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Bounded slope condition,

gradient estimate,

and up-to-the-boundary Lipschitz estimates for harmonic functions

BOUNDED SLOPE CONDITION

The bounded slope condition is a geometric condition on the graph of a function
g:00 —R.

Precisely, we have the following

Definizione 1 (Bounded slope condition). Let Q be a bounded open set in R and let g : 92 — R be a
continuous function. We say that g satisfies the bounded slope condition, if there is a constant S > 0 such that:
for every xy € 0N there exist two vectors

veB; e v e By,

such that
Sv-(z—x0) <g(x)—g(xo) < ST (¥ —x) forall xe€IN.

Proposizione 2. A function g : 02 — R that satisfies the bounded slope condition is Lipschitz continuous with
Lipschitz constant S.

Dimostrazione. For every z,y € 0f2, we have
—Slllz —yl < Sv-(z—y) <g(z) —g(y) <sv- (x—y) <SPz -yl
Since |v| <1 and |7| < 1 we have
=S|z —y[ < g(x) —g(y) < Slz —yl.
which concludes the proof. O

Esercizio 3. Let Q be an open set in R? whose boundary S contains the segment I' := (—1,1) x {0} (for
instance, one such domain is the rectangle (—1,1) x (0,1)).

e Prove that the function g(x,y) = x? does not satisfy the bounded slope condition on OS).
e Prove that if g : 09 — R satisfies the bounded slope condition, then g : T' — R is an affine function.

Proposizione 4. Let Q be a convex bounded open set of class C? in RL. Moreover, suppose that there is a
positive constant ¢ > 0 such that at every boundary point xo € I the principle curvatures k1(xo), .. ., kd—1(Zo)
are bounded from below by c. Then, every function g : R* — R of class C? satisfies the bounded slope condition
on 0N.

Dimostrazione. Fix a point Xg € 002 and consider the function
hX) = g(X) = g(Xo) — (X — Xo) - Vg(Xo).
Since  is a bounded C? domain, there is a radius R > 0 such that for every X, € 09 there is a function
n:Br— (—R,R)
of class C? on the ball Bj;, € R?~! such that, up to a rotation and translation,
Xo=0, n(0)=0, Van0)=0,
Qn (B;z x (—R, R)) - {(x,y) € Bl x (~R,R) : y> n(m)},

80N (B}: * (—R, R)) - {(:c,n(x)) Lae B;%}.
Assume for simplicity that d = 2. We proceed in several steps.
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Step 1. Bounds on 7' and n”. We know that
n" >0 in (—R,R).
and that the curvature x : 92 — R of 99 is given by
77// T
s = — )
(1+ (7' ())?)

By the lower bound on the curvature and the continuity of &, there are constants ¢ > 0 and C' > 0 such that

3/2°

0<c<k(zn(x) <C < +oo.
First we notice that
n(0)=0 and 7' >0 on (0,R).
Moreover, if
n"(z)
(14 (' (2))?)
= 0 (z) < LO(A+k2)%2% on [0,L).

n <k on [0,L] = n'(x) < (1+ x%)3/? <C(1+4£2%? on [0,L]

3/2

Thus, choosing
1
L :=mi {—,R},
min | g~

n<1 on [0,L]

we get that

By the same argument on [—L, 0], we get
W'l<1 on [-L,L]

In particular, this implies the bounds

/! /!
0" (@) <n(x) < 2%/2 n"(@) forall ze[-L,L],

so we get
c<n'(x) <2%2C forall ze|-L, L)

Step 2. An upper bound on h(z,n(z)) for « € [-L, L]. We consider the function
v [7L7L] -+ R ) ’U(.’E) = h(‘r7n(x))a
which is such that

and
V" (2) = haa(z,n(2)) + 20 (2) hay (z, () + [0 (2)Phyy (@, n(2)) + 1" (2)hy (2, 7(2))
= au(2,1(2)) + 20 () gy (z, n(2)) + |0 () gyy (z,n(2)) + 7" (2) (gy(w, n(x)) — g4(0, 0))-

Since gra, Jays Jyys gy are bounded functions, setting

IV2gllL~ = sup /92, + 292, + 92, and  |Vgllre~ = /g2 + g2,

0" < 4V?gllz +2C| Vgllze.

we get

Thus, setting
_ AIV2gllL= +2C| Vg L

C

A

we get
[v"(z)| < An”(x) for all =z e [-L,L].
This implies that
|h(z,n(z))| = |v(z)|] < An(z) for all x € [-L,LJ.



Step 3. An upper bound on h : 92 — R. By the lower bound

12
" " (z)
n(r) = 32 26

(1+ (7' (2))?)

we obtain that . .
n(L) > 517 and n(-L)> SL*

Thus, setting

a := inf {L, gLQ},
we get that there are points

¢(_ e[-L,0) and ¢, € (0,L],

such that

n(t-) =nly) = a.
Now, by the convexity of Q2 we know that

Qﬁ{(m,y)eRz : yga}:{(ﬂc,y)eR2 s o<z <ty n@)<y<al.
This implies the bound
|h(z,y)| < Ay forall (z,y) € 02N {(z,y) eR® : y<a}.
On the other hand, it is immediate to check that

|h(z,y)| <

Wolemom),  for a (2,9) € 00 {(w,9) € R? : > al.
a

Thus, there is a constant K, that depends on 2 and g, such that:
(1) |h(z,y)| < Ky forall (z,y) € 09.
Step 4. Conclusion. We recall that by the the definition of h, we get that
9(@,y) — 9(0,0) = h(z,y) + (z,y) - Vg(0,0).
Using the estimate (1), we get that
—Ky+ (z,y) - Vg(0,0) < g(x,y) — 9(0,0) < Ky + (z,y) - Vg(0,0),
which can also be written as
(2,9) - (= Kea+ Vg(0,0)) < g(w,9) — 9(0,0) < (w,9) - (Kez + Vg(0,0)).

Finally, setting
§:=K+|Vgllr= 9,
we get that g satisfies the bounded slope condition with slope S. O

LIPSCHITZ REGULARITY UP TO THE BOUNDARY

Let Q be a bounded open set in R%. Thanks to Proposition 2 we know that if g : 9Q — R is a function that
satisfies the bounded slope condition on 02, then it is Lipschitz continuous on 9. Thus, it can be extended
to a Lipschitz continuous function § : R? — R. As a consequence, there is a unique weak solution h € H'(£2)
of the problem

Ah=0 in Q, h=g on 09,
in the sense that
and
/ Vh-Vedr =0 for every @ € C(RY).
Q
We already know that h is C*° in 2 and that
Ah(z) =0 for every z €.

In this section we will prove that h is Lipschitz continuous on € (with Lipschitz constant depending only on
the slope of g and on the dimension of the space). We will only need that g : 99 — R satisfies the bounded
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slope condition as the proof does not require any further assumptions on the geometry or on the regularity of
Q. A key ingredient of the proof will be the following general result for harmonic functions.

Lemma 5 (Gradient estimate). Let u € C°°(Bg) be a harmonic function in a ball Br C R:. Then

2d
IVulloe By < Fllull o= (r)-

Dimostrazione. For every i = 1,...,d, the partial derivative 0;u : Bg — R is a harmonic function in Bg. In
particular, for every constant unit vector V = (vq,...,v4) € R, the function

d
V.-Vu:Br =R, V- -Vu(x)= Zvjaju(x),
j=1

is harmonic in Br and so it satisfies the mean value property

V- Vu(xg) = ][ V - Vu(y) dy,
Br(ro)
for every ball B,.(z9) C Br. Since we have the inclusion
Br/a(xo) C Br  for every x¢ € Bp)s,
we get that
2d
- wde

V -Vu(z)dx for every x0 € Bpys.
BR/2($0)

V- Vu(zg) = ][ V- Vu(x)dx

BR/z(ﬂfO)
Now, by the divergence theorem

/ divX = X v,
Q a0
applied to the domain 2 := Bp/s(x0) and to the vector field X (z) := u(x)V, we get

/ V-Vu(z)dz = / uw(z)V - v(x) dH (),
Br/2(x0) O0BRsa(w0)
where v(z) := x/R is the exterior normal to 0Brs (o). Finally, using that
|u(z)V -v(x)| < |u(x)] on OBrp(xo),
and putting the above estimates together, we get
2d

/ V- Vu(y) dy
Br/2(0)

2d
wde

/ wV - vdH?
OBR/2(x0)
2d

< E ||UHL°°(6BR/2(z0))

2d
< EHUHL”(BR)'

Since wg € Br/2 and V' € By is arbitrary, this concludes the proof. O

Teorema 6 (Bounded slope condition and Lipschitz regularity up to the boundary). Let 2 be a bounded open
set in R and let g : 00 — R be a function that satisfies the bounded slope condition with slope S > 0 on OS).
Let h € HY(Q) be the weak solution to the problem

Ah=0 in Q, h=g su 0.
Then, there is a dimensional constant Cyq such that
|[Vh| < CyS on Q,

and such that the function

B OGR. E(a:)::{h(‘"”) yored
g(z) of xe€Q,

is Lipschitz continuous on Q with Lipschitz constant CyS.
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Dimostrazione. We know that h is C* in Q. We will first prove that |Vh| is bounded in Q. Consider a point
xo € Q and let yo be a projection of xy on 0. Setting
Ro := |zo — yo
we get that Bg,(zo) C Q. Then, by the gradient estimate in Bg,(z¢) applied to the harmonic function
z = h(x) — g(yo)
we get that

2d
|Vh(zo)| < RﬁOHh = (Yol Lo (Bry (z0))-
Now, since g satisfied the bounded slope condition on 92 we have that

Sv-(y—yo) <9(y) —9(yo) < ST (y—yo) forall ye Q.

for some vectors |v| <1 and |[7| < 1. Since the functions
= Sv-(x—yo) and x—= ST (x—yo)

are harmonic on 2, the (weak) maximum principle gives

Sv-(x—yo) <h(z)—g(yo) < ST-(x —yo) forall yeoQ,
so that

|h(z) — g(yo)| < S|z —yo| forall zeQ.
In particular, for every = € Bp,(zo) we have
|h(z) — g(yo)| < S|z —yo| < S2Ro,
which combined with the gradient estimate provides
VA < = g00) = a0y < 25T = 405,

Since x( € €2 was arbitrary, we get
(2) [Vh| <2dS in Q.

We next prove that h is Lipschitz continuous up to the boundary. Let 2; and x5 be two points in Q, let
01 = dist(z1,09Q) , 09 := dist(x2,09Q),

and let y; and yo be two points on 0f2 that realize the distances d; and &5 respectively. Without loss of generality
we can suppose that

|71 — 1| = 01 < b2 = |z2 — Y.
‘We notice that by construction

0 < |wy — 1| < |wy — 22| + 61

We consider two cases.

Case 1. |x; — xa| < 106;. Then, the ball of center x; and radius r = 2|x; — x| is contained in Q. Applying
the estimate (2) in B, (z1) we get that

(h(x1) = h(@2)| < VAl L (B, |21 — 22| < 4dS|z1 — 29].

Case 2. |z; — 22| > 100;. Then, the ball with center y; and radius R = 2|x; — 22| contains both 7 and z5.
Indeed,
lz1 —y1| = 01 < |op — @9

and

lz2 —y1| < |zt — 22| + |21 —y1| < |21 — 22| + 01 < 2|21 — TR
Now, we use again the bounded slope condition on g and the maximum principle. By the bounded slope
condition, there are vectors v and 7 such that

Sv-(y—u) <gly) —gly1) <ST-(y—y1) forall ye .

Since the functions
x—=Sv-(r—uy1) and x> ST (xr—y1)
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are harmonic on 2, the (weak) maximum principle gives
Sv-(z—y1) <h(x) —g(y1) < ST (v —y1) forall ye .
Combining the estimates for ¢ — g(y1) on the boundary and h — g(y1) in 2, we get
Ih(z) — g(y1)| < S|z —y1| forall zeQ.
Thus,
[(a2) = h(@1)| < [h(a1) = glyn)| + [h(x2) = g(y)]

< Sz —yi| + S|z — yi

< 3S|z1 — 22|
In conclusion, since 4d > 3, combining the two cases above, we get that

|h(22) — h(z1)| < 4dS|z1 — x4],

which concludes the proof.



