of the proof we will show that such a function φ exists.

Construction of φ . We start by noticing that, since g is continuous at x_0 , there is a radius $\delta > 0$ such that

$$|g(y) - g(x_0)| \le \frac{\varepsilon}{2}$$
 for every $y \in B_{\delta}(x_0) \cap \partial\Omega$

We next choose a radius

$$r := \min\left\{\frac{\delta}{4}, R\right\},$$

and we take the ball

$$B_r(z_0)$$
 with center $x_0 + \frac{r}{R}(y_0 - x_0),$

which is contained in $B_R(y_0)$ and tangent to $\partial B_R(y_0)$ at x_0 .

We consider two cases.

Case 1. The dimension of the space is d = 2. Then, we consider the function

$$\psi(x) := \begin{cases} \ln\left(\frac{|x-z_0|}{r}\right) & \text{if } |x-z_0| \ge r, \\ 0 & \text{if } |x-z_0| \le r. \end{cases}$$

In this case we have that

$$\psi(x) \ge \ln 2$$
 for all $x \in \mathbb{R}^2 \setminus B_{2r}(z_0)$.

Case 2. The dimension of the space is d > 2. in this case, we define the function ψ as

$$\psi(x) := \begin{cases} \frac{1}{r^{d-2}} - \frac{1}{|x-z_0|^{d-2}} & \text{if } |x-z_0| \ge r, \\ 0 & \text{if } |x-z_0| \le r. \end{cases}$$

In this case we have that

$$\psi(x) \ge \frac{1}{2} \frac{1}{r^{d-2}}$$
 for all $x \in \mathbb{R}^d \setminus B_{2r}(z_0)$.

In both cases we have that there is a constant $\kappa > 0$ (depending on r and d) such that

$$\psi(x) \ge \kappa$$
 for all $x \in \mathbb{R}^d \setminus B_{2r}(z_0)$.

Moreover, in both cases the function ψ is continuous on \mathbb{R}^d and harmonic in $\mathbb{R}^d \setminus \overline{B}_r(z_0)$.

We now define the function φ as

$$\varphi(x) = g(x_0) + \frac{\varepsilon}{2} + \frac{2\|g\|_{L^{\infty}(\partial\Omega)}}{\kappa} \psi(x).$$

By the choice of the radius δ we have that

$$\varphi(x) \ge g(x_0) + \frac{\varepsilon}{2} \ge g(x) \quad \text{for all} \quad x \in B_{\delta}(x_0).$$

On the other hand, by the choice of $r \leq \delta/4$ we have that

$$B_{2r}(z_0) \subset B_{\delta}(x_0),$$

so for all $x \in \mathbb{R}^d \setminus B_{\delta}(x_0)$ we have:

$$\begin{split} \varphi(x) &\geq g(x_0) + \frac{2\|g\|_{L^{\infty}(\partial\Omega)}}{\kappa} \psi(x) \\ &\geq g(x_0) + 2\|g\|_{L^{\infty}(\partial\Omega)} \\ &\geq \|g\|_{L^{\infty}(\partial\Omega)} \\ &\geq g(x). \end{split}$$

This implies that

 $\varphi(x) \ge g(x)$ on $\partial\Omega$,

and concludes the proof.

As an immediate consequence we obtain the following

Corollario 6 (Continuity up to the boundary). Let Ω be a bounded open set in \mathbb{R}^d that satisfies the exterior ball condition from Definition 1. Let $g: \partial\Omega \to \mathbb{R}$ be a given Lipschitz continuous function and let $h \in H^1(\Omega)$ be the weak solution to the problem

 $\Delta h=0 \quad in \quad \Omega \ , \qquad h=g \quad su \quad \partial \Omega.$

Then, the function

$$\widetilde{h}:\overline{\Omega} \to \mathbb{R}$$
, $\widetilde{h}(x) := \begin{cases} h(x) & \text{if } x \in \Omega, \\ g(x) & \text{if } x \in \partial\Omega, \end{cases}$

is continuous on $\overline{\Omega}$.

Dimostrazione. It is sufficient to notice that any Lipschitz continuous function $g : \partial \Omega \to \mathbb{R}$ can be extended to a Lipschitz continuous $\tilde{g} : \mathbb{R}^d \to \mathbb{R}$. Since the Lipschitz extension \tilde{g} lies is in both $H^1(\Omega)$ and $C(\overline{\Omega})$, we can apply Theorem 5.