
Elliptic PDEs www.velichkov.it

Bounded slope condition,

gradient estimate,

and up-to-the-boundary Lipschitz estimates for harmonic functions

Bounded slope condition

The bounded slope condition is a geometric condition on the graph of a function

g : ∂Ω→ R.
Precisely, we have the following

Definizione 1 (Bounded slope condition). Let Ω be a bounded open set in Rd and let g : ∂Ω → R be a
continuous function. We say that g satisfies the bounded slope condition, if there is a constant S > 0 such that:

for every x0 ∈ ∂Ω there exist two vectors

ν ∈ B1 e ν ∈ B1,

such that

S ν · (x− x0) ≤ g(x)− g(x0) ≤ S ν · (x− x0) for all x ∈ ∂Ω.

Proposizione 2. A function g : ∂Ω→ R that satisfies the bounded slope condition is Lipschitz continuous with
Lipschitz constant S.

Dimostrazione. For every x, y ∈ ∂Ω, we have

−S|ν||x− y| ≤ S ν · (x− y) ≤ g(x)− g(y) ≤ s ν · (x− y) ≤ S|ν||x− y|.
Since |ν| ≤ 1 and |ν| ≤ 1 we have

−S|x− y| ≤ g(x)− g(y) ≤ S|x− y|.
which concludes the proof. �

Esercizio 3. Let Ω be an open set in R2 whose boundary ∂Ω contains the segment Γ := (−1, 1) × {0} (for
instance, one such domain is the rectangle (−1, 1)× (0, 1)).

• Prove that the function g(x, y) = x2 does not satisfy the bounded slope condition on ∂Ω.
• Prove that if g : ∂Ω→ R satisfies the bounded slope condition, then g : Γ→ R is an affine function.

Proposizione 4. Let Ω be a convex bounded open set of class C2 in Rd. Moreover, suppose that there is a
positive constant c > 0 such that at every boundary point x0 ∈ ∂Ω the principle curvatures κ1(x0), . . . , κd−1(x0)
are bounded from below by c. Then, every function g : Rd → R of class C2 satisfies the bounded slope condition
on ∂Ω.

Dimostrazione. Fix a point X0 ∈ ∂Ω and consider the function

h(X) = g(X)− g(X0)− (X −X0) · ∇g(X0).

Since Ω is a bounded C2 domain, there is a radius R > 0 such that for every X0 ∈ ∂Ω there is a function

η : B′R → (−R,R)

of class C2 on the ball B′R ⊂ Rd−1 such that, up to a rotation and translation,

X0 = 0, η(0) = 0 , ∇x′η(0) = 0 ,

Ω ∩
(
B′R × (−R,R)

)
=
{

(x, y) ∈ B′R × (−R,R) : y > η(x)
}
,

∂Ω ∩
(
B′R × (−R,R)

)
=
{

(x, η(x)) : x ∈ B′R
}
.

Assume for simplicity that d = 2. We proceed in several steps.
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Step 1. Bounds on η′ and η′′. We know that

η′′ ≥ 0 in (−R,R).

and that the curvature κ : ∂Ω→ R of ∂Ω is given by

κ
(
x, η(x)

)
=

η′′(x)(
1 + (η′(x))2

)3/2
.

By the lower bound on the curvature and the continuity of κ, there are constants c > 0 and C > 0 such that

0 < c ≤ κ
(
x, η(x)

)
≤ C < +∞.

First we notice that

η′(0) = 0 and η′ ≥ 0 on (0, R).

Moreover, if

η′ ≤ κ on [0, L] ⇒ η′′(x) ≤ (1 + κ2)3/2 η′′(x)(
1 + (η′(x))2

)3/2
≤ C(1 + κ2)3/2 on [0, L]

⇒ η′(x) ≤ LC(1 + κ2)3/2 on [0, L].

Thus, choosing

L := min
{ 1

8C
,R
}
,

we get that

η′ ≤ 1 on [0, L].

By the same argument on [−L, 0], we get

|η′| ≤ 1 on [−L,L].

In particular, this implies the bounds

η′′(x)(
1 + (η′(x))2

)3/2
≤ η′′(x) ≤ 23/2 η′′(x)(

1 + (η′(x))2
)3/2

for all x ∈ [−L,L],

so we get

c ≤ η′′(x) ≤ 23/2C for all x ∈ [−L,L].

Step 2. An upper bound on h(x, η(x)) for x ∈ [−L,L]. We consider the function

v : [−L,L]→ R , v(x) = h(x, η(x)),

which is such that

v(0) = v′(0) = 0

and

v′′(x) = hxx(x, η(x)) + 2η′(x)hxy(x, η(x)) + |η′(x)|2hyy(x, η(x)) + η′′(x)hy(x, η(x))

= gxx(x, η(x)) + 2η′(x)gxy(x, η(x)) + |η′(x)|2gyy(x, η(x)) + η′′(x)
(
gy(x, η(x))− gy(0, 0)

)
.

Since gxx, gxy, gyy, gy are bounded functions, setting

‖∇2g‖L∞ = sup
√
g2
xx + 2g2

xy + g2
yy and ‖∇g‖L∞ =

√
g2
x + g2

y,

we get

|v′′| ≤ 4‖∇2g‖L∞ + 2C‖∇g‖L∞ .

Thus, setting

A :=
4‖∇2g‖L∞ + 2C‖∇g‖L∞

c
we get

|v′′(x)| ≤ Aη′′(x) for all x ∈ [−L,L].

This implies that

|h(x, η(x))| = |v(x)| ≤ Aη(x) for all x ∈ [−L,L].
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Step 3. An upper bound on h : ∂Ω→ R. By the lower bound

η′′(x) ≥ η′′(x)(
1 + (η′(x))2

)3/2
≥ c,

we obtain that
η(L) ≥ c

2
L2 and η(−L) ≥ c

2
L2.

Thus, setting

a := inf
{
L,
c

2
L2
}
,

we get that there are points
`− ∈ [−L, 0) and `+ ∈ (0, L],

such that
η(`−) = η(`+) = a.

Now, by the convexity of Ω we know that

Ω ∩
{

(x, y) ∈ R2 : y ≤ a
}

=
{

(x, y) ∈ R2 : `− ≤ x ≤ `+ , η(x) ≤ y ≤ a
}
.

This implies the bound

|h(x, y)| ≤ Ay for all (x, y) ∈ ∂Ω ∩
{

(x, y) ∈ R2 : y ≤ a
}
.

On the other hand, it is immediate to check that

|h(x, y)| ≤
‖g‖L∞(∂Ω)

a
y for all (x, y) ∈ ∂Ω ∩

{
(x, y) ∈ R2 : y ≥ a

}
.

Thus, there is a constant K, that depends on Ω and g, such that:

(1) |h(x, y)| ≤ Ky for all (x, y) ∈ ∂Ω.

Step 4. Conclusion. We recall that by the the definition of h, we get that

g(x, y)− g(0, 0) = h(x, y) + (x, y) · ∇g(0, 0).

Using the estimate (1), we get that

−Ky + (x, y) · ∇g(0, 0) ≤ g(x, y)− g(0, 0) ≤ Ky + (x, y) · ∇g(0, 0),

which can also be written as

(x, y) ·
(
−Ke2 +∇g(0, 0)

)
≤ g(x, y)− g(0, 0) ≤ (x, y) ·

(
Ke2 +∇g(0, 0)

)
,

Finally, setting
S := K + ‖∇g‖L∞(∂Ω),

we get that g satisfies the bounded slope condition with slope S. �

Lipschitz regularity up to the boundary

Let Ω be a bounded open set in Rd. Thanks to Proposition 2 we know that if g : ∂Ω→ R is a function that
satisfies the bounded slope condition on ∂Ω, then it is Lipschitz continuous on ∂Ω. Thus, it can be extended
to a Lipschitz continuous function g̃ : Rd → R. As a consequence, there is a unique weak solution h ∈ H1(Ω)
of the problem

∆h = 0 in Ω , h = g on ∂Ω,

in the sense that
h− g̃ ∈ H1

0 (Ω),

and ∫
Ω

∇h · ∇ϕdx = 0 for every ϕ ∈ C∞c (Rd).

We already know that h is C∞ in Ω and that

∆h(x) = 0 for every x ∈ Ω.

In this section we will prove that h is Lipschitz continuous on Ω (with Lipschitz constant depending only on
the slope of g and on the dimension of the space). We will only need that g : ∂Ω → R satisfies the bounded
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slope condition as the proof does not require any further assumptions on the geometry or on the regularity of
Ω. A key ingredient of the proof will be the following general result for harmonic functions.

Lemma 5 (Gradient estimate). Let u ∈ C∞(BR) be a harmonic function in a ball BR ⊂ Rd. Then

‖∇u‖L∞(BR/2) ≤
2d

R
‖u‖L∞(BR).

Dimostrazione. For every i = 1, . . . , d, the partial derivative ∂iu : BR → R is a harmonic function in BR. In
particular, for every constant unit vector V = (v1, . . . , vd) ∈ Rd, the function

V · ∇u : BR → R , V · ∇u(x) =

d∑
j=1

vj∂ju(x),

is harmonic in BR and so it satisfies the mean value property

V · ∇u(x0) = −
∫
Br(x0)

V · ∇u(y) dy,

for every ball Br(x0) ⊂ BR. Since we have the inclusion

BR/2(x0) ⊂ BR for every x0 ∈ BR/2,

we get that

V · ∇u(x0) = −
∫
BR/2(x0)

V · ∇u(x) dx =
2d

ωdRd

∫
BR/2(x0)

V · ∇u(x) dx for every x0 ∈ BR/2.

Now, by the divergence theorem ∫
Ω

divX =

∫
∂Ω

X · ν ,

applied to the domain Ω := BR/2(x0) and to the vector field X(x) := u(x)V , we get∫
BR/2(x0)

V · ∇u(x) dx =

∫
∂BR/2(x0)

u(x)V · ν(x) dHd−1(x),

where ν(x) := x/R is the exterior normal to ∂BR/2(x0). Finally, using that

|u(x)V · ν(x)| ≤ |u(x)| on ∂BR/2(x0),

and putting the above estimates together, we get

|V · ∇u(x0)| = 2d

ωdRd

∣∣∣∣∣
∫
BR/2(x0)

V · ∇u(y) dy

∣∣∣∣∣
=

2d

ωdRd

∣∣∣∣∣
∫
∂BR/2(x0)

uV · ν dHd−1

∣∣∣∣∣
≤ 2d

R
‖u‖L∞(∂BR/2(x0))

≤ 2d

R
‖u‖L∞(BR) .

Since x0 ∈ BR/2 and V ∈ ∂B1 is arbitrary, this concludes the proof. �

Teorema 6 (Bounded slope condition and Lipschitz regularity up to the boundary). Let Ω be a bounded open
set in Rd and let g : ∂Ω → R be a function that satisfies the bounded slope condition with slope S > 0 on ∂Ω.
Let h ∈ H1(Ω) be the weak solution to the problem

∆h = 0 in Ω , h = g su ∂Ω.

Then, there is a dimensional constant Cd such that

|∇h| ≤ CdS on Ω,

and such that the function

h̃ : Ω→ R , h̃(x) :=

{
h(x) if x ∈ Ω,

g(x) if x ∈ ∂Ω,

is Lipschitz continuous on Ω with Lipschitz constant CdS.
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Dimostrazione. We know that h is C∞ in Ω. We will first prove that |∇h| is bounded in Ω. Consider a point
x0 ∈ Ω and let y0 be a projection of x0 on ∂Ω. Setting

R0 := |x0 − y0|
we get that BR0

(x0) ⊂ Ω. Then, by the gradient estimate in BR0
(x0) applied to the harmonic function

x 7→ h(x)− g(y0)

we get that

|∇h(x0)| ≤ 2d

R0
‖h− g(y0)‖L∞(BR0

(x0)).

Now, since g satisfied the bounded slope condition on ∂Ω we have that

S ν · (y − y0) ≤ g(y)− g(y0) ≤ S ν · (y − y0) for all y ∈ ∂Ω.

for some vectors |ν| ≤ 1 and |ν| ≤ 1. Since the functions

x 7→ S ν · (x− y0) and x 7→ S ν · (x− y0)

are harmonic on Ω, the (weak) maximum principle gives

S ν · (x− y0) ≤ h(x)− g(y0) ≤ S ν · (x− y0) for all y ∈ ∂Ω,

so that
|h(x)− g(y0)| ≤ S |x− y0| for all x ∈ Ω.

In particular, for every x ∈ BR0
(x0) we have

|h(x)− g(y0)| ≤ S |x− y0| ≤ S2R0,

which combined with the gradient estimate provides

|∇h(x0)| ≤ 2d

R0
‖h− g(y0)‖L∞(BR0

(x0)) ≤
2d

R0
2SR0 = 4dS.

Since x0 ∈ Ω was arbitrary, we get

(2) |∇h| ≤ 2dS in Ω.

We next prove that h is Lipschitz continuous up to the boundary. Let x1 and x2 be two points in Ω, let

δ1 := dist(x1, ∂Ω) , δ2 := dist(x2, ∂Ω) ,

and let y1 and y2 be two points on ∂Ω that realize the distances δ1 and δ2 respectively. Without loss of generality
we can suppose that

|x1 − y1| = δ1 ≤ δ2 = |x2 − y2|.
We notice that by construction

δ2 ≤ |x2 − y1| ≤ |x1 − x2|+ δ1.

We consider two cases.

Case 1. |x1 − x2| ≤ 10δ1. Then, the ball of center x1 and radius r = 2|x1 − x2| is contained in Ω. Applying
the estimate (2) in Br(x1) we get that

|h(x1)− h(x2)| ≤ ‖∇h‖L∞(Br)|x1 − x2| ≤ 4dS|x1 − x2|.

Case 2. |x1 − x2| ≥ 10δ1. Then, the ball with center y1 and radius R = 2|x1 − x2| contains both x1 and x2.
Indeed,

|x1 − y1| = δ1 ≤ |x1 − x2|
and

|x2 − y1| ≤ |x1 − x2|+ |x1 − y1| ≤ |x1 − x2|+ δ1 ≤ 2|x1 − x2|.
Now, we use again the bounded slope condition on g and the maximum principle. By the bounded slope
condition, there are vectors ν and ν such that

S ν · (y − y1) ≤ g(y)− g(y1) ≤ S ν · (y − y1) for all y ∈ ∂Ω.

Since the functions
x 7→ S ν · (x− y1) and x 7→ S ν · (x− y1)
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are harmonic on Ω, the (weak) maximum principle gives

S ν · (x− y1) ≤ h(x)− g(y1) ≤ S ν · (x− y1) for all y ∈ ∂Ω.

Combining the estimates for g − g(y1) on the boundary and h− g(y1) in Ω, we get

|h̃(x)− g(y1)| ≤ S |x− y1| for all x ∈ Ω.

Thus,

|h̃(x2)− h̃(x1)| ≤ |h̃(x1)− g(y1)|+ |h̃(x2)− g(y1)|
≤ S |x1 − y1|+ S |x2 − y1|
≤ 3S|x1 − x2|.

In conclusion, since 4d ≥ 3, combining the two cases above, we get that

|h̃(x2)− h̃(x1)| ≤ 4dS|x1 − x2|,
which concludes the proof. �


