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Abstract

In this dissertation we investigate nonseparable C∗-algebras using methods coming
from logic, specifically from set theory. The material is divided into three main parts.

In the first part we study algebras known as counterexamples to Naimark’s problem,
namely C∗-algebras that are not isomorphic to the algebra of compact operators on some
Hilbert space, yet still have only one irreducible representation up to unitary equivalence.
Such algebras have to be simple, nonseparable and non-type I, and they are known to
exist if the diamond principle (a strengthening of the continuum hypothesis) is assumed.
With the motivation of finding further characterizations for these counterexamples, we
undertake the study of their trace spaces, led by some elementary observations about
the unitary action on the state space of these algebras, which seem to suggest that a
counterexample to Naimark’s problem could have at most one trace. We show that this is
not the case and, assuming diamond, we prove that every Choquet simplex with countably
many extreme points occurs as the trace space of a counterexample to Naimark’s problem
and that, moreover, there exists a counterexample whose tracial simplex is nonseparable.

The second part of this dissertation revolves around the Calkin algebra Q(H) and the
general problem of what nonseparable C∗-algebras embed into it. We prove that, under
Martin’s axiom, all C∗-algebras of density character less than 2ℵ0 embed into the Calkin
algebra. Moving to larger C∗-algebras, we show that (within ZFC alone) C∗red(F2ℵ0 ) and
C∗max(F2ℵ0 ), where F2ℵ0 is the free group on 2ℵ0 generators, and every nonseparable UHF
algebra with density character at most 2ℵ0 , embed into the Calkin algebra. On the other
hand, we prove that it is consistent with ZFC + 2ℵ0 ≥ ℵα, for every ordinal α ≥ 2, that
the abelian C∗-algebra generated by an increasing chain of ℵ2 projections does not embed
into Q(H). Hence, the statement ‘Every C∗-algebra of density character strictly less than
2ℵ0 embeds into the Calkin algebra’ is independent from ZFC+2ℵ0 ≥ ℵα, for every ordinal
α > 2. Finally, we show that the proof of Voiculescu’s noncommutative version of the Weyl-
von Neumann theorem consists, when looked from the right perspective, of a sequence of
applications of the Baire category theorem to certain ccc posets. This allows us, assuming
Martin’s axiom, to generalize Voiculescu’s results to nonseparable C∗-algebras of density
character less than 2ℵ0 .

The last part of this manuscript concerns lifting of abelian subalgebras of coronas of
non-unital C∗-algebras. Given a subset of commuting elements in a corona algebra, we
study what could prevent the existence of a commutative lifting of such subset to the
multiplier algebra. While for finite and countable families the only issues arising are of
K-theoretic nature, for larger families the size itself becomes an obstruction. We prove
in fact, for a primitive, non-unital, σ-unital C∗-algebra A, that there exists a set of ℵ1

orthogonal positive elements in the corona of A which cannot be lifted to a collection of
commuting elements in the multiplier algebra of A.
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Introduction

It wasn’t a dark and stormy night. It should have been, but that’s the weather for you. For every mad
scientist who’s had a convenient thunderstorm just on the night his Great Work is finished and lying on
the slab, there have been dozens who’ve sat around aimlessly under the peaceful stars while Igor clocks up
the overtime.

Good Omens, Neil Gaiman and Terry Pratchett

An extremely fruitful interplay between mathematical logic and the theory of algebras
of operators on a Hilbert space has been developing over the last 15 years.

Operator algebras were first studied by Murray and von Neumann in the 1930s in
response to the birth of quantum mechanics, with the original intention to provide rigorous
mathematical foundations to this developing theory. Since Murray and von Neumann’s
seminal works, this subject has grown into a branch of pure mathematics in its own right,
with deep connections with several other areas of mathematics such as algebraic topology,
ergodic theory, dynamical systems or geometric group theory.

Mathematical logic, on the other hand, is a discipline straddling mathematics, phi-
losophy and computer science, which came to life in the second half of the 19th century
providing the framework for the first systematic study of the foundations of mathematics.
This subject recently developed deep connections with operator algebras in the form of
model theory and set theory. In this dissertation we focus on some of the interactions
between set theory and C∗-algebras.

A C∗-algebra is an algebra of operators on `2 which is closed in the norm topology.
A recurrent theme in operator algebras (crucial also in this dissertation) is the idea that
algebras of operators naturally provide ‘quantized’ or noncommutative correspondent of
well-known mathematical structures. C∗-algebras are a textbook example of this. The
Gelfand transform establishes in fact an equivalence between the category of unital abelian
C∗-algebras and the category of compact Hausdorff topological spaces. This brings to
the leading principle of this subject, namely that C∗-algebras are the noncommutative
analogue of topological spaces.

Set theory, on the other hand, is the child of Cantor’s investigations on the cardinalities
of the subsets of the real line at the end of the 19th century. It grew in a theory with
deep metamathematical implications thanks to Gödel incompleteness theorems, and it
blossomed after the invention of forcing by Cohen in 1963. With forcing, set theorists
finally had the tools to deal with the independence phenomena, discovered thanks to
Gödel’s results, intrinsic to every first order theory capable of modeling arithmetic.

Unlike model theory, whose applications to von Neumann algebras and C∗-algebras
have been wide and systematic (see [FHL+16]), the intersections between set theory and
operator algebras have been a bit more sparse, albeit extremely significant and deep.
Examples are the breakthroughs on Naimark’s problem (see [AW04]), on Anderson’s con-
jecture (see [AW08]), and the complete solution of the problem of the existence of an outer
automorphism of the Calkin algebra (see [PW07] and [Far11]).
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Part of the interactions between set theory and C∗-algebras can be roughly orga-
nized in four themes: the application of set-theoretic combinatorial statements to produce
pathological examples of nonseparable C∗-algebras, the translation to the noncommutative
context (provided by C∗-algebras) of results and techniques concerning boolean algebras
and partial orderings (particularly P(N)/Fin), the study of how set-theoretic axioms deter-
mine the properties of a C∗-algebra and of its group of automorphisms, and the application
of descriptive set theory in classification problems. This dissertation focuses on the first
two themes, more specifically the common thread of this thesis is the analysis, by means
of combinatorial set-theory, of various examples of nonseparable C∗-algebras and of their
features. The manuscript is organized into three fairly autonomous chapters. The mate-
rial in chapter 1 regards Naimark’s problem and belongs to the first of the themes listed
above. On the other side, chapters 2 and 3 are devoted to different problems about corona
algebras (chapter 2 specifically focuses on the Calkin algebra), and the topics discussed
there are an example of the second theme.

During the 1940s and 1950s representations of C∗-algebras have been extensively stud-
ied, and researchers were trying to understand to what extent the representation theory
of a C∗-algebra determines its isomorphism class. Among all C∗-algebras, the algebra of
compact operators K(H) carries the simplest possible representation theory, in this case
in fact all irreducible representations are unitarily equivalent. In 1951 Naimark asked in
[Nai51] whether this strong property characterizes K(H) up to isomorphism. This ques-
tion is known as Naimark’s problem, and in the subsequent years it was settled with a
positive answer for the class of type I and the class of separable C∗-algebras, but overall
it remained unsolved.

About 50 years later, Naimark’s problem drew the attention of several researchers
in logic, after a major breakthrough towards its solution was made in [AW04]. In this
article the authors produced, assuming Jensen’s diamond principle (a strengthening of the
continuum hypothesis), a counterexample to Naimark’s problem, namely a C∗-algebra with
a unique irreducible representation up to unitary equivalence not isomorphic to K(H) for
any Hilbert space H. The construction presented in [AW04] is a glaring example of how
combinatorial set-theoretic statements can be used to produce nonseparable C∗-algebras
whose behavior is somewhat irregular, when compared to the separable framework. In fact,
while (by Glimm’s dichotomy [Gli61]) all non-type I, separable C∗-algebras necessarily
have continuum many pairwise inequivalent irreducible representations, a counterexample
to Naimark’s problem is a (nonseparable) non-type I C∗-algebra with only one irreducible
representation up to unitary equivalence. We remark that it is still not known whether a
positive answer to Naimark’s problem is relatively consistent with ZFC.

The techniques developed by Akemann and Weaver in [AW04] rely on the results
contained in [KOS03], they are very flexible and allow to produce unital counterexamples
with various additional properties (e.g. nuclear, UHF, purely infinite, as shown in [FH17]),
but little is known about which properties are common to all counterexamples. With the
intention of investigating this matter, we look at the trace spaces of unital counterexamples
to Naimark’s problem. For such C∗-algebras, the affine action of the unitary group on the
state space is transitive on the extreme points, i.e. the pure states. Since the only states
fixed by this action are the traces, it seems conceivable that a counterexample to Naimark’s
problem could have at most one trace, as happens for affine actions which are transitive
on the extreme points of a finite-dimensional simplex. We give a strong negative answer
in chapter 1 (whose contents are also presented in [Vac18a]), where we prove, assuming
diamond, that every Choquet simplex with countably many extreme points occurs as the
tracial simplex of a counterexample to Naimark’s problem and that, furthermore, there is
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a counterexample with a nonseparable trace space.

Chapter 2 is devoted to the Calkin algebra Q(H), the quotient of B(H), the algebra
of linear bounded operators on a separable infinite-dimensional Hilbert space, modulo
the ideal of compact operators K(H). This C∗-algebra has always been object of intense
study by the researchers in operator algebras, starting with the work of Weyl and von
Neumann on unitary equivalence up to compact perturbation of self-adjoint operators on
H (see [Wey09], [VN35]). Their study was the first step in what led to the seminal work
[BDF77], which in turn gave life to the theory of extensions, a subject where Q(H) plays
a central role, and introduced methods of algebraic topology in the study of C∗-algebras.

Over the last 15 years the Calkin algebra has been fertile ground for applications of
set theory in operator algebras, due to its structural similarities with the boolean algebra
P(N)/Fin, of which it is in fact considered the noncommutative analogue (see [FW12] and
[Wea07]). In this framework, what typically happens is that statements and ideas about
P(N)/Fin are translated into noncommutative (or “quantized”) correspondents in the
context of the Calkin algebra. The problems formulated through this procedure are usually
more technical and involved than their commutative counterparts, which nevertheless still
provide intuition and ideas for the noncommutative case. Remarkably, it is not rare
that this connection between P(N)/Fin and the Calkin algebra, which is already worth
investigating from a set-theoretic perspective, yields results which are related to well-
established branches of the theory of C∗-algebras, and which are useful also for researchers
in those areas. The first example of this phenomenon has been the problem of the existence
of outer automorphisms of the Calkin algebra, solved by means of set theory in [PW07]
and [Far11], whose original motivation was of K-theoretic nature (see [BDF77]).

The problem of what linear or partial orderings embed into P(N)/Fin has been widely
studied in set theory, for instance because of its connections with the problem of the au-
tomatic continuity of Banach algebras homomorphisms (see [DW87]). A systematic study
in the nonseparable framework of its noncommutative counterpart, namely investigating
what (nonseparable) C∗-algebras embed into the Calkin algebra, is, on the other hand,
fairly recent (see [FHV17] and [FKV18]).

Chapter 2 focuses on this embedding problem (part of the contents of this chapter are
also contained in the joint work [FKV18]). In the first part of the chapter we prove that,
given any C∗-algebra A, there exists a ccc forcing notion which forces the existence of an
embedding of A into Q(H). This theorem is yet another noncommutative version of a
known fact about P(N)/Fin: for every partial order P, there is a ccc forcing notion which
forces the existence of an embedding of P into P(N)/Fin. One important consequence of
what we prove is that, under Martin’s axiom, all C∗-algebras of density character less than
continuum embed into the Calkin algebra.

Another topic addressed in chapter 2 concerns the class of C∗-algebras of density
continuum that embed into the Calkin algebra in a given model of ZFC. By the results in
[FHV17], the 2ℵ0-universality of the Calkin algebra is independent from ZFC. In fact, while
the continuum hypothesis implies that all C∗-algebras of density continuum embed into
the Calkin algebra, there are models of ZFC where some C∗-algebras of density 2ℵ0 do not
embed into Q(H) (this follows for instance from the proper forcing axiom, see [FHV17]).
Not much is known about the class of C∗-algebras of density continuum that embed into
Q(H) for models of ZFC where the continuum hypothesis fails. We prove that C∗red(F2ℵ0 )
and C∗max(F2ℵ0 ), where F2ℵ0 is the free group on 2ℵ0 generators, and all UHF C∗-algebras
of density at most 2ℵ0 embed into the Calkin algebra, regardless of the model of ZFC. On
the other hand, we show that the abelian C∗-algebra generated by an increasing chain of
ℵ2 projections does not embed into Q(H) consistently with ZFC+ 2ℵ0 ≥ ℵα, for all α ≥ 2.
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Combined with the results exposed in the first part of the chapter, this entails that the
statement ‘Every C∗-algebra of density character strictly less than 2ℵ0 embeds into the
Calkin algebra’ is independent from ZFC + 2ℵ0 ≥ ℵα, for every ordinal α > 2.

In the last part of chapter 2 we analyze Voiculescu’s noncommutative version of the
Weyl-von Neumann theorem in [Voi76] from a set-theoretic perspective. More specifically,
we show that this theorem can be proved with a sequence of applications of the Baire
category theorem to some ccc posets. As a consequence, we obtain that the results in
[Voi76] can be generalized to nonspearable C∗-algebras of density less than continuum,
when Martin’s axiom is assumed. This final part of chapter 2, albeit seemingly unrelated
to the rest of the material in this chapter, is not a coincidence. The kind of embedding
problems for the Calkin algebra we discuss in this dissertation have proven to be way
more difficult than their counterparts for P(N)/Fin, both for technical and theoretical
reasons (for instance, unlike P(N)/Fin, Q(H) is not countably saturated). Voiculescu’s
results in [Voi76] (and a deep understanding of them) proved to be invaluable tools when
tackling these additional difficulties, as made evident from the proofs contained in chapter
2, [FHV17] and [FKV18].

The last chapter of this dissertation focuses on, given a non-unital C∗-algebraA, liftings
from the corona algebra Q(A) to the multiplier algebra M(A). By lifting of a subset B
of Q(A), we mean a collection of elements in M(A) whose image via the quotient map
onto Q(A) is B. In chapter 3 we investigate, given a non-unital A, the obstructions that
arise when trying to lift a collection of commuting elements in Q(A) to a family inM(A)
whose elements still commute.

Although the study of liftings of abelian subalgebras of corona algebras originates from
a purely C∗-algebraic context, it is not rare to find connections with set theory, even in
dated works. It is in fact often the case that the techniques and the combinatorics used in
some of the arguments in this framework have a strong set-theoretic flavor (see for instance
[AD79], [And79] and, more recently, [CFO14], [Vig15], [SS11], [FW12], [BK17], [Vac16]).
Furthermore, the Calkin algebra being the corona of K(H) (as the multiplier algebra
of K(H) is B(H)), combinatorial arguments and techniques developed in set theory for
P(N)/Fin can be first translated in the context of the Calkin algebra and then, possibly,
generalized to a larger class of corona algebras. The previous observation does not apply
only to liftings of abelian subalgebras of coronas. An example is, once again, the results
on the group of automorphisms of the Calkin algebra, whose generalization to coronas of
separable C∗-algebras is in progress (see [CF14], [Vig17b], [MV18]).

The main result of the third chapter (also contained in [Vac16]) is a generalization
to a wider family of corona algebras of a known theorem about lifting of commuting
families of projections in the Calkin algebra. It is known that every countable family of
commuting projections in Q(H) can be lifted to a family of projections in B(H) which
are diagonalized by the same basis (see [FW12]). On the other hand in [BK17], inspired
by some combinatorial arguments which date back to Hausdorff and Luzin concerning the
study of uncountable almost disjoint families of subsets of N, it is proved that there is a
collection of orthogonal projections of size ℵ1 which cannot be lifted to a commuting family
in B(H). Taking inspiration from these results, we undertake a general study of which
obstructions arise when trying to lift a commuting subfamily of Q(A) to a commuting
subset ofM(A), for A primitive non-unital and σ-unital. For such A, while for countable
or finite families the only obstacles that arise are of K-theoretic nature, it is always possible
to find a collection of orthogonal positive elements of size ℵ1 in Q(A) which cannot be
lifted to a commuting family inM(A). Moreover, these positive elements can be chosen to
be projections if A has real rank zero, giving a full generalization of the results in [FW12]
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and [BK17].
Through this dissertation we assume that the reader has some familiarity with C∗-

algebras and von Neumann algebras, some standard texts we will often refer to are [Mur90],
[BO08], [Bla06] and [Dix77]. Even though we will explicitly give most of the definitions
concerning set theory, we assume the reader is familiar with cardinal arithmetic and forc-
ing. Standard references for these topics are [Kun11] and [Jec03].
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Chapter 1

Trace Spaces of Counterexamples
to Naimark’s Problem

In 1948 Naimark observed in [Nai48] that the algebra of compact operators K(H) has
a unique irreducible representation up to unitary equivalence, the identity representation.
A few years later, in [Nai51], he asked whether this property characterizes K(H) up to
isomorphism. This question is known as Naimark’s problem.

Naimark’s problem. Let A be a C∗-algebra with only one irreducible representation up
to unitary equivalence. Is A ∼= K(H) for some Hilbert space H?

In the subsequent years an affirmative solution for the problem was proved for the
cases of type I C∗-algebras and of separably representable C∗-algebras (see [Kap51] and
[Ros53, Theorem 4] respectively). More recently, an affirmative answer has been found
also for certain graph C∗-algebras (see [ST17]). Nevertheless, a complete solution is still
missing.

Nowadays this problem is considered in a context that has significantly changed since
its original formulation. While Naimark’s interest basically consisted in understanding to
what extent the representation theory of a C∗-algebra could define its isomorphism class,
Naimark’s problem gains a deeper meaning in the light of Glimm’s celebrated theorem on
type I C∗-algebras in [Gli61]. For a separable simple C∗-algebra A, Glimm’s results imply
the equivalence of the following seemingly independent conditions:

1. A is type I,

2. all irreducible representations of A are unitarily equivalent,

3. A has fewer than 2ℵ0 inequivalent irreducible representations,

4. A has no type II representation,

5. A has no type III representation.

Most of Glimm’s theorem has been extended to nonseparable C∗-algebras by Sakai (see
[Sak66], [Sak67]), but a negative answer to Naimark’s problem would provide an obstruc-
tion to a complete generalization of the result in the nonseparable realm. A counterexample
to Naimark’s problem is a C∗-algebra with a unique irreducible representation up to uni-
tary equivalence which is not isomorphic to K(H) for any H. Such an algebra would
necessarily be nonseparable, simple and non-type I (see proposition 1.1.1), witnessing
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thus the failure, for nonseparable C∗-algebras, of the equivalence of the first two condi-
tions stated above. In this perspective Naimark’s problem becomes a preliminary check
in the path for a complete generalization of Glimm’s theorem to the nonseparable setting.

In 2004 Akemann and Weaver built, assuming the extra set-theoretic axiom known as
diamond ♦, the first unital counterexamples to Naimark’s problem (see [AW04]). They
showed moreover that the existence of a counterexample of density ℵ1 is independent from
ZFC. A further refinement of the techniques developed in [AW04] is obtained in [FH17],
where the authors build, given 1 ≤ n ≤ ℵ0, a non-type I C∗-algebra A not isomorphic to
its opposite, with exactly n equivalence classes of irreducible representations, and with no
outer automorphisms. It is still not known whether a positive answer to Naimark’s problem
(and possibly a full generalization of Glimm’s theorem to nonseparable C∗-algebras) is
consistent with ZFC.

Akemann and Weaver’s construction (and the one in [FH17]) uses two main ingredients:
we already mentioned the first, Jensen’s diamond principle ♦. This is a combinatorial
statement independent from ZFC which implies the continuum hypothesis (and which will
be introduced in the next section). The second ingredient is a deep theorem by Kishimoto,
Ozawa and Sakai ([KOS03]) which entails that, for every separable, simple, unital C∗-
algebra A, the group of automorphisms of A acts transitively on the pure state space of
A. We remark that it is not known whether the techniques in [AW04] could be generalized
to directly produce counterexamples of densities larger than ℵ1. This is partially due to
the homogeneity of the pure state space of separable, simple, unital C∗-algebras, implied
by the Kishimoto-Ozawa-Sakai transitivity theorem, which is a crucial component of the
proofs in [AW04]. Such homogeneity is known to fail for nonseparable C∗-algebras. Indeed,
using the theory of CCR algebras, it is possible to produce a simple C∗-algebra of density
ℵ1 with irreducible representations on both separable and nonseparable Hilbert spaces
(see [Far10]). Nevertheless, if A is a counterexample to Naimark’s problem then the same
is true for A⊗K(H) for any Hilbert space H (see corollary 1.1.5). Therefore ♦ is enough
to guarantee the existence of counterexamples of any uncountable density.

As we mentioned before (and will prove later in proposition 1.1.1) a counterexample to
Naimark’s problem has to be nonseparable, simple and non-type I. The original motivation
of the contents of this chapter was to find further characterizations of these algebras and
to understand what counterexamples to Naimark’s problem should look like. We focus
on the study of trace spaces, led by the following general observation regarding group
actions on compact convex sets, which initially seemed to suggest some kind of limitation
on the size of the tracial simplex of a counterexample to Naimark’s problem. Before going
any further, we remark that the original construction of the counterexamples given by
Akemann and Weaver does not explicitly provide any precise information on the trace
space of these algebras (more on this at the beginning of section 1.2).

Let K be a compact convex set and G a group of affine homeomorphisms of K and
consider the action

Θ : G×K → K

(g, x) 7→ g(x)

Assume moreover that the action is transitive when restricted to the set of extreme points
of K. It is conceivable that the set of the points in K fixed by the action has size no bigger
than one, as happens if K is a finite-dimensional simplex. In fact, in this case, if there
are at least two points fixed by Θ, we can find a point y =

∑
k≤n λkxk such that g(y) = y

for all g ∈ G, and λi 6= λj for some i 6= j, where {x1, . . . , xn} are affinely independent
extremal points of K. However, for any g ∈ G such that g(xi) = xj , we get g(y) 6= y.

2



This relates to our context as follows. In a unital counterexample to Naimark’s problem
A there is a unique irreducible representation modulo unitary equivalence. This implies,
by [Mur90, Theorem 5.1.4] and an application of Kadison transitivity theorem ([Mur90,
Theorem 5.2.2]), that the action of the unitary group on the state space of A

ΘA : U(A)× S(A)→ S(A)

(u, ϕ) 7→ ϕ ◦Ad(u)

is transitive on the pure states of A, namely the extreme points of S(A). Moreover, since
the traces are fixed by this action, according to the previous observation it may seem
plausible that a counterexample to Naimark’s problem could have at most one trace.

Back to an arbitrary action Θ on a compact convex K, we point out that in general,
if we do not require K to be finite-dimensional, there is no strict bound on the number
of fixed points of Θ even for K separable. This can be proved with an application of the
already mentioned Kishimoto-Ozawa-Sakai transitivity theorem from [KOS03] as follows.
If A is a separable, simple, unital C∗-algebra, then the state space S(A) is a separable
compact convex space. Let AInn(A) be the group of asymptotically inner automorphisms
of A, i.e., the group of all α ∈ Aut(A) such that there exists a continuous path of unitaries
(ut)t∈[0,∞) ⊆ U(A) such that α(a) = limt→∞Ad(ut)(a) for all a ∈ A. The Kishimoto-
Ozawa-Sakai transitivity theorem implies that the action

ΞA : AInn(A)× S(A)→ S(A)

(α,ϕ) 7→ ϕ ◦ α

is transitive on the extreme points of S(A). On the other hand, since traces are fixed by
inner automorphisms, by continuity they are also fixed by the elements of AInn(A). As
every metrizable Choquet simplex occurs as the trace space of some separable simple unital
C∗-algebra (see [Bla80]), we infer that the set of fixed points in ΞA can be considerably
large. The same is true for the unitary action ΘA on the state space of a counterexample
to Naimark’s problem, as is shown in the main result of this chapter.

Theorem 1.0.1. Assume ♦. Then the following holds:

1. For every Choquet simplex with countably many extreme points X, there is a coun-
terexample to Naimark’s problem whose trace space T (A) is affinely homeomorphic
to X.

2. There is a counterexample to Naimark’s problem whose trace space T (A) is nonsep-
arable.

In fact, we obtain the following strengthening of the results in [FH17].

Theorem 1.0.2. Assume ♦. For every Choquet simplex with countably many extreme
points X and 1 ≤ n ≤ ℵ0, there is a C∗-algebra A such that

1. A is simple, unital, nuclear and of density character ℵ1,

2. A is not isomorphic to its opposite algebra,

3. A has exactly n equivalence classes of pure states,

4. all automorphisms of A are inner,

5. either of the following conditions can be obtained:
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(a) T (A) is affinely homeomorphic to X.

(b) T (A) is nonseparable.

Theorem 1.0.2 (in particular its third clause) pushes even further the consistency of
the failure of Glimm’s dichotomy in [Gli61] in the nonseparable setting, already obtained
in [AW04] and [FH17].

Going back to the main motivation of our inquiry, namely understanding what coun-
terexamples to Naimark’s problem look like and how they could be characterized, we are
still not able to say anything more that such algebras have to be nonseparable, simple and
non-type I. On the other hand, theorem 1.0.1 provides a wide variety of counterexamples,
and it highlights the flexibility of the techniques in [KOS03] and [AW04]. It would be
interesting to know how further this versatility can be pushed, to see for instance if it is
possible to obtain any (metrizable or nonseparable) Choquet simplex as the trace space
of a counterexample to Naimark’s problem, or to investigate the following question.

Question 1.0.3. Is there any K-theoretic or model theoretic obstruction (consistent with
being simple) to being a counterexample to Naimark’s problem?

This chapter is organized as follows. We start by recalling some necessary background
notions on C∗-algebras and set theory in section 1.1. In the second part of section 1.1 we
quickly sketch the construction of a counterexample to Naimark’s problem as in [AW04]
and [FH17]. In section 1.2 we show how the study of the trace space of a counterexample
to Naimark’s problem is reduced to a refinement of the Kishimoto-Ozawa-Sakai theorem
in [KOS03]. Such refinement takes place in section 1.3, which is by far the most technical
section of the chapter. Finally section 1.4 is devoted to some comments on a possible
future direction of research, namely the construction of a counterexample to Naimark’s
problem with an outer automorphism. We remark that no additional set-theoretic axiom
is needed for the proofs of section 1.3.

1.1 Preliminary Notions

1.1.1 Background on C∗-algebras and Diamond

If A is a C∗-algebra, Asa is the set of its self-adjoint elements, A+ the set of its positive
elements and A1 the set of its norm one elements. If A is unital, U(A) is the set of all
unitaries in A. Denote by S(A) the state space, by P(A) the pure state space, by T (A)
the trace space, and by ∂T (A) the set of extremal traces of A, all endowed with the weak*
topology. We write F b A when F is a finite subset of A.

Given ϕ ∈ S(A), (πϕ, Hϕ, ξϕ) is the GNS cyclic representation associated to ϕ. Two
representations (π,H) and (ρ,K) of a C∗-algebra A are unitarily equivalent if there is a
unitary U : H → K such that ρ(a) = Uπ(a)U∗ for all a ∈ A. We recall that if ϕ ∈ P(A),
the GNS representation associated to it is irreducible and that, vice versa, every irreducible
representation of A is unitarily equivalent to (πϕ, Hϕ, ξϕ) for some ϕ ∈ P(A).

A C∗-algebra A is type I if all irreducible representations (π,H) of A are such that
π[A] ⊇ K(H).

We denote the group of all automorphisms of A by Aut(A) . Given a unital C∗-
algebra A and u ∈ U(A), the inner automorphism induced by u on A is Ad(u) and it
sends a to uau∗. An automorphism α is outer if it is not induced by a unitary, and we
denote the set of all outer automorphisms by Out(A). An automorphism α ∈ Aut(A) is
asymptotically inner if there exists a continuous path of unitaries (ut)t∈[0,∞) in A such
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that α(a) = limt→∞Ad(ut)(a) for all a ∈ A. We denote the set of all asymptotically inner
automorphisms by AInn(A). For α ∈ Aut(A) and ϕ ∈ S(A), the state ϕ is α-invariant if
ϕ(α(a)) = ϕ(a) for all a ∈ A.

Given ϕ,ψ ∈ S(A), for A unital, we say that ϕ and ψ are (unitarily) equivalent, ϕ ∼ ψ
in symbols, if there is u ∈ U(A) such that ϕ = ψ ◦ Ad(u). The states ϕ and ψ are
inequivalent otherwise. We recall that if A is unital and ϕ,ψ ∈ P(A) then, by Kadison
transitivity theorem [Mur90, Theorem 5.2.2], (πϕ, Hϕ, ξϕ) and (πψ, Hψ, ξψ) are unitarily
equivalent if and only if ϕ ∼ ψ.

Given a simple C∗-algebra A (i.e. with no non-trivial closed ideals) and τ ∈ T (A), we
denote the `2-norm induced by τ on A by ‖ ‖2,τ (the subscript τ will be suppressed when
there is no risk of confusion). The closure of A in such norm is Hτ , the Hilbert space of
the GNS representation associated to τ . Suppose furthermore that τ is α-invariant for
some α ∈ Aut(A), then the map Uα determined by

Uα(πτ (a)ξτ ) = πτ (α(a))ξτ , a ∈ A

extends uniquely to a unitary on Hτ (which we shall denote again by Uα) such that

Uαπτ (a)U∗α = πτ (α(a))

for all a ∈ A. Thus α can be canonically extended via Uα to an automorphism ατ of
πτ [A]′′ (the von Neumann algebra generated by πτ [A] in B(Hτ )). The automorphism α is
τ -weakly inner (τ -strongly outer) if ατ is inner (outer).

Given a separably acting type-II1 factor M, let τ be its unique normal tracial state.
For a free ultrafilter U on N, the tracial ultrapower of M by U is the quotient of the
algebra of all sequences in M bounded in norm, denoted by `∞(M), by its closed ideal

cU = {~a ∈ `∞(M) : lim
n→U
‖an‖2,τ = 0}.

We denote the tracial ultrapower by MU . Identifying M with the constant sequences
in MU , we denote the relative commutant of M in MU by M′ ∩MU . We say that M
has property Gamma if M′ ∩ MU is non-trivial. We say that M is full otherwise. A
C∗-algebra A has fiberwise property Gamma if for all τ ∈ ∂T (A) the factor πτ [A]′′ has
property Gamma.

Given a C∗-algebra A and a free ultrafilter U on N, the ultrapower AU is the quotient
of the algebra of all sequences in A bounded in norm, denoted by `∞(A), by its closed
ideal

cU = {~a ∈ `∞(A) : lim
n→U
‖an‖ = 0}.

Given two vectors ξ and η in a normed vector space, ξ ≈ε η means ‖ξ − η‖ < ε. For
functions ϕ and ψ on a normed vector space, given a finite subset G of the vector space
and δ > 0, ϕ ≈G,δ ψ means ‖ϕ(ξ)− ψ(ξ)‖ < δ for all ξ ∈ G.

The smallest uncountable cardinal is ℵ1, the well-ordered set of all countable ordinals.
A club in ℵ1 is an unbounded subset C ⊆ ℵ1 such that for every increasing sequence
{βn}n∈N ⊆ C the supremum supn∈N{βn} belongs to C. A subset of ℵ1 is stationary if
it meets every club. An increasing transfinite ℵ1-sequence of C∗-algebras {Aβ}β<ℵ1 is
continuous if Aγ = ∪β<γAβ for every limit ordinal γ < ℵ1.

The following is Jensen’s original formulation of ♦.

The diamond principle (♦). There exists an ℵ1-sequence of sets {Xβ}β<ℵ1 such that

1. Xβ ⊆ β for every β < ℵ1,
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2. for every X ⊆ ℵ1 the set {β < ℵ1 : X ∩ β = Xβ} is stationary.

The diamond principle is known to be true in the Gödel constructible universe ([Jec03,
Theorem 13.21]) and it implies the continuum hypothesis (CH), thus it is independent
from the Zermelo-Fraenkel axiomatization of set theory plus the Axiom of Choice (ZFC).

1.1.2 How to Build a Counterexample to Naimark’s Problem

As we mentioned in the introduction, the existence of a counterexample to Naimark’s
problem is a basic obstruction to a generalization in the nonseparable setting of Glimm’s
theorem on type I C∗-algebras. This is a consequence of the following proposition.

Proposition 1.1.1. Let A be a counterexample to Naimark’s problem. Then A is simple,
non-type I and nonseparable.

Proof. Let I be a closed ideal of A. Since there exists an irreducible representation of
A whose kernel contains I, and since all irreducible representations of A are unitarily
equivalent (thus have the same kernel), all irreducible representations of A annihilate on
I. Therefore I = {0}. Since all simple type I C∗-algebras are elementary, i.e. isomorphic to
K(H) for some Hilbert space H, A is necessarily non-type I. Finally A cannot be separable
by the results in [Ros53] or by Glimm’s theorem on type I C∗algebras in [Gli61].

The techniques developed in [AW04] and [FH17] to build counterexamples to Naimark’s
problem both rely on an application of the Kishimoto-Ozawa-Sakai theorem in [KOS03].
More specifically, such theorem is invoked at the successor steps of a transfinite induc-
tion, which eventually produces an increasing continuous ℵ1-sequence of separable infinite-
dimensional C∗algebras, whose inductive limit is the desired counterexample. The idea
to prove theorem 1.0.2 is to mimic this inductive construction and, as we shall see in the
next section, the main effort will be to refine the results in [KOS03] in order to have a
better control on the trace space of the separable algebras composing the ℵ1-sequence (see
theorem 1.2.3 in section 1.2).

We quickly recall the inductive construction presented in [FH17], as it is a fundamental
benchmark for the proof of theorem 1.0.2. All omitted details can be found in [FH17],
where a continuous model-theoretic equivalent version of ♦, more suitable for working
with C∗-algebras, is introduced.

The techniques in [FH17] already refine those in [AW04] to produce, given 1 ≤ n ≤ ℵ0,
a non-type I C∗-algebraA not isomorphic to its opposite, with exactly n equivalence classes
of irreducible representations, and with no outer automorphisms. When n = 1, this gives
a counterexample to Naimark’s problem. The algebra A is obtained as an inductive limit
of an increasing ℵ1-sequence of infinite-dimensional, separable, simple, unital C∗-algebras

A0 ⊆ A1 ⊆ · · · ⊆ Aβ ⊆ · · · ⊆ A =
⋃
β<ℵ1

Aβ,

where each inclusion is unital. For a limit ordinal β define

Aβ =
⋃
γ<β

Aγ .

The crucial part of the construction is the successor step, where the following improvement
of the main result of [KOS03] is used.
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Theorem 1.1.2 ([AW04]). Let A be a separable, simple, unital C∗-algebra, and let {ϕh}h∈N
and {ψh}h∈N be two sequences of pure states of A such that the ϕh’s are mutually inequiv-
alent, and similarly the ψh’s. Then there is an asymptotically inner automorphism α such
that ϕh ∼ ψh ◦ α for all h ∈ N.

Theorem 1.1.2 is applied in the proof of the following lemma.

Lemma 1.1.3 ([FH17, Lemma 2.3]). Let A be a separable, simple, unital C∗-algebra.
Suppose X and Y are disjoint countable sets of inequivalent pure states of A and let E be
an equivalence relation on Y. Then there exists a separable, simple, unital C∗-algebra B
such that

1. B unitally contains A,

2. every ψ ∈ X has multiple extensions to B,

3. every ϕ ∈ Y extends uniquely to a pure state ϕ̃ of B,

4. if ϕ0, ϕ1 ∈ Y, then ϕ0Eϕ1 if and only if ϕ̃0 ∼ ϕ̃1.

The algebra B in lemma 1.1.3 is A oα Z, where α ∈ Aut(A) is provided by theorem
1.1.2 for two sequences of inequivalent pure states which depend on X , Y and E.

Thus, given β < ℵ1, the algebra Aβ+1 in the ℵ1-sequence introduced above, is obtained
by an application of lemma 1.1.3 for Aβ, where X ,Y and E are chosen accordingly to ♦.
Therefore Aβ+1 = Aβ oα Z for some α ∈ AInn(A). The diamond principle indicates
which X ,Y and E we have to choose at each step so that the inductive limit ∪β<ℵ1Aβ
satisfies all the required properties (i.e. having exactly n equivalence classes of irreducible
representations and having no outer automorphisms nor antiautomorphisms).

The construction we just sketched allows to produce counterexamples to Naimark’s
problem of density ℵ1. Starting from those, one can obtain counterexamples of any un-
countable density using the following fact.

Proposition 1.1.4. Let A be a simple C∗-algebra and B a non-zero hereditary subalgebra
of A. A is a counterexample to Naimark’s problem if and only if B is.

Proof. By [Mur90, Theorem 5.5.5], all irreducible representations of A are unitarily equiv-
alent if and only if those of B are. Suppose now that A ∼= K(H) for some Hilbert space H.
Then B, being a subalgebra of A, is type I, therefore, by proposition 1.1.1, it cannot be a
counterexample to Naimark’s problem. On the other hand, if B ∼= K(H) then, since B is
hereditary in A, there is a non-zero a ∈ A+ such that the hereditary subalgebra generated
by a in A is abelian. This, by [Ped79, Lemma 6.1.3] and simplicity of A, implies that π(a)
has dimension 1 in B(Hπ) for every irreducible representation (π,Hπ) of A. This entails
π[A] ⊇ K(Hπ) and therefore, again by simplicity of A, A ∼= π[A] ∼= K(Hπ).

Corollary 1.1.5. Let A be a counterexample to Naimark’s problem and H a (not neces-
sarily separable) Hilbert space. Then A⊗K(H) is a counterexample to Naimark’s problem.

Proof. Let p ∈ K(H) be a minimal projection. Then A⊗ p is a hereditary subalgebra of
A⊗K(H) isomorphic to A. Use proposition 1.1.4 to conclude.
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1.2 Trace Spaces

The original construction of a counterexample to Naimark’s problem by Akemann and
Weaver does not explicitly provide any property on the tracial simplex of the algebra itself.
However, the following simple proposition allows to infer some useful information.

Proposition 1.2.1. Let {Aβ}β<ℵ1 be an increasing continuous ℵ1-sequence of unital C∗-
algebras such that Aβ+1 = Aβ oα,r Gβ for all β < ℵ1, Gβ being a discrete group. Let
A be the inductive limit of the sequence. Suppose furthermore that every τ ∈ T (Aβ) is
αg-invariant for all g ∈ Gβ. Then for each β < ℵ1 there is an embedding1 eβ of T (Aβ)
into T (A).

Proof. Let B be any unital tracial C∗-algebra, τ ∈ T (B), and α a homomorphism of a
discrete group G (whose identity is e) into Aut(B) such that τ is αg-invariant for all g ∈ G.
Consider the reduced crossed product Boα,r G and denote by ug, for g ∈ G, the unitaries
of B oα,r G corresponding to the elements of the group. The map defined on any finite
sum

∑
g∈G agug as

τ ′

∑
g∈G

agug

 = τ(ae)

extends uniquely to a trace of B oα,r G. Indeed, τ ′ is Ad(u)-invariant for all u ∈ U(B)
since τ is a trace, and it is Ad(ug)-invariant for all g ∈ G since τ is αg-invariant, hence
τ ′(wa) = τ ′(aw) for all a ∈ B oα,r G and w = w1 . . . wk, where wj ∈ U(B) ∪ {ug : g ∈ G}
for all j ≤ k. The linear span of the set of products of elements in U(B) ∪ {ug : g ∈ G} is
dense in B oα,r G, therefore τ ′(ab) = τ ′(ba) for all a, b ∈ B oα,r G. Thus, the embedding
eβ can be constructed by induction iterating the extension above at successor steps, and
taking the unique extension of previous steps at limit stages.

In the Akemann-Weaver construction (and in the one from [FH17] we previously re-
called) there is no restriction, when starting the induction, on the choice of the first
C∗-algebra A0, as long as A0 is separable simple and unital. Since every metrizable Cho-
quet simplex occurs as the trace space of some separable, simple, unital C∗-algebra (see
[Bla80]), and since all traces are invariant for asymptotically inner automorphisms (as
they are pointwise limits of inner automorphisms), proposition 1.2.1 can be applied to the
construction we sketched in the previous section to infer the following.

Corollary 1.2.2. Assume ♦. For every metrizable Choquet simplex X and 1 ≤ n ≤ ℵ0,
there is a non-type I C∗-algebra A not isomorphic to its opposite, with exactly n equivalence
classes of irreducible representations, and with no outer automorphisms, such that T (A)
contains a homeomorphic copy of X.

Proposition 1.2.1 implies that the ℵ1-sequence

T (A0)
r1,0←−− T (A1)

r2,1←−− . . . T (Aβ)
rβ+1,β←−−−− · · · ← T (A)

is a projective system whose bonding maps (the restrictions) are surjective. Proposition
1.2.1 also entails that each restriction has a continuous section. Theorem 1.0.2 answers
affirmatively the questions whether it is possible to perform the constructions in [AW04]
and [FH17] so that the ℵ1-sequence above is forced to be ‘strictly increasing’ or so that it
‘stabilizes’ (if T (A0) has countably many extremal points).

1A continuous map which is a homeomorphism onto its image.
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Depending on which of the two final clauses of theorem 1.0.2 one wants to obtain, two
different strengthenings of lemma 1.1.3 are needed. Clause 5a follows if, when applying
lemma 1.1.3 to Aβ (hence B = Aβ oα Z), we require in addition that the restriction map
rβ+1,β : T (Aβ oα Z) → T (Aβ) is a homeomorphism for all β < ℵ1. This would in fact
entail that T (A) is affinely homeomorphic to T (A0). On the other hand, in order to get
clause 5b, it is sufficient to require rβ+1,β to be not injective for all β < ℵ1, as shown in
proposition 1.2.5.

Since α is asymptotically inner, the restriction map rβ+1,β : T (Aβ oα Z) → T (Aβ) is
a homeomorphism if and only if all the powers of α are τ -strongly outer for all τ ∈ ∂T (A)
(see [Tho95, Theorem 4.3]).

Thus, all we need to show is the following variant of theorem 1.1.2.

Theorem 1.2.3. Let A be an infinite-dimensional, separable, simple, unital C∗-algebra,
and let {ϕh}h∈N and {ψh}h∈N be two sequences of pure states of A such that the ϕh’s are
mutually inequivalent, and similarly the ψh’s.

1. Suppose ∂T (A) is countable. There exists an asymptotically inner automorphism α
such that ϕh ∼ ψh ◦ α for all h ∈ N, and such that αl is τ -strongly outer for all
τ ∈ ∂T (A) and all l ∈ N if and only if A has fiberwise property Gamma.

2. Given a countable T ⊆ ∂T (A), there is an asymptotically inner automorphism α
such that ϕh ∼ ψh ◦ α for all h ∈ N and such that α is τ -weakly inner for all τ ∈ T .

We remark that in order to prove clause 5b of theorem 1.0.2 it is sufficient to prove item
2 of theorem 1.2.3 for a set T of extremal traces of size 1. It is fairly straightforward to see
why fiberwise property Gamma is needed in item 1 of the theorem above. Suppose in fact
that there is τ ∈ ∂T (A) such that πτ [A]′′ is full. The automorphism ατ is approximately
inner, since α is. As shown in [Sak74, Theorem 5-6], a way to characterize fullness of type
II1 factors is by saying that all approximately inner automorphisms (with of respect of
the norm induced by τ) are inner. This entails that ατ is inner, hence clause 1 of theorem
1.2.3 cannot be achieved. Property Gamma (which is explicitly used only in proposition
1.3.7) is used to systematically find unitaries with small trace and almost commuting with
prescribed finite subsets of A. This allows to keep ατ and all its powers far (in the norm
induced by τ) from inner automorphisms, as shown in lemma 1.3.2.

We assume theorem 1.2.3 (which is proved in section 1.3) for the rest of this section.

Lemma 1.2.4. Let A be an infinite-dimensional, separable, simple, unital C∗-algebra.
Suppose X and Y are disjoint countable sets of inequivalent pure states of A and let E
be an equivalence relation on Y. Then there exists a separable simple unital C∗-algebra B
such that

1. B unitally contains A,

2. every ψ ∈ X has multiple extensions to B,

3. every ϕ ∈ Y extends uniquely to a pure state ϕ̃ of B,

4. if ϕ0, ϕ1 ∈ Y, then ϕ0Eϕ1 if and only if ϕ̃0 ∼ ϕ̃1,

5. either of the following conditions can be obtained:

(a) if ∂T (A) is countable and A has fiberwise property Gamma, then B can be
chosen so that the restriction map r : T (B)→ T (A) is a homeomorphism,
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(b) the restriction map r : T (B)→ T (A) is not injective.

Proof. This lemma can be proved as [FH17, Lemma 2.3] by substituting all the instances
of theorem 1.1.2 with theorem 1.2.3.

Once lemma 1.2.4 is proved, theorem 1.0.2 in the introduction follows from the proof
of [FH17, Lemma 2.8] and [FH17, Theorem 1.2], by substituting all instances of [FH17,
Lemma 2.3] with our lemma 1.2.4. In order to get item 5a we need to iterate clause 5a
of lemma 1.2.4 at each step of the construction. This can be done starting the iteration
with a nuclear C∗-algebra. Indeed, nuclear C∗-algebras have fiberwise property Gamma.
Moreover if A in the statement of lemma 1.2.4 is nuclear, the algebra B given by the
clause 5a of the lemma can be assumed to be nuclear, thus the fiberwise property Gamma
is preserved throughout the construction. Item 5b of theorem 1.0.2 is a consequence of
the following fact.

Proposition 1.2.5. Let {Aβ}β<ℵ1 be an increasing continuous ℵ1-sequence as in propo-
sition 1.2.1 and let A be the inductive limit of the ℵ1-sequence. Suppose that the set
{β < ℵ1 : rβ+1,β : T (Aβ+1)→ T (Aβ) is not injective} is unbounded in ℵ1. Then T (A) is
nonseparable.

Proof. Suppose T (A) is separable and let {τn}n∈N be a countable dense subset of T (A).

Claim 1.2.5.1. The set C = {β < ℵ1 : ∃n s.t. τn � Aβ has multiple extensions to A} is
unbounded in ℵ1.

Proof. Suppose the claim is false and let γ < ℵ1 be an upper bound for C. Then each
τn � Aγ has a unique extension to Aγ+1, which, as we already know from the proof of
proposition 1.2.1, is defined through the conditional expectation. If γ is big enough there
is a trace σ ∈ T (Aγ+1), a ∈ Aγ , and g ∈ Gβ such that σ(aug) 6= 0. If ε > 0 is small
enough, then {τn � Aγ+1} ∩ {τ ∈ T (Aγ+1) : |τ(aug) − σ(aug)| < ε} is empty. This is a
contradiction since {τn � Aγ+1} is dense in T (Aγ+1).

The claim entails that there is an ℵ1-sequence of traces (modulo taking a cofinal
subsequence of the algebras Aβ) {τβ}β<ℵ1 such that

1. τβ ∈ T (Aβ) for all β < ℵ1,

2. τγ � Aβ = τβ for all γ > β,

3. the trace τβ admits two different extensions to T (Aβ+1) for every β < ℵ1.

This allows to build a discrete set of size ℵ1 in T (A) as follows, which is a contradiction.
For any β < ℵ1 consider τ ′β+1 ∈ T (Aβ+1) different from τβ+1 and extending τβ, and
pick two open sets in T (Aβ+1) dividing them. Their preimage via the restriction map
rβ+1 : T (A)→ T (Aβ+1) are two open disjoint subsets of T (A) such that only one of them
contains all the extensions of τβ+1. Hence, any ℵ1-sequence of extensions in T (A) of the
elements in {τ ′β}β<ℵ1 has the required property.

1.3 A Variant of the Kishimoto-Ozawa-Sakai Theorem

The first part of this section is devoted to the proof of two technical lemmas (lemmas
1.3.1 and 1.3.2). The reader can safely assume these lemmas as blackboxes and go directly
to subsection 1.3.2, to see how they are used in the main proofs, before going through part
1.3.1.
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1.3.1 Paths of Unitaries

Lemmas 1.3.1 and 1.3.2 are two variants of [KOS03, Lemma 2.2] (for simple C∗-
algebras).

Lemma 1.3.1. Let A be an infinite-dimensional, separable, simple, unital C∗-algebra,
(ϕh)h≤m some inequivalent pure states and {τ1, . . . , τn} ⊆ ∂T (A). For every F b A and
ε > 0, there exist G b A and δ > 0 such that, if (ψh)h≤m are pure states which satisfy
ψh ≈G,δ ϕh for all 1 ≤ h ≤ m, then for every K b A and every ε′ > 0 there is a path of
unitaries (ut)t∈[0,1] such that

1. u0 = 1,

2. ϕh ◦Ad(u1) ≈K,ε′ ψh for all 1 ≤ h ≤ m,

3. ‖b−Ad(ut)(b)‖ < ε for all b ∈ F ,

4. ‖ut − 1‖2,k < ε for all k ≤ n.2

Lemma 1.3.2. Let A be an infinite-dimensional separable, simple, unital C∗-algebra with
fiberwise property Gamma, (ϕh)h≤m some inequivalent pure states and τ ∈ ∂T (A). For
every v ∈ U(A), every F b A, l ∈ N and ε > 0, there exist G b A and δ > 0 such that,
if (ψh)h≤m are pure states which satisfy ψh ≈G,δ ϕh for all 1 ≤ h ≤ m, then for every
K b A and every ε′ > 0 there are a path of unitaries (ut)t∈[0,1] and an a ∈ A1 such that

1. u0 = 1,

2. ϕh ◦Ad(u1) ≈K,ε′ ψh for all 1 ≤ h ≤ m,

3. ‖b−Ad(ut)(b)‖ < ε for all b ∈ F ,

4. ‖Ad(v)(a)−Ad(u∗l1 )(a)‖2,τ > 1/4.

The reader familiar with the proofs in [KOS03] will notice that the only difference of
the two lemmas above with [KOS03, Lemma 2.2] is the additional fourth clause. More
specifically, in lemma 1.3.1 we require that the path of unitaries remains close to the
identity with respect of the `2-norm induced by some traces. This is used in the proof of
clause 2 of theorem 1.2.3 (in the next subsection) to build, gluing together countably many
pieces, a path of unitaries (ut)t∈[0,∞) such that (Ad(ut))t∈[0,∞) pointwise converges in norm
to an automorphism α, and such that at same time (πτ (ut))t∈[0,∞) strongly converges to
a unitary v ∈ πτ [A]′′, for some τ ∈ ∂T (A). In this situation it is possible to show that
Ad(v) acts like α on πτ [A], which is therefore τ -weakly inner. On the other hand, the
construction in lemma 1.3.2 achieves, in a way, the opposite. In this case we require the
path of unitaries to end in a place which is far, with respect of the `2-norm induced by a
trace, from the scalars.

We briefly introduce some notation for the following proposition. Given a state ϕ on
a C∗-algebra A, we let Lϕ be the following closed left ideal

{a ∈ A : ϕ(a∗a) = 0} = {a ∈ A : πϕ(a)ξϕ = 0}.

We recall that for any state ϕ the intersection Lϕ ∩ L∗ϕ is a hereditary subalgebra of A.

2 We suppress the notation and denote ‖ ‖2,τk by ‖ ‖2,k.

11



Proposition 1.3.3. Let A be an infinite-dimensional, simple, unital C∗-algebra, τ ∈
∂T (A) and ϕ1, . . . , ϕm some pure states of A. Then

M = {a ∈ A : πϕj (a)ξϕj = πϕj (a
∗)ξϕj = 0 ∀j ≤ m}

is a hereditary subalgebra of A and πτ [M ] is strongly dense in πτ [A]′′.

Proof. Since M = ∩j≤mLϕj ∩ L∗ϕj , the strong closure of πτ [M ] is a hereditary subalgebra
of πτ [A]′′, therefore it is of the form pπτ [A]′′p for some projection p ∈ πτ [A]′′. Suppose p
is not the identity and let η ∈ Hτ be a unit vector orthogonal to the range of p. Consider
the state ψ(a) = 〈πτ (a)η, η〉. By uniqueness of the GNS representation, (πψ, Hψ, ξψ) is

unitarily equivalent to (πτ , πτ [A]η, η). Since πτ [A]′′ is a II1-factor (A is infinite-dimensional
and simple), the same is true for πψ[A]′′ (see [Dix77, Proposition 5.3.5]). Consider a ∈
∩j≤mLϕj . Then a∗a ∈M and this implies

‖πτ (a)p⊥‖2 = ‖p⊥πτ (a∗a)p⊥‖ = 0,

hence πτ (a)η = 0, which means πψ(a)ξψ = 0, which in turn entails Lψ ⊇ ∩j≤mLϕj . Con-
sider the state ϕ =

∑
j≤m

1
mϕj , which is such that Lϕ = ∩j≤mLϕj . By the correspondence

between closed left ideals and weak*-closed faces of S(A) (see [Ped79, Theorem 3.10.7]3)
we infer that ψ is contained in the smallest weak*-closed face of S(A) which contains ϕ,
which is in fact the set

{θ ∈ S(A) : θ[Lϕ] = 0}.

On the other hand, the smallest face of S(A) containing the state ϕ is

Fϕ = {θ ∈ S(A) : ∃λ > 0 θ ≤ λϕ}.

By the Radon-Nikodym theorem ([Mur90, Theorem 5.1.2]), for every state θ contained
in Fϕ, the GNS representation (πθ, Hθ) is (unitarily equivalent to) a subrepresentation of
(πϕ, Hϕ). Since the latter representation is type I (it is in fact the subrepresentation of a
direct sum of irreducible representations), we get to a contradiction if we can prove that
Fϕ is weak*-closed, since this would imply that (πψ, Hψ) is type I. By Radon-Nikodym
theorem the map

Θϕ : πϕ[A]′ → A∗

v 7→ 〈πϕ( )vξϕ, ξϕ〉

is a linear map such that Θϕ[πϕ[A]′] ∩ S(A) = Fϕ. Let π denote ⊕i≤mπϕi . We prove
that π[A]′ is finite-dimensional, which entails that also πϕ[A]′ is finite-dimensional, since
πϕ[A]′ = qπ[A]′q for some projection q ∈ π[A]′. This follows from the contents of Chapter
5 of [Dix77]. More specifically, if ϕ1, . . . , ϕn are equivalent pure states, given π′ = ⊕i≤nπϕi ,
then π′[A]′ is a type In-factor by [Dix77, Proposition 5.4.7], thus it is finite-dimensional.
By [Ped79, Theorem 3.8.11], the commutant π[A]′ is therefore the direct sum of a finite
number of finite-dimensional type I factors.

The previous proposition allows us to prove the following corollary, which can be
thought of as an approximate extension to tracial states of the Glimm-Kadison transitivity
theorem.

3Here we can consider faces of S(A) instead of Q(A) since A is unital.
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Corollary 1.3.4. Let A be an infinite-dimensional, simple, unital C∗-algebra, τ ∈ ∂T (A),
{(πi, Hi)}i≤n some inequivalent irreducible representations, Fi ⊂ Hi finite sets and Ti ∈
B(Hi). Then the set

πτ [{a ∈ A : πi(a) �Fi= Ti �Fi ∀i ≤ n}]

is strongly dense in πτ [A]′′.

Proof. By the Glimm-Kadison transitivity theorem (see [GK60, Corollary 7]) let a ∈ A
be such that, for all i ≤ n

πi(a) �Fi= Ti �Fi .

Define for each i ≤ n the set

Li = {a ∈ A : πi(a)ξ = 0 ∀ξ ∈ Fi}.

Let L be the intersection of all Li’s. By proposition 1.3.3 the set πτ [L] is strongly dense
in πτ [A]′′, thus the same is true, by linearity, for πτ [a+ L].

The following proposition is implicitly used in [KOS03, Theorem 3.1]. We give here a
full proof of it.

Proposition 1.3.5. For every ε > 0 and M ∈ N there is δ > 0 such that the following
holds. Suppose ξ is a norm one vector in an infinite-dimensional Hilbert space H, and that
{bj}j≤M ⊆ B(H) are such that

∑
j bjb

∗
j ≤ 1 and

∑
j bjb

∗
jξ = ξ. Let moreover η ∈ H be a

unit vector orthogonal to the linear span of {bjb∗kξ : j, k ≤M} such that, for all j, k ≤M

|〈b∗kξ, b∗jξ〉 − 〈b∗kη, b∗jη〉| < δ.

Then there is a projection q ∈ B(H) such that∑
j≤M

bjqb
∗
j (η + ξ) ≈ε 0 and

∑
j≤M

bjqb
∗
j (η − ξ) ≈ε η − ξ.

Proof. By [FKK01, Lemma 3.3], for every ε′ > 0 and M ′ ∈ N there is a δ′ > 0 such that
if (ξ1, . . . , ξM ′) and (η1, . . . , ηM ′) are two sequences of vectors in a Hilbert space H such
that

∑
i‖ξi‖2 ≤ 1,

∑
i‖ηi‖2 ≤ 1, and

|〈ξi, ξj〉 − 〈ηi, ηj〉| < δ′ ∀i, j ≤M ′,

then there is a unitary U ∈ B(H) such that

‖Uξj − ηj‖ < ε′ ∀j ≤M ′,

Moreover, if H is infinite dimensional and 〈ξi, ηj〉 = 0 for all i, j ≤ M ′, then U can be
chosen to be self-adjoint. Let δ > 0 be smaller than ε/M and than the δ′ given by [FKK01,
Lemma 3.3] for M ′ = M and ε′ = ε/M . Fix ξ, η and bj for j ≤M as in the statement of
the current proposition. Since the linear spans of {b∗jξ : j ≤ M} and {b∗jη : j ≤ M} are
orthogonal, there is a self-adjoint unitary w on H such that, for every j ≤M

‖wb∗jξ − b∗jη‖ < ε/2M,

‖wb∗jη − b∗jξ‖ < ε/2M.

This entails, since ‖bj‖ ≤ 1 for all j ≤M , ‖bjwb∗jξ − bjb∗jη‖ < ε/2M , therefore

‖
∑
j≤M

bjwb
∗
jξ −

∑
j≤M

bjb
∗
jη‖ < ε/2.
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Similarly we have

‖
∑
j≤M

bjwb
∗
jη −

∑
j≤M

bjb
∗
jξ‖ < ε/2.

Moreover
∑

j bjb
∗
jξ = ξ and δ < ε/M imply

∑
j bjb

∗
jη ≈ε η. Thus, if q is the projection

(1− w)/2, it follows that∑
j≤M

bjqb
∗
j (η + ξ) ≈ε 0 and

∑
j≤M

bjqb
∗
j (η − ξ) ≈ε η − ξ.

Proposition 1.3.6. For every ε > 0 and N > 0 there exists δ > 0 such that for every self-
adjoint element a of norm smaller than N on a Hilbert space H, every r ∈ [−N,N ], and
all unit vectors ξ ∈ H, we have the following. If rξ ≈δ aξ then exp(iπr)ξ ≈ε exp(iπa)ξ.

Proof. Fix ε,N > 0 and let p(x) be a polynomial such that

‖(p(x)− exp(iπx))�[−N,N ]‖∞ < ε/3.

It is straightforward to find δ > 0 (depending only on ε,N and p(x)) such that aξ ≈δ rξ
implies p(r)ξ ≈ε/3 p(a)ξ. Thus we have

exp(iπr)ξ ≈ε/3 p(r)ξ ≈ε/3 p(a)ξ ≈ε/3 exp(iπa)ξ.

Proof of lemma 1.3.1. It is sufficient to show the following claim.

Claim 1.3.6.1. Let A be an infinite-dimensional, separable, simple, unital C∗-algebra,
(ϕh)h≤m some inequivalent pure states and {τ1, . . . , τn} ⊆ ∂T (A). For every F b A and
ε > 0, there exist G b A and δ > 0 such that the following holds. Suppose (ψh)h≤m are
pure states such that ψh ∼ ϕh, and that moreover ψh ≈G,δ ϕh for all 1 ≤ h ≤ m. Then
there exists a path of unitaries (ut)t∈[0,1] in A satisfying the following

1. u0 = 1,

2. ϕh ◦Ad(u1) = ψh for all 1 ≤ h ≤ m,

3. ‖b−Ad(ut)(b)‖ < ε for all b ∈ F ,

4. ‖ut − 1‖2,k < ε for all k ≤ n.

In fact the thesis follows from the claim and an application of [FKK01, Lemma 2.3]
(see [KOS03, Lemma 2.2] for details).

By an application of the Glimm-Kadison transitivity theorem, there exists ε′′ > 0
such that if (θh)h≤m are inequivalent pure states and (χh)h≤m are pure states such that
‖θh−χh‖ < ε′′, then there is a path of unitaries (vt)t∈[0,1] which satisfies the following, for
K = maxb∈F ‖b‖

1. v0 = 1,

2. θh ◦Ad(v1) = χh for all 1 ≤ h ≤ m,

3. ‖vt − 1‖ < ε/(8K) for all t ∈ [0, 1].
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In fact for every h ≤ m, if ‖θh − χh‖ is small enough, θh and χh are two vector states on
Hθh induced by two vectors ξθh and ζχh which can be chosen to be very close (depending
on ‖θh − χh‖). Hence there is uh ∈ U(B(Hθh)) which sends ξθh to ζχh and is very close to
the identity of B(Hθh), which in turn implies that uh = exp(iah) for some ah ∈ B(Hθh)sa
whose norm is close to zero. Given the representation π =

⊕
h≤m πθh on H =

⊕
h≤mHθh ,

by Glimm-Kadison transitivity theorem there is b ∈ B(H)sa which behaves like ah on ξθh
for every h ≤ m, and whose norm is close zero. The required path is (vt)t∈[0,1], where
vt = exp(itb). Fix such ε′′.

Let ε′ > 0 be smaller than the δ provided by proposition 1.3.6 for N = 22n and
min{ε′′/2, ε/4}. Let (πh, Hh, ξh) be the GNS representations associated to ϕh, let (π,H)
be the direct sum of them, and let p ∈ B(H) be the projection onto the span of the cyclic
vectors ξh for h ≤ m. The representation π has an approximate diagonal since it is the
direct sum of some inequivalent irreducible representations (see [KOS03, Section 4]), thus
there is a positive integer M and some bj ∈ A for j ≤M such that

1.
∑

j bjb
∗
j ≤ 1,

2. p(1−
∑

j π(bjb
∗
j )) = 0,

3. supc∈A,‖c‖≤1‖b
∑

j bjcb
∗
j −

∑
bjcb

∗
jb‖ < ε

4
1

eπ22n22n
for all b ∈ F .

Fix δ = δ′/2, δ′ being the value given by proposition 1.3.5 for M and ε′. Fix moreover

G = {bjb∗k : j, k ≤M}.

Suppose ψh ∼ ϕh and ψh ≈G,δ ϕh for all h ≤ m. For every h ≤ m pick wh ∈ U(A)
such that ϕh ◦ Ad(wh) = ψh, and let ηh denote the vector whξh. By Glimm’s lemma (see
[BO08, Lemma 1.4.11]) there are, for every h ≤ m, ζh ∈ Hh unit vectors orthogonal to
{π(bjb

∗
k)ξh, π(bjb

∗
k)ηh : j, k ≤M} such that, if θh = ωζh ◦ πh, we have θh ≈G,δ ψh for every

h ≤ m. As a consequence θh ≈G,δ′ ϕh for all h ≤ m, which implies, for j, k ≤M

|〈π(bk)
∗ξh, π(bj)

∗ξh〉 − 〈π(bk)
∗ζh, π(bj)

∗ζh〉| < δ′.

By an application of propositions 1.3.5 and 1.3.6 for ξ = ξh, η = ζh and bj = πh(bj),
we obtain a projection qh ∈ B(Hh) such that vh = exp(iπ

∑
j bjqhb

∗
j ) satisfies ζh ≈ε′′/2

vhξh. By Glimm-Kadison transitivity theorem there is a ∈ A1
sa which agrees with qh

on Sh = span{π(b∗j )ξh, π(b∗j )ζh, π(qh)π(b∗j )ξh, π(qh)π(b∗j )ζh : j ≤ M} for every h ≤ m.

For each k ≤ n corollary 1.3.4 provides one ak ∈ Asa such that ‖ak‖2,k ≤ ε′2/(24nM),
which moreover agrees with qh on Sh for all h ≤ m. From the proof of corollary 1.3.4
and Kaplansky density theorem, it is possible to see that each ak can be chosen of norm
smaller than 2. Define a to be the sum

∑
j bja1 . . . ana

2an . . . a1b
∗
j . This is a positive

element whose norm is smaller than 22n. Define ut for t ∈ [0, 1] to be exp(itπa). Thus,
combining proposition 1.3.6 with the previous construction, we get ‖π(u1)ξh− ζh‖ < ε′′/2
for all h ≤ m. This implies ‖ϕh ◦Ad(u1)− θh‖ < ε′′. Moreover for all b ∈ F we have

‖[ut, b]‖ ≤ eπ‖a‖‖[a, b]‖ ≤ ε/4.

Finally, let ãk be ak/‖ak‖. Then for each k ≤ n we can show that

τk(a
2) ≤ 24n

∑
j≤M

τk(bj ã1 . . . ãna
2ãn . . . ã1b

∗
j ) =
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= 24n
∑
j≤M

τk(ãk . . . ãna
2ãn . . . ã1b

∗
jbj ã1 . . . ãk−1) ≤

≤ 24n
∑
j≤M

[τk((ãk . . . ãna
2ãn . . . ãk)

2]1/2[τk((ãk−1 . . . ã1b
∗
jbj ã1 . . . ãk−1)2]1/2 ≤

≤ 24n
∑
j≤M

τk(ãk . . . ãna
2ãn . . . ãk)

1/2 ≤ 24n
∑
j≤M

τk(ã
2
k)

1/2 ≤ ε′2.

Therefore ‖a‖2,k ≤ ε′, thus ‖ut − 1‖2,k ≤ ε/4. Perform the same construction between
(θh)h≤m and (ψh)h≤m to find a path of unitaries (vt)t∈[0,1] such that ‖ψh◦Ad(v1)−θh‖ < ε′′

for all h ≤ m, ‖[vt, b]‖ ≤ ε/4 for all t ∈ [0, 1] and b ∈ F and finally such that ‖vt − 1‖2,k ≤
ε/4 for all t ∈ [0, 1] and k ≤ n. By what we said at the beginning of the proof, we
can find two paths of untaires (u′t)t∈[0,1], (v′t)t∈[0,1] such that ϕh ◦ Ad(u1u

′
1) = θh and

ψh ◦Ad(v1v
′
1) = θh for all h ≤ m, and such that ‖u′t− 1‖ < ε/(8K), ‖v′t− 1‖ < ε/(8K) for

all t ∈ [0, 1]. Then (utu
′
tv
′∗
t v
∗
t )t∈[0,1] is the required path.

The following proposition is the only place where fiberwise property Gamma is re-
quired. We refer to [KR14] for all the omitted details concerning central sequence C∗-
algebras in the next proposition.

Proposition 1.3.7. Let A be an infinite-dimensional, separable, simple, unital C∗-algebra
with fiberwise property Gamma, τ ∈ ∂T (A), and l ∈ N. Given any F b A and ε > 0,
there is a unitary v = eia for some a ∈ Asa, such that ‖Ad(v)(c) − c‖ < ε for all c ∈ F
and |τ(vl)| < 1/8.

Proof. By assumption, πτ [A]′′ is a type-II1 factor M with property Gamma, hence there
is a unitary u = exp{ilb} for some b ∈ (M′ ∩MU )sa, such that the trace (which is the
U-limit of τ along MN) of u is zero (see [Con76, Theorem 2.1-Lemma 2.4]). By [KR14,
Theorem 3.3] (see also [AK16]) there is an a ∈ A′∩AU such that πτ (a) =U b.

4 Thus, given
any F b A and ε > 0, by strong continuity of the exponential map (see [Mur90, Theorem
4.3.2]), there is a ∈ Asa such that v = exp(ia) is a unitary which satisfies ‖Ad(v)(c)−c‖ < ε
for all c ∈ F , and |τ(vl)| < 1/8.

Proof of lemma 1.3.2. Similarly to lemma 1.3.1, it is sufficient to prove the following claim
and then apply [FKK01, Lemma 2.3]

Claim 1.3.7.1. Let A be an infinite-dimensional, separable, simple, unital C∗-algebra with
fiberwise property Gamma, (ϕh)h≤m some inequivalent pure states and τ ∈ ∂T (A). For
every v ∈ U(A), every F b A, l ∈ N and ε > 0, there exist G b A and δ > 0 such that the
following holds. Suppose (ψh)h≤m are pure states such that ψh ∼ ϕh, and that moreover
ψh ≈G,δ ϕh for all 1 ≤ h ≤ m. Then there exist a path of unitaries (ut)t∈[0,1] in A and
a ∈ A1 satisfying the following

1. u0 = 1,

2. ϕh ◦Ad(u1) = ψh for all 1 ≤ h ≤ m,

3. ‖b−Ad(ut)(b)‖ < ε for all b ∈ F ,

4. ‖Ad(v)(a)−Ad(u∗l1 )(a)‖2,τ > 1/4.

4For a = (an), πτ (a) denotes the sequence (πτ (an)).
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We shall denote ‖ ‖2,τ simply by ‖ ‖2. The proof splits in two cases. First, assume
there is some a ∈ A1 such that

‖Ad(v)(a)− a‖2 > 1/4.

Then the proof can be carried on as in lemma 1.3.1 (with an empty set of traces) by adding
a to F and picking ε small enough.

Let’s therefore assume that for all a ∈ A1 the following holds

‖Ad(v)(a)− a‖2 ≤ 1/4.

Our aim is to produce a path of unitaries (ut)t∈[0,1] which satisfies the first three clauses

of the lemma plus |τ(ul1)| < 1/4. In fact, this implies ‖ul1 − τ(ul1)‖2 ≥ 3/4, which, by
[FHS13, Lemma 4.2], is enough to find an a ∈ A1 such that

‖Ad(ul1)(a)− a‖2 > 1/2.

To do this, fix G and δ given by lemma 1.3.1 for F , min{1/(8l), ε/2} and {τ}. Now pick
s ∈ U(A) given by proposition 1.3.7 for F ∪ G, l and min{δ/2, ε/2}. This implies that if
(ψh)h≤m are pure states such that ψh ≈G,δ/2 ϕh, then ψh ◦Ad(s∗) ≈G,δ ϕh for all h ≤ m.
Thus we get from lemma 1.3.1 a path of unitaries (wt)t∈[0,1] such that

1. w0 = 1,

2. ϕh ◦Ad(w1) ◦Ad(s) = ψh for all 1 ≤ h ≤ m,

3. ‖b−Ad(wt)(b)‖ < ε/2 for all b ∈ F ,

4. ‖wl1 − 1‖2 < 1/8.

Since s = eia for some a ∈ Asa, let st be equal to eita for t ∈ [0, 1]. Hence the path defined
by ut = wtst for t ∈ [0, 1] gives the thesis.

1.3.2 Gluing Paths

We are ready to prove theorem 1.2.3. We split the proof in two parts, the first for
clause 1, the second for clause 2.

Proof of theorem 1.2.3 - part 1. We first show that if A has fiberwise property Gamma,
then there is an asymptotically inner automorphism α such that ϕh ∼ ψh ◦ α for all
h ∈ N, and such that αl is τ -strongly outer for all τ ∈ ∂T (A) and all l ∈ N. Fix a dense
{ai}i∈N in A, a dense {σj}j∈N in U(A) and let {τk}k∈N be an enumeration of ∂T (A).
The construction proceeds by induction on the triples (l, j, k) ∈ N × N × N. These three
indices keep track of the fact that we want to build an automorphism α such that, for all
(l, j, k) ∈ N × N × N, the l-th power of its extension αlτk to πτk [A]′′ is far away from all
Ad(σj) in the `2-nom induced by τk Let � be any well-ordering of N ×N×N, and assume
that the three smallest elements of such ordering are (1, 1, 1) ≺ (1, 1, 2) ≺ (1, 2, 1) (this is
needed to introduce step 1 and 2 of the construction, as will be clarified later). We will
present in detail step 1 and 2 of the construction, then the generic n-th step.

Step 1: a1) Apply lemma 1.3.2 to ϕ1 for F1 = {a1}, l = 1, ε1 = 2−6, v = σ1, τ = τ1, to
find a G1 b A and δ1 > 0 which satisfy the thesis of the lemma.

b1) Fix ψ̃1 ∼ ψ1 such that ψ̃1 ≈G1,δ1 ϕ1.
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a2) Apply lemma 1.3.1 to ψ̃1 for F ′1 = F1, ε1, {τ1, τ2}, to find a G′1 b A and δ′1 > 0
which satisfy the thesis of the lemma.

b2) Fix K = G′1∪F ′1 and ε′ = min{δ′1, 1/2}, and let (v1,t)t∈[0,1] be a path of unitaries
in A and b1,1,1 ∈ A1 given by the application of lemma 1.3.2 in part a1 such
that (we will denote v1,1 simply by v1):

– v1,0 = 1,

– ϕ1 ◦Ad(v1) ≈K,ε′ ψ̃1,

– ‖b−Ad(v1,t)(b)‖ < ε1 for all b ∈ F1,

– ‖Ad(σ1)(b1,1,1)−Ad(v∗1)(b1,1,1)‖2,1 > 1/4.

Step 2: a1) Apply lemma 1.3.2 to ϕ1 ◦ Ad(v1) for F2 = F ′1 ∪ {ai,Ad(v∗1)(ai) : i ≤
2} ∪ {b1,1,1}, l = 1, ε2 = 2−7, v = v1σ1, τ = τ2 to find a G2 b A and δ2 > 0
which satisfy the thesis of the lemma.

b1) Fix K = G2∪F2 and ε′ = min{δ2, 1/4}, and let (w1,t)t∈[0,1] be a path of unitaries
in A given by the application of lemma 1.3.1 in part a2 of the previous step
such that (we will denote w1,1 simply by w1):

– w1,0 = 1,

– ϕ1 ◦Ad(v1) ≈K,ε′ ψ̃1 ◦Ad(w1),

– ‖b−Ad(w1,t)(b)‖ < ε1 for all b ∈ F ′1,

– ‖w1 − 1‖2,k < ε1 for all k ≤ 2.

Let u1 be equal to w1v
∗
1. We have that

‖Ad(σ1)(b1,1,1)−Ad(u1)(b1,1,1)‖2,1 ≥ ‖Ad(σ1)(b1,1,1)−Ad(v∗1)(b1,1,1)‖2,1−2−5

> 1/8.

Conclude by fixing ψ̃2 ∼ ψ2 such that ϕ2 ◦Ad(v1) ≈K,ε′ ψ̃2 ◦Ad(w1).

a2) Apply lemma 1.3.1 to (ψ̃1 ◦ Ad(w1), ψ̃2 ◦ Ad(w1)) for F ′2 = F2 ∪ {Ad(w∗1)(ai) :
i ≤ 2}, ε2, {τ1, τ2} to find a G′2 b A and δ′2 > 0 which satisfy the thesis of the
lemma.

b2) Fix K = G′2∪F ′2 and ε′ = min{δ′2, 1/4}, and let (v2,t)t∈[0,1] be a path of unitaries
in A and b1,1,2 ∈ A1 given by the application of lemma 1.3.2 in part a1 such
that (we will denote v2,1 simply by v2)

– v2,0 = 1,

– ϕh ◦Ad(v1v2) ≈K,ε′ ψ̃h ◦Ad(w1) for h ≤ 2,

– ‖b−Ad(v2,t)(b)‖ < ε2 for all b ∈ F2,

– ‖Ad(v1σ1)(b1,1,2)−Ad(v∗2)(b1,1,2)‖2,2 > 1/4.

Assume (l′, j′, k′) is the n-th element of the ordering induced on N×N×N by ≺. Assume
moreover that in part a2 of step n−1 lemma 1.3.1 is applied to a set of traces {τk : k ≤ K ′}
such that K ′ ≥ k′. Assuming (l′′, j′′, k′′) is the immediate successor of (l′, j′, k′), we define
K to be equal to max{K ′, k′′} and L = max{l : (l, j, k) � (l′, j′, k′)}.5

Step n: a1) Apply lemma 1.3.2 to (ϕh◦Ad(v1 . . . vn−1))h≤n for Fn = F ′n−1∪{ai,Ad(v∗n−1

. . . v∗1)(ai) : i ≤ n} ∪ {bl,j,k : (l, j, k) ≺ (l′, j′, k′)} ∪ {un−2v
∗
n−1}, l = l′, εn =

2−(5+n)/2L2, τ = τk′ , v = (vn−1u
∗
n−2)l

′
σj′ to find a Gn b A and δn > 0 which

satisfy the thesis of the lemma.

5This is the reason we had to specify the first elements of the ordering �, and why we had to apply
lemma 1.3.1 in part a2 of step 1 to {τ1, τ2}, since for step 1 we have K = 2.
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b1) Fix K = Gn ∪ Fn and ε′ = min{δn, 2−n}, and let (wn−1,t)t∈[0,1] be a path of
unitaries in A given by the application of lemma 1.3.1 in part a2 of the previous
step such that (we will denote wn−1,1 simply by wn−1):

– wn−1,0 = 1,

– ϕh ◦Ad(v1 . . . vn−1) ≈K,ε′ ψ̃h ◦Ad(w1 . . . wn−1) for h ≤ n− 1,

– ‖b−Ad(wn−1)(b)‖ < εn−1 for all b ∈ F ′n−1,

– ‖wn−1 − 1‖2,k < εn−1 for all k ≤ K ′.
Let un−1 be equal to un−2wn−1v

∗
n−1. For every (l, j, k) ≺ (l′, j′, k′) we have,

assuming that (l, j, k) corresponds to the N -th element of the well-ordering ≺:

‖Ad(σj)(bl,j,k)−Ad(uln−1)(bl,j,k)‖2,k ≥

≥ ‖Ad(σj)(bl,j,k)−Ad((w1v
∗
1 . . . v

∗
N−2v

∗
N−1v

∗
N )l)(bl,j,k)‖2,k − 2−4 ≥

≥ ‖Ad((vN−1u
∗
N−2)lσj)(bl,j,k)−Ad(v∗lN )(bl,j,k)‖2,k − 2−3 > 1/8.

Conclude by fixing ψ̃n ∼ ψn such that ϕn ◦Ad(v1 . . . vn−1) ≈K,ε′ ψ̃n ◦Ad(w1 . . .
wn−1).

a2) Apply lemma 1.3.1 to (ψ̃h ◦ Ad(w1 . . . wn−1))h≤n for F ′n = Fn ∪ {Ad(w∗n−1 . . .
w∗1)(ai) : i ≤ n}, εn, {τk : k ≤ K} to find a G′n b A and δ′n > 0 which satisfy
the thesis of the lemma.

b2) Fix K = G′n ∪ F ′n and ε′ = min{δ′n, 2−n}, and let (vn,t)t∈[0,1] be a path of
unitaries in A and bl′,j′,k′ ∈ A1 given by the application of lemma 1.3.2 in part
a1 such that (we will denote vn,1 simply by vn):

– vn,0 = 1,

– ϕh ◦Ad(v1 . . . vn) ≈K,ε′ ψ̃h ◦Ad(w1 . . . wn−1) for h ≤ n,

– ‖b−Ad(vn,t)(b)‖ < εn for all b ∈ Fn,

– ‖Ad((vn−1u
∗
n−2)l

′
σj′)(bl′,j′,k′)−Ad(v∗l

′
n )(bl′,j′,k′)‖2,k′ > 1/4.

The proof that Φ and Ψ, defined respectively as the pointwise limits of {Ad(vn)}n∈N and
{Ad(wn)}n∈N, are two automorphisms of A such that ϕh ◦Φ ∼ ψh ◦Ψ for all h ∈ N is as in
[KOS03, Theorem 2.1]. Suppose now that α = Ψ ◦ Φ−1, and that αl is a τk-weakly inner
automorphism for some k, l ∈ N. Thus, there is a σj such that, for all a ∈ A1

‖Ad(σj)(a)− αl(a)‖2,k ≤ 1/16.

Let n ∈ N be bigger than N and such that ‖Ad(uln)(bl,j,k)−αl(bl,j,k)‖2,k < 1/16, N being
the number corresponding to (l, j, k) with respect to �. Hence by construction it follows
that

‖Ad(σj)(bl,j,k)−Ad(uln)(bl,j,k)‖2,k > 1/8,

which is a contradiction.

For the other direction, suppose that there is τ ∈ ∂T (A) such that πτ [A]′′ is full. By
[Sak74, Theorem 5-6] this is equivalent to say that all approximately inner automorphisms
(in the norm induced by τ) on πτ [A]′′ are inner. Since α is approximately inner, it follows
that ατ is approximately inner in the norm induced by τ . The automorphism ατ is
therefore inner.

Proof of theorem 1.2.3 - part 2. Fix a dense {ai}i∈N in A.
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Step 1: a1) Apply lemma 1.3.1 to ϕ1 for F1 = {a1}, ε1 = 2−1, {τ1}, to find a G1 b A
and δ1 > 0 which satisfy the thesis of the lemma.

b1) Fix ψ̃1 ∼ ψ1 such that ψ̃1 ≈G,δ ϕ1.

a2) Apply lemma 1.3.1 to ψ̃1 for F ′1 = F1, ε1, {τ1}, to find a G′1 b A and δ′1 > 0
which satisfy the thesis of the lemma.

b2) Fix K = G′1∪F ′1 and ε′ = min{δ′1, 1/2}, and let (v1,t)t∈[0,1] be a path of unitaries
inA given by the application of lemma 1.3.1 in part a1 such that (we will denote
v1,1 simply by v1):

– v1,0 = 1,

– ϕ1 ◦Ad(v1) ≈K,ε′ ψ̃1,

– ‖b−Ad(v1,t)(b)‖ < ε1 for all b ∈ F1,

– ‖v1 − 1‖2,1 < ε1.

Step n: a1) Apply lemma 1.3.1 to (ϕh◦Ad(v1 . . . vn−1))h≤n for Fn = F ′n−1∪{ai,Ad(v∗n−1

. . . v∗1)(ai) : i ≤ n}, εn = 2−n, {τ1, . . . , τn} to find a Gn b A and δn > 0 which
satisfy the thesis of the lemma.

b1) Fix K = Gn ∪ Fn and ε′ = min{δn, 2−n}, and let (wn−1,t)t∈[0,1] be a path of
unitaries in A given by the application of lemma 1.3.1 in part a2 of the previous
step such that (we will denote wn−1,1 simply by wn−1):

– wn−1,0 = 1,

– ϕh ◦Ad(v1 . . . vn−1) ≈K,ε′ ψ̃h ◦Ad(w1 . . . wn−1) for h ≤ n− 1,

– ‖b−Ad(wn−1)(b)‖ < εn−1 for all b ∈ F ′n−1,

– ‖wn−1 − 1‖2,k < εn−1 for all k ≤ n− 1.

a2) Apply lemma 1.3.1 to (ψ̃h ◦ Ad(w1 . . . wn−1))h≤n for F ′n = Fn ∪ {Ad(w∗n−1 . . .
w∗1)(ai) : i ≤ n}, εn, {τ1, . . . , τn} to find a G′n b A and δ′n > 0 which satisfy the
thesis of the lemma.

b2) Fix K = G′n ∪ F ′n and ε′ = min{δ′n, 2−n}, and let (vn,t)t∈[0,1] be a path of
unitaries in A given by the application of lemma 1.3.1 in part a1 such that (we
will denote vn,1 simply by vn):

– vn,0 = 1,

– ϕh ◦Ad(v1 . . . vn) ≈K,ε′ ψ̃h ◦Ad(w1 . . . wn−1) for h ≤ n,

– ‖b−Ad(vn,t)(b)‖ < εn for all b ∈ Fn,

– ‖vn − 1‖2,k < εn for all k ≤ n.

The proof that Φ and Ψ, defined respectively as the pointwise limits of {Ad(vn)}n∈N and
{Ad(wn)}n∈N, are two automorphisms of A such that ϕh ◦ Φ ∼ ψh ◦Ψ for all h ∈ N is as
in [KOS03, Theorem 2.1]. If ut = wtv

∗
t , then the path of unitaries (ut)t∈[0,∞) is such that

α(a) = limt→∞Ad(ut)(a) for all a ∈ A is the required automorphism. By construction,
for each n ∈ N and all k ≤ n we have that

‖un+1 − un‖2,k = ‖un+1u
∗
n − 1‖2,k = ‖wn+1v

∗
n+1 − 1‖2,k < 2−(n−1).

Thus, given any τ ∈ {τk}k∈N, the sequence {πτ (un)}n∈N is strongly convergent on B(Hτ )
(recall that the strong convergence of {πτ (un)}n∈N is equivalent to the convergence of
{un}n∈N in the `2-norm induced by τ). Let v be its strong limit. Then Ad(v) extends α,
in fact for every a, x, y ∈ A and ε > 0, for n ∈ N big enough the following holds

〈vπτ (a)v∗x, y〉τ = 〈πτ (a)v∗x, v∗y〉τ ≈ε 〈πτ (au∗n)x, πτ (u∗n)y〉τ =

= 〈πτ (unau
∗
n)x, y〉τ ≈ε 〈πτ (α(a))x, y〉τ .

The argument extends by density to all x, y ∈ Hτ and all a ∈ πτ [A]′′.
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1.4 Outer Automorphisms

An interesting question related to this topic (see also the introduction of [FH17]) is the
existence of a counterexample to Naimark’s problem with an outer automorphism. This
problem is related to the following freeness result.

Theorem 1.4.1 ([Kis81, Theorem 2.1]). Let A be a separable, simple, unital C∗-algebra
and α ∈ Out(A). Then there exist two inequivalent pure states ϕ,ψ ∈ P(A) such that
ϕ = ψ ◦ α

This result is linked in turn to the following question on inner automorphisms which,
to our knowledge, is open.

Question 1.4.2. Let A be a unital C∗-algebra and let α be an automorphism of A.
Suppose that, whenever A is embedded in a C∗-algebra B, α extends to an automorphism
of B. Is α inner?

The analogous question has a positive answer for the category of groups (see [Sch87]),
and an application of theorem 1.4.1 shows that this is also the case for separable, simple,
unital C∗-algebras. In fact, letA be a separable, simple, unital C∗-algebra and α ∈ Out(A).
Suppose that ϕ,ψ ∈ P(A) are two inequivalent pure states such that ϕ = ψ◦α. Since A is
simple, the GNS representation associated to ϕ provides a map πϕ : A → B(Hϕ) which is
an embedding ofA into B(Hϕ). IdentifyA with πϕ[A] and suppose α can be extended to an
automorphism of B(Hϕ), which means that there is u ∈ U(B(Hϕ)) such that Ad(u) �A= α.
The pure state ψ is thus equal to the vector state induced by uξϕ, therefore an application
of the Kadison transitivity theorem entails that ϕ and ψ are unitarily equivalent, which
is a contradiction. A generalization of theorem 1.4.1 to nonseparable C∗-algebras would
settle the question also in the nonseparable simple case. A positive answer to the following
question would show the impossibility of such generalization.

Question 1.4.3. Does a counterexample to Naimark’s problem with an outer automor-
phism consistently exist?
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Chapter 2

Embedding C∗-algebras into the
Calkin Algebra

The Calkin algebra Q(H) is the quotient of the algebra of bounded linear operators
B(H) on a separable infinite-dimensional Hilbert space H, modulo the ideal of the compact
operators K(H). Its first formal definition by Calkin dates back to 1941 [Cal41], making
it the first example of an abstract C∗-algebra which is not a von Neumann algebra1. Nev-
ertheless, the implicit presence of the Calkin algebra can be tracked back already in the
early works on operator algebras by Weyl and von Neumann [Wey09] and [VN35]. Here
the authors fully characterize when two self-adjoint operators in B(H) are unitarily equiv-
alent up to a compact difference in terms of their spectra. The Calkin algebra became
predominant after the research by Weyl and von Neumann was extended to normal oper-
ators and later, in the seminal paper [BDF77], to the classification of essentially normal
operators, which led in turn to a fruitful interaction between C∗-algebras and algebraic
topology.

From a set-theoretic perspective, the Calkin algebra is an important point of con-
tact with operator algebras, due to its structural similarities with the boolean algebra
P(N)/Fin, of which it is in fact considered the noncommutative analogue. The bond
between these two objects is formally motivated by the Stone and the Gelfand-Naimark
dualities. The Stone duality theorem links boolean algebras with compact, Hausdorff,
zero-dimensional topological spaces, while the Gelfand-Naimark duality yields an equiv-
alence between the category of compact Hausdorff spaces and the category of abelian
unital C∗-algebras. In this framework, the abelian C∗-algebra associated to P(N)/Fin is
`∞(N)/c0, which diagonally embeds into the Calkin algebra. As a consequence, results
about P(N)/Fin translate into (frequently nontrivial) questions about Q(H).

In this chapter we study the analogue of the question “Which linear orderings em-
bed into P(N)/Fin?”. This topic has been extensively studied in set theory, one of the
motivations being, for instance, the deep connections with the problem of the automatic
continuity of Banach algebras homomorphisms. More in detail, Woodin’s condition for
the automatic continuity of Banach algebras homomorphisms from C([0, 1]) asserts that
if there exists a discontinuous homomorphism from C([0, 1]) into a Banach algebra, then
a nontrivial initial segment of an ultrapower NN/U embeds into P(N)/Fin (see [DW87]).
This is usually stated in terms of embedding into the directed set (NN,≤∗), but a linear
order embeds into (NN,≤∗) if and only if it embeds into P(N)/Fin (see for instance [Far96,
Proposition 0.1] or [Woo84, Lemma 3.2]).

1In [Cal41] Calkin provided a faithful (hence isometric) representation of Q(H) on a Hilbert space
spanned by an orthonormal basis of size continuum.

23



In order to put our study into the proper context, we start by reviewing some known
results about the topic of embeddings of linear orderings into P(N)/Fin. To begin, P(N)
embeds as a boolean algebra into P(N)/Fin. To define an embedding, send for instance
A ⊆ N to the equivalence class of the set {(2n + 1)2m : n ∈ N,m ∈ A}. Every countable
linear ordering L embeds into P(N), and therefore into P(N)/Fin. One way to see this
is to enumerate the elements of L as an, for n ∈ N, and define Φ : L → P(N) by
Φ(am) = {n : an ≤ am}.

Since P(N)/Fin is a countably saturated atomless boolean algebra, all linear orderings
of cardinality ℵ1 embed into it. Thus the continuum hypothesis, CH, implies that a linear
order embeds into P(N)/Fin if and only if its cardinality is at most 2ℵ0 . The assertion
that all linear orderings of cardinality at most 2ℵ0 embed into P(N)/Fin is also relatively
consistent with ZFC plus the negation of CH, as shown by Laver in [Lav79]. Laver’s model
is however an exception, in the absence of CH it is often possible to find linear orders of
size 2ℵ0 which do not embed into P(N)/Fin. It is well-known for instance that 2ℵ0 can be
arbitrarily large and ℵ2 does not embed into P(N)/Fin (see proposition 2.5.2).

The main question we investigate in this chapter is the noncommutative analogue of
what we have exposed so far.

Question 2.0.1. What C∗-algebras embed into the Calkin algebra?

This is also a noncommutative analogue of the question “What abelian C∗-algebras
embed into `∞/c0?”. By the Gelfand-Naimark duality, this translates to ask what compact
Hausdorff spaces are continuous images of βN \ N, the Čech-Stone remainder of N. By
Parovičenko’s theorem having weight at most ℵ1 is a sufficient condition (alternatively,
this can be proved by elementary model theory, see the discussion in [DH01, p. 1820]).
However, the situation in ZFC is quite nontrivial ([DH99], [DH00]).

The analogue of the cardinality of a C∗-algebra A (or of a topological space) is the
density character. It is defined as the least cardinality of a dense subset of A. Thus the
C∗-algebras of density character ℵ0 are exactly the separable C∗-algebras. The density
character of a nonseparable C∗-algebra is equal to the minimal cardinality of a generating
subset and also to the minimal cardinality of a dense (Q + iQ)-subalgebra.

Every separable C∗-algebra embeds into B(H) and therefore, by a standard amplifi-
cation argument, into Q(H). In addition, all C∗-algebras of density character ℵ1 embed
into Q(H), but the proof is surprisingly nontrivial ([FHV17]) due to the failure of count-
able saturation in the Calkin algebra ([FH13, Section 4]; the Calkin algebra is not even
countably homogeneous, see [FH16]).

Since the density character of Q(H) is 2ℵ0 , C∗-algebras with larger density character
do not embed into Q(H) and once again CH gives the simplest possible characterization of
the class of C∗-algebras that embed into Q(H). In the first part of this chapter we make
the next step and we investigate what happens when CH fails, focusing on C∗-algebras of
density character strictly less than 2ℵ0 .

Theorem 2.0.2. The assertion ‘Every C∗-algebra of density character strictly less than
2ℵ0 embeds into the Calkin algebra’ is independent from ZFC. More precisely, it is inde-
pendent from ZFC + 2ℵ0 = ℵα for every α > 2.

The most involved part in the proof of theorem 2.0.2 is showing that the statement
‘All C∗-algebras of density character strictly less than 2ℵ0 embed into Q(H)’ is consistent
with ZFC+2ℵ0 > ℵ2. This will be achieved via theorem 2.0.3 (which is proved in section
2.3) using forcing.
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The method of forcing was introduced by Cohen to prove the independence of CH
from ZFC, and later developed to deal with more general independence phenomena (see
section 2.1.2). The countable chain condition (or ccc) is a property of forcing notions that
ensures no cardinals or cofinalities are collapsed, and all stationary sets are preserved, in
the forcing extension (see the beginning of section 2.1.2).

Theorem 2.0.3. For every C∗-algebra A there exists a ccc forcing notion EA which forces
the existence of an embedding of A into Q(H).2

Rephrasing the statement of theorem 2.0.3, every C∗-algebra, regardless of its density
character, can be embedded into the Calkin algebra in a forcing extension of the universe
obtained without collapsing any cardinals or cofinalities.

Theorem 2.0.3 (whose proof is given in section 2.3) was inspired by an analogous fact
holding for partial orders and P(N)/Fin: for every partial order P there is a ccc forcing
notion which forces the existence of an embedding of P into P(N)/Fin. While the proof of
this latter fact is an elementary exercise, the proof of theorem 2.0.3 is fairly sophisticated.
At a critical place it makes use of some variations of Voiculescu’s results in [Voi76] (see
corollaries 2.1.3 and 2.1.4).

The following corollary is the consistency result needed to prove one part of theorem
2.0.2 and follows from the proof of theorem 2.0.3.

Corollary 2.0.4. Assume Martin’s axiom, MA. Then every C∗-algebra with density char-
acter strictly less than 2ℵ0 embeds into the Calkin algebra.

In the case when the continuum is not greater than ℵ2, the conclusion of corollary
2.0.4 follows from [FHV17].

In section 2.5 we investigate the embedding problem in Q(H) for some C∗-algebras of
density character 2ℵ0 . The continuum hypothesis implies that all C∗-algebras of density
2ℵ0 embed into Q(H), but there are models of ZFC where this does not happen (see
[FHV17] and corollary 2.5.5). Identifying the class of C∗-algebras of density character 2ℵ0

that embed in Q(H) in a given model of ZFC is generally a task out of reach (the analogous
problem for P(N)/Fin and linear orders is already extremely challenging). In section 2.5
we prove that the C∗-algebra generated by an increasing chain of ℵ2 projections does not
embed into Q(H) consistently with ZFC + 2ℵ0 ≥ ℵα, for every α ≥ 2. On the other hand,
we show that C∗red(F2ℵ0 ) and C∗max(F2ℵ0 ), where F2ℵ0 is the free group on 2ℵ0 generators,
embed into the Calkin algebra in every model of ZFC. The proof of the first fact is based on
an argument on isomorphic names for real numbers by Kunen ([Kun68]). The proof of the
latter is a simple application of the fact that C∗max(F2ℵ0 ) is residually finite-dimensional
and, for C∗red(F2ℵ0 ), of a deep result by Haagerup and Thorbjørnsen ([HT05]). It is possible
to generalize the notion of UHF algebra to nonseparable C∗-algebras by saying that a C∗-
algebra is UHF if it is isomorphic to a tensor product of full matrix algebras (more on this
in [FK10], [FK15]). We conclude section 2.5 by showing that all UHF algebras of density
character at most 2ℵ0 embed into Q(H).

Question 2.0.5. Does
⊗

α<2ℵ0 O2 consistently fail to embed into the Calkin algebra?

The results exposed in section 2.5 combined with theorem 2.0.3 allow us to prove
theorem 2.0.2

2Given a C∗-algebra A in a model M of ZFC, it is often the case that the set A is not a C∗-algebra in
a forcing extension of M , since it might not be closed anymore. Through this chapter we will implicitly
identify A with its completion when passing to forcing extensions.
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Proof of theorem 2.0.2. As pointed out above, if the cardinality of the continuum is not
greater than ℵ2 then all C∗-algebras of density character strictly less than 2ℵ0 embed into
the Calkin algebra. We prove the statement of the corollary for α = 3, as the proof for the
other cases is analogous. Martin’s axiom is relatively consistent with the continuum being
equal to ℵ3 ([Jec03, Theorem 16.13]) and by Corollary 2.0.4 in this case all C∗-algebras of
density character not greater than ℵ2 embed into the Calkin algebra. On the other hand,
in a model obtained by adding ℵ3 Cohen reals to a model of CH we get that 2ℵ0 = ℵ3,
and that the Calkin algebra has no chains of projections of order type ℵ2, as shown in
proposition 2.5.5. Therefore in this model the abelian C∗-algebra C(ℵ2 + 1) (where the
ordinal ℵ2 + 1 is endowed with the order topology) does not embed into Q(H).

Finally, the last section of this chapter revolves around Voiculescu’s theorem in [Voi76]
(theorem 2.1.2). The contents of [Voi76] played a key role in the development of the theory
of extensions of separable C∗-algebras. An extension of a unital C∗-algebra A (or rather
its Busby invariant) is a unital embedding of A into Q(H). Given a unital C∗-algebra
A, let Ext(A) be the set of all the extensions of A modulo unitary transformation of H,
i.e. we identify two embeddings τ1 and τ2 for which there is a unitary transformation U
of H such that τ1 = Ad(U) ◦ τ2.3 Exploiting the fact that H ⊕ H ∼= H, it is possible
to define the sum of two (classes of) extensions via the direct sum, and endow Ext(A)
with a semigroup structure. One of the main consequences of [Voi76] is that, for a unital
separable C∗-algebra A, the semigroup Ext(A) always has an identity element, namely
the class of all trivial extensions (an extension is trivial if it admits a multiplicative lift
to B(H)). This, along with the results in [CE76], entails for instance that Ext(A) is a
group for every nuclear separable unital C∗-algebra A. The behavior of Ext(A) is much
wilder when A is not in the above class, and for nonseparable C∗-algebras Ext(A) could be
empty (see [HR00, Section 2.6-2.7] for an introduction to the basic properties of the functor
Ext). We remark that, by corollary 2.0.4, Martin’s axiom entails that for all C∗-algebras
A of density less than continuum Ext(A) is non-empty. In section 2.6 we introduce a
new perspective on the proof of Voiculescu’s theorem (as given by Arveson in [Arv77])
which emerged during the work on the proof of theorem 2.0.3. More in detail, we prove
that most of the arguments in [Arv77] used to prove Voiculescu’s theorem (theorem 2.1.2)
are diagonalization arguments which are equivalent to applications of the Baire category
theorem (lemma 2.1.7) to some appropriate ccc posets. This allows us, assuming Martin’s
axiom, to generalize the contents of [Voi76] also to nonseparable C∗-algebras of density
less than continuum (see theorem 2.6.1).

2.1 Preliminary results

2.1.1 C∗-algebras

Some definitions were already given in chapter 1, but we recall them here for the
reader’s convenience. In this chapter H always denotes the separable Hilbert space `2(N)
and B(H) is the space of linear bounded operators on H. F(H) is the space of all finite-
rank operators on H and its norm-closure, K(H), is the ideal of compact operators. The
notation U(H) is reserved for the group of unitary operators on H. The Calkin algebra
Q(H) is the quotient of B(H) by the compact operators and, through this chapter, π :
B(H)→ Q(H) is the quotient map.

3It is not uncommon to study the set of all extensions of A also modulo other equivalence relations,
more on this in [Bla98, Chapter VII, Section 15.4].
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Consistently with the notation of the previous chapter, we write F(H)≤1
+ for the col-

lection of all finite-rank positive contractions on H. For h ∈ F(H), h+ is the orthogonal
projection onto h[H], the range of h, and h− is the projection onto the 1-eigenspace of h
(i.e. the space of all vectors ξ such that hξ = ξ).

An operator T ∈ B(H) is way above S, T � S in symbols, if TS = S. We write
T ∼K(H) S, and say that T and S agree modulo the compact operators, to indicate that
T − S ∈ K(H). Similarly, given a C∗-algebra A, two maps ϕ,ψ : A → B(H) agree modulo
the compact operators if ϕ(a) ∼K(H) ψ(a) for every a ∈ A.

A net of operators {Ti}i∈I strongly converges to an operator T if for each ξ ∈ H the
net {Tiξ}i∈I converges to Tξ. We remark that to verify the strong convergence of a norm-
bounded net it suffices to check it on a dense subset of H. Given two vectors ξ and η of
a normed vector space and ε > 0, the notation ξ ≈ε η stands for ‖ξ − η‖ < ε.

If A is a C∗-algebra, we write F b A to mean that F is a finite subset of A and C∗(F )
denotes the C∗-subalgebra of A generated by F . If A is unital and u ∈ A is a unitary
element, then Ad(u) denotes the automorphism of A which sends a to uau∗.

A representation ϕ : A → B(H) is called essential if ϕ(a) ∈ K(H) implies ϕ(a) = 0
for all a ∈ A. Note that all (non-zero) representations of simple, infinite-dimensional C∗-
algebras onH are faithful (i.e. injective) and essential. A unital, injective ∗-homomorphism
Θ : A → Q(H) is trivial if there exists a unital (and necessarily essential) representation
ϕ : A → B(H) such that π ◦ ϕ = Θ and ϕ is the (multiplicative) lift of Θ. Moreover, Θ is
called locally trivial if its restriction to any unital separable C∗-subalgebra of A is trivial.

A bounded linear map σ : A → B between unital C∗-algebras is unital completely
positive (abbreviated as u.c.p.) if σ(1) = 1 and it is completely positive, namely is such
that ∑

i,j<n

b∗iσ(a∗i aj)bj ≥ 0

for all n ∈ N and all a0, . . . , an−1 ∈ A, b0, . . . , bn−1 ∈ B. U.c.p. maps are always contractive
and ∗-preserving.

Given a C∗-algebra A ⊆ B(H), an approximate unit (hλ)λ∈Λ of K(H) is quasicentral
for A if limλ‖ahλ − hλa‖ = 0 for every a ∈ A.

Given a cardinal λ, a C∗-algebraA is (injectively) λ-universal if it has density character
λ and all C∗-algebras of density character λ embed into A.

Mainly for convenience, for the proof of theorem 2.0.3, we shall exclusively be concerned
with embeddings of unital and simple C∗-algebras into the Calkin algebra, as any unital
∗-homomorphism from a unital simple C∗-algebra into Q(H) is automatically injective.
This causes no loss of generality, thanks to the following proposition.

Proposition 2.1.1 ([FHV17, Lemma 2.1]). Every C∗-algebra A embeds into a unital and
simple C∗-algebra of the same density character of A.

The label ‘Voiculescu’s theorem’ often refers to a not well-defined collection of results
and corollaries from [Voi76], for us it always refers to the following specific theorem.
Throughout the following statements (and the rest of the chapter), as mentioned at the
beginning of this section, Hilbert spaces denoted by H are always assumed to be separable
and infinite-dimensional.

Theorem 2.1.2 ([Arv77, Theorem 4]). Let H,L be two separable Hilbert spaces, A ⊆
B(H) a separable unital C∗-algebra and σ : A → B(L) a unital completely positive map
such that σ(a) = 0 for all a ∈ A∩K(H). Then there is a sequence of isometries Vn : L→ H
such that σ(a)− V ∗n aVn ∈ K(L) and limn→∞‖σ(a)− V ∗n aVn‖ = 0 for all a ∈ A.
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The following two corollaries of theorem 2.1.2 are needed in the proof of theorem 2.0.3.

Corollary 2.1.3 ([BO08, Corollary 1.7.5]). Let A be a unital separable C∗-algebra and let
ϕ,ψ : A → B(H) be two essential faithful unital representations. Then, for every F b A
and ε > 0, there exists a unitary u ∈ U(H) such that

1. Ad(u) ◦ ϕ ∼K(H) ψ,

2. Ad(u) ◦ ϕ(a) ≈ε ψ(a) for all a ∈ F .

Corollary 2.1.4. Let A be a unital, separable C∗-algebra and let ϕ,ψ : A → B(H) be
two essential faithful unital representations. Then, for every F b A and every finite-
dimensional subspace K ⊆ H, there exists a unitary w ∈ U(H) such that

1. Ad(w) ◦ ϕ ∼K(H) ψ,

2. Ad(w) ◦ ϕ(a)(ξ) = ϕ(a)(ξ) for every a ∈ F and ξ ∈ K.

In particular, the set

{Ad(w) ◦ ϕ : w ∈ U(H),Ad(w) ◦ ϕ(a) ∼K(H) ψ(a) for all a ∈ A}

has ϕ in its closure with respect to strong convergence.

Proof. Let F b A, K ⊆ H a finite-dimensional subspace and let P ∈ B(H) be the
orthogonal projection onto K. By corollary 2.1.3 we can find a unitary v ∈ U(H) such
that Ad(v) ◦ ϕ and ψ agree modulo the compact operators. Let Q be the finite-rank
projection onto the space spanned by the set K ∪ {ϕ(a)K : a ∈ F} and let w ∈ U(H) be
a finite-rank modification of v such that wQ = Qw = Q. Then Ad(w) ◦ ϕ and Ad(v) ◦ ϕ
agree modulo the compact operators and Ad(w) ◦ ϕ(a)P = ϕ(a)P for all a ∈ F .

See also [Arv77] and [HR00, Section 3] for a detailed proof of corollary 2.1.3, which
is a standard consequence of the results in [Voi76]. Another result needed in the proof of
theorem 2.0.3 (whose proof heavily relies on corollary 2.1.3) is the following.

Theorem 2.1.5 ([FHV17, Theorem A]). All C∗-algebras of density ℵ1 embed into the
Calkin algebra. Moreover, the embedding can be chosen to be locally trivial.

The following lemma is invoked multiple times in section 2.3 to take care of some
technical details.

Lemma 2.1.6. Let T ∈ B(H) be a finite-rank projection. For every ε > 0 there exists
δ > 0 such that if S ∈ B(H) and ‖T −S‖ < δ, then there is a unitary u ∈ U(H) satisfying
the following.

1. uT [H] ⊆ S[H], namely the image space of uT is contained in the image space of S,

2. uT ≈ε T ,

3. u− IdH ∈ F(H),

4. for every orthogonal projection P onto a subspace of T [H] such that SP = P , uP =
P holds.
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Proof. Let {ξ1, . . . , ξk} be an orthonormal basis of the space of all eigenvectors of S whose
eigenvalue is 1 and which are moreover contained in T [H]. Fix {ξ1, . . . , ξn} an orthonormal
basis of T [H] extending {ξ1, . . . , ξk}. If δ < 1, the set {Sξ1, . . . , Sξn} (which linearly spans
ST [H]) is linearly independent. In fact, if ξ ∈ T [H] has norm one and is such that Sξ = 0,
then ‖Tξ‖ = ‖ξ‖ < δ, which is a contradiction. Applying the Gram-Schmidt process
to {Sξ1, . . . , Sξn} we obtain an orthonormal basis {η1, . . . , ηn} for ST [H] which, for a
sufficiently small choice of δ, is such that

‖ξi − ηi‖ <
ε

n
, i = 1, . . . , n.

Denote by V the finite-dimensional space spanned by T [H] and ST [H]. Let {ξ1, . . . , ξm}
be an orthonormal basis of V that extends {ξ1, . . . , ξn} and, similarly, {η1, . . . , ηm} an
orthonormal basis of V extending {η1, . . . , ηn}. This naturally defines a unitary w : V → V
by sending the vector ξi to ηi for every i = 1, . . . ,m. Finally, define u ∈ U(H) to be equal
to w on V and equal to the identity on the orthogonal complement of V . The unitary u
satisfies the desired properties.

2.1.2 Set Theory and Forcing

As stated in the introduction, theorem 2.0.3 is an application of the method of forcing.
For a standard introduction to this topic see [Kun11]; see also [DW87] and [Wea14].

We recall some technical definitions. A partially ordered set (or simply poset) (P,≤) is
a set equipped with a binary transitive antisymmetric reflexive relation ≤. Two elements
p, q of a poset (P,≤) are compatible if there exists s ∈ P such that s ≤ p and s ≤ q.
Otherwise, p and q are incompatible. A subset ∆ ⊆ P is dense if for every p ∈ P there is
q ∈ ∆ such that q ≤ p. A subset ∆ of P is open if it is close downwards, i.e. p ∈ ∆ and q ≤ p
implies q ∈ ∆. A subset A ⊆ P is an antichain if its elements are pairwise incompatible.
The poset (P,≤) satisfies the countable chain condition (henceforth abbreviated as ccc) if
every antichain is at most countable. (P,≤) has property K if every uncountable subset of
P contains a further uncountable subset in which any two elements are compatible. Given
a cardinal λ, a λ-chain is a subset {pα : α < λ} of P such that pα < pβ for all α < β < λ.
A non-empty subset G of P is a filter if q ∈ G and q ≤ p implies p ∈ G, and if for any
p, q ∈ G there exists r ∈ G such that r ≤ p, r ≤ q. Given a family D of dense subsets of
P, a filter G is D-generic if it meets every dense of D.

A forcing notion (or forcing) is a partially ordered set (poset), whose elements are
called conditions. Naively, the forcing method produces, starting from a poset P, an
extension of von Neumann’s universe V . The extension is obtained by adding to V a
filter G of P which intersects all dense open subsets of P. This generic extension, usually
denoted by V [G], is a model of ZFC, and its theory depends on combinatorial properties
of P and (to some extent) on the choice of G. A condition p ∈ P forces a sentence ϕ in
the language of ZFC if ϕ is true in V [G] whenever G is a generic filter containing p. If ϕ
is true in every generic extension V [G], we say that P forces ϕ.

Unless P is trivial, no filter intersects every dense open subset of P. For this reason, the
forcing method is combined with a Löwenheim-Skolem reflection argument and applied
to countable models of ZFC. If M is a countable model of ZFC and P ∈ M , then the
existence of an M -generic filter G (i.e. intersecting every open dense subset of P in M) of
P is guaranteed by the Baire category theorem ([Kun11, Lemma III.3.14])4.

4For metamathematical reasons related to Gödel’s incompleteness theorem, one usually considers models
of a large enough finite fragment of ZFC. By other metamathematical considerations, for all practical
purposes this issue can be safely ignored; see [Kun11, Section IV.5.1].
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An obvious method for embedding a given C∗-algebra A into the Calkin algebra is to
generically add a bijection between a dense subset of A and ℵ0 (i.e. to ‘collapse’ the density
character of A to ℵ0). The completion of A in the forcing extension (routinely identified
with A) is then separable and therefore embeds into the Calkin algebra of the extension.
However, if the density character of A is collapsed, then this results in a C∗-algebra that
has little to do with the original algebra A. We shall give two examples.

Fix an uncountable cardinal κ. If A is C∗red(Fκ), the reduced group algebra of the free
group with κ generators, then collapsing κ to ℵ0 makes A isomorphic to C∗red(Fℵ0) (better
known as C∗red(F∞)). It is not difficult to prove that, if a cardinal κ is not collapsed, then
the completion of C∗red(Fκ) in the extension is isomorphic to C∗red(Fκ) as computed in the
extension. This is not automatic as, for example, the completion of the ground model
Calkin algebra in a forcing extension will rarely be isomorphic to the Calkin algebra in
the extension.

A more drastic example is provided by the 2κ nonisomorphic C∗-algebras each of which
is an inductive limit of full matrix algebras of the form M2n(C) for n ∈ N constructed in
[FK15, Theorem 1.2]. After collapsing κ to ℵ0, all of these C∗-algebras become isomorphic
to the CAR algebra. This is because it can be proved that the K-groups of A are invariant
under forcing and, by Glimm’s classification result, unital and separable inductive limits
of full matrix algebras are isomorphic (e.g. [Bla06]). A similar effect can be produced even
with a forcing that preserves cardinals if it collapses a stationary set ([FK15, Proposition
6.6]).

Instead of ‘collapsing’ the cardinality of A, our approach is to ‘inflate’ the Calkin
algebra. More precisely, we prove that Martin’s axiom implies that the Calkin algebra has
already been ‘inflated’.

The following lemma is an equivalent version of the more common topological formu-
lation of the Baire category theorem.

Lemma 2.1.7 (Baire category theorem, [Jec03, Lemma 14.4]). If (P, <) is a partially
ordered set and D is a countable collection of dense subsets of P, then there exists a D-
generic filter on P. Moreover, for any p ∈ P, there is a D-generic filter G such that
p ∈ G.

Forcing axioms are far-reaching extensions of the Baire category theorem that enable
one to apply forcing without worrying about metamathematical issues. Martin’s axiom is
the simplest (and most popular) forcing axiom.

Martin’s axiom (MA). If (P, <) is a poset that satisfies the countable chain condition,
and D is a collection of fewer than 2ℵ0 dense subsets of P, then there exists a D-generic
filter on P.

Martin’s axiom is a combinatorial statement which is independent from ZFC. It is a
vacuous consequence of CH (by lemma 2.1.7), but it is also consistent that, given any
regular κ > ℵ1, 2ℵ0 = κ and MA holds (see [Jec03, Theorem 16.13]).

The proof strategy in section 2.3 is as follows. Given a C∗-algebra A, we start by
defining a forcing notion EA (definition 2.3.2) whose generic filters (if any) allow to build
an embedding of A into Q(H) (proposition 2.3.5). We then proceed to show that EA is
ccc (proposition 2.3.7), and that the existence of sufficiently generic filters inducing the
existence of an embedding of A into Q(H) is guaranteed in models of ZFC + MA (corollary
2.0.4).

The following lemma will be used when proving that a given forcing notion is ccc. A
family C of sets forms a ∆-system with root R if X ∩ Y = R for any two distinct sets X
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and Y in C. When the sets in C are pairwise disjoint, one obtains the special case with
R = ∅.

Lemma 2.1.8 (∆-system lemma, [Kun11, Lemma III.2.6]). Every uncountable family of
finite sets contains an uncountable ∆-system.

2.2 Boolean Algebras and Quasidiagonal C∗-algebras

In this section we discuss two special cases of theorem 2.0.3, those corresponding to
the classes of abelian and quasidiagonal C∗-algebras. Their proofs (the first of which is
standard) are intended to provide intuition and demonstrate the increase in complexity
regarding the corresponding forcing notions that are implemented. It also displays the
natural progression behind theorem 2.0.3. We will omit most of the technical details
in this section, as the results discussed here can be easily inferred by the proofs of the
subsequent parts of the chapter. The reader eager to transition right away to the proof of
theorem 2.0.3 may safely skip to section 2.3.

2.2.1 Embedding Abelian C∗-algebras into `∞/c0

The main focus in this part will be on obtaining the abelian version of theorem 2.0.3.

Proposition 2.2.1. For every abelian C∗-algebra A there exists a ccc forcing notion which
forces that A embeds into `∞/c0.

Exploiting the fact that the categories of Boolean algebras, Stone spaces (i.e. zero-
dimensional, compact, Hausdorff spaces) and C∗-algebras of continuous functions on Stone
spaces are all equivalent (by a combination of the Stone duality [GH09, Theorem 31-32] and
the Gelfand-Naimark duality [Mur90, Theorem 2.1.10]), one can translate the statement
of the proposition above to a statement regarding Boolean algebras. In particular, it is
enough to show that for any Boolean algebra B there exists a ccc forcing notion which
forces that B embeds into P(N)/Fin. If B is a Boolean algebra, we denote by St(B) its
Stone space, the space of all ultrafilters on B equipped with the Stone topology.

To see the aforementioned translation, first of all note that it suffices to prove the
assertion of proposition 2.2.1 for C∗-algebras of the form C(Y ) with Y being a Stone
space, as every abelian C∗-algebra embeds into such an algebra. Indeed, any abelian C∗-
algebra C(X) naturally embeds into the von Neumann algebra L∞(X) which, being a
real rank zero unital C∗-algebra, is of the form C(Y ) with Y zero-dimensional, compact
and Hausdorff. We provide an alternative proof for the reader who is not familiar with
the theory of von Neumann algebras. Every non-unital, abelian C∗-algebra embeds into
its unitization, which is a C∗-algebra of continuous functions on a compact, Hausdorff
space X. For any compact, Hausdorff space X, let Xd consist of the underlying set of
X equipped with the discrete topology. Then, the identity map from Xd to X uniquely
extends to a continuous map from βXd onto X and this, in turn, implies the existence of
an embedding of C(X) into C(βXd). The Čech-Stone compactification of a discrete space
is always zero-dimensional and this establishes the previous claim.

Let X be a Stone space and consider the Boolean algebra B of all clopen subsets of X.
By the Stone duality, the existence of a ccc forcing notion that forces the embedding of
B into P(N)/Fin yields (in any generic extension of the universe) a continuous surjection
from St(P(N)/Fin) ∼= βN \ N onto St(B) ∼= X. By contravariance due to the Gelfand-
Naimark duality, one obtains an injective ∗-homomorphism from C(X) into C(βN \ N),
with the latter being isomorphic to `∞/c0.
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Thus, we turn our attention to providing the forcing notion guaranteed by the following
folklore proposition.

Proposition 2.2.2. For every boolean algebra B, there exists a ccc forcing notion EB

which forces that B embeds into P(N)/Fin.

We view P(N)/Fin as the space of all binary sequences 2N modulo the equivalence
relation

x ∼ y if and only if |{n ∈ N : x(n) 6= y(n)}| < ℵ0

for all x, y ∈ 2N.

Definition 2.2.3. Fix a boolean algebra B and let EB be the set of all triples

p = (Bp, np, ψp)

where

1. Bp is a finite boolean subalgebra of B,

2. np ∈ N,

3. ψp : Bp → 2np is an arbitrary map.

Given p, q ∈ EB, we say that p < q if and only if

4. Bq ⊆ Bp,

5. nq < np,

6. ψp(a)(i) = ψq(a)(i) for all a ∈ Bq and i < nq,

7. the map

Bq → 2np−nq

a 7→ ψp(a)�[nq ,np)

is an injective homomorphism of boolean algebras.

This defines a partial order on EB. Conditions in EB represent partial maps from a
finite subset of B to an initial segment of a characteristic function corresponding to a
subset of N.

Any finite Boolean subalgebra of B is isomorphic to the Boolean algebra given by the
powerset of a finite set and hence can be embedded into 2m for m ∈ N large enough.
Therefore it is always possible to extend a given condition p ∈ EB to a q < p such that
Bq contains any arbitrary finite subset of B and nq > np, while making sure that in the
added segment the map is an injective homomorphism. For this reason, a generic filter G
in EB provides a pool of maps which can be ‘glued’ together in a coherent way, inducing
thus a function ΨG which, by genericity, is defined everywhere on B:

ΨG : B→ P(N)

b 7→
⋃

{p∈G:b∈Bp}

ψp(b).
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Here we identify ψp(b) ∈ 2np with the corresponding subset of np. Moreover, by definition
of the order relation on EB, the map ΨG is, modulo the ideal of finite sets, injective and
preserves all Boolean operations.

By using a standard uniformization argument and an application of the ∆-system
lemma (lemma 2.1.8), when given an uncountable set of conditions U ⊆ EB, it is possible
to find an uncountable W ⊆ U , n ∈ N and Z b B such that np = n, Bp ∩ Bq = Z and
ψp(b) = ψq(b) for all p, q ∈ W and b ∈ Z. Thus the problem of whether EB is ccc is
reduced to the following:

Lemma 2.2.4. Let p, q ∈ EB be two conditions such that np = nq and the maps ψp, ψq
agree on Bp ∩Bq. Then, p and q are compatible.

To see that this holds, define Bs to be the (finite) Boolean subalgebra of B that is
generated by Bp ∪Bq and choose a Boolean algebra isomorphism

f : Bs → 2m

for some m ∈ N. Set ns = np +m and define the map ψs to be equal to ψp concatenated
with f on Bp, equal to ψq concatenated with f on Bq \ Bp and equal to zero elsewhere.
Then, the condition s = (Bs, ns, ψs) extends both p and q.

2.2.2 Embedding Quasidiagonal C∗-algebras into the Calkin Algebra

Quasidiagonal C∗-algebras possess strong local properties that remarkably simplify the
proof of theorem 2.0.3. In this case, in fact, the ‘natural’ analogue of the poset introduced
in the previous subsection does the job without too much additional effort.

A unital C∗-algebra A is quasidiagonal if for every finite set F b A and ε > 0, there
exist n ∈ N and a u.c.p. map σ : A →Mn(C) such that

‖σ(ab)− σ(a)σ(b)‖ < ε for all a, b ∈ F

and
‖σ(a)‖ > ‖a‖ − ε for all a ∈ F.

In this section we prove the following proposition.

Proposition 2.2.5. For every quasidiagonal C∗-algebra A there exists a ccc poset QDA
which forces an embedding of A into Q(H).

As opposed to the proof of theorem 2.0.3 in section 2.3, where we can apply propo-
sition 2.1.1, we will not assume that A is simple in the proof of proposition 2.2.5. Such
assumption would have made definition 2.2.6 slightly simpler, but, to our knowledge, it
is not known whether it is possible to embed a given quasidiagonal C∗-algebra into a
simple quasidiagonal one (an application of the Downward Löwenheim-Skolem theorem
([FHL+ar, Theorem 2.6.2]) would then provide a quasidiagonal simple C∗-algebra with
the same density character as the one we started with). We may assume though that A
is unital. To begin, fix {en}n∈N an orthonormal basis of H and for every n ∈ N let Rn
be the orthogonal projection onto the linear span of the set {ek : k ≤ n}. Since for every
n ∈ N the space RnB(H)Rn is finite-dimensional, choose Dn a countable dense subset that
contains Rn. For n < m ∈ N, we also require that Dn ⊆ RnDmRn.

Similar to the case of Boolean algebras, we define a forcing notion for a quasidiagonal
C∗-algebra whose conditions represent partial maps from a finite subset of A to an ‘initial
segment’ in B(H), which in this case is a corner RnB(H)Rn for some n ∈ N. Extensions
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of conditions are defined as to yield better approximations, maps are defined on a bigger
domain and take values on a larger corner in B(H). It is only on a sufficient part of the
larger corner that we shall request that the new maps preserve the norm of elements and
all algebraic operations, modulo a small error (which disappears once one passes to the
Calkin algebra).

Definition 2.2.6. Let A be a unital, quasidiagonal C∗-algebra and define QDA to be the
set of all tuples

p = (Fp, np, εp, ψp)

such that

1. Fp b A and 1 ∈ Fp,

2. np ∈ N,

3. εp ∈ Q+,

4. ψp : Fp → Dnp is a map such that ψp(1) = 1 and

‖ϕp(a)‖ ≤ ‖a‖ for all a ∈ Fp.

For p, q ∈ QDA, we write p < q if the following hold

5. Fq ⊆ Fp,

6. nq ≤ np,

7. εp < εq,

8. ψp(a)Rnq = ψq(a) and Rnqψp(a) = ψq(a) for all a ∈ Fq,

9. ‖ψp(a)(Rnp −Rnq)‖ > ‖a‖ − εq for all a ∈ Fq,

10. for a, b ∈ A and λ, µ ∈ C define

∆p,+
a,b,λ,µ := ψp(λa+ µb)− λψp(a)− µψp(b),
∆p,∗
a := ψp(a

∗)− ψp(a)∗,

∆p,·
a,b := ψp(ab)− ψp(a)ψp(b),

Then we require

(a) ‖∆p,+
a,b,λ,µ(Rnp −Rnq)‖ < εq − εp if a, b, λa+ µb ∈ Fq,

(b) ‖∆p,∗
a (Rnp −Rnq)‖ < εq − εp if a, a∗ ∈ Fq,

(c) ‖∆p,·
a,b(Rnp −Rnq)‖ < εq − εp if a, b, ab ∈ Fq.

Item 8 entails, for a ∈ Fq
Rnqψp(a)Rnq = ψq(a)

and
Rnqψp(a)(1−Rnq) = (1−Rnq)ψp(a)Rnq = 0.

This property displays the block-diagonal fashion of the extension of conditions and plays
a crucial role in ascertaining that the relation < is transitive. To demonstrate it, by
considering multiplication as an example, for conditions p < q < s in QDA we have that

‖∆p,·
a,b(Rnp−Rns)‖ ≤ ‖∆

p,·
a,b(Rnp−Rnq)‖+‖∆

p,·
a,b(Rnq−Rns)‖ < εq−εp+‖∆p,·

a,b(Rnq−Rns)‖.
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Item 8 implies that

ψp(c)(Rnq −Rns) = ψq(c)(Rnq −Rns) = (Rnq −Rns)ψq(c)(Rnq −Rns)

for all c ∈ Fs. Thus

ψp(a)ψp(b)(Rnq −Rns) = ψp(a)(Rnq −Rns)ψq(b)(Rnq −Rns) = ψq(a)ψq(b)(Rnq −Rns)

which in turn yields
‖∆p,·

a,b(Rnq −Rns)‖ < εs − εq.

Note that for any finite set F b A and n ∈ N there are only countably many maps
ψ : F → Dn as in condition 4 of the previous definition. This, along with a standard
uniformization argument and an application of the ∆-system lemma (lemma 2.1.8), reduces
the problem of whether the poset QDA is ccc to the following lemma.

Lemma 2.2.7. Let p, q ∈ QDA be two conditions such that np = nq, εp = εq and the maps
ψp, ψq agree on Fp ∩ Fq. Then, p and q are compatible.

Proof. For εs = εp/8, let m ∈ N and ϕ : Fs = Fp ∪ Fq → Mm(C) be given as in the
definition of quasidiagonality. By setting ns = np+m, identifying Mm(C) with the corner
(Rns − Rnp)B(H)(Rns − Rnp) and approximating ϕ via the dense sets up to εs, define a
map ψs which block-diagonally extends both ψp and ψq via this approximation of ϕ. In
this manner, the resulting condition s = (Fs, ns, εs, ψs) ∈ QDA extends both p and q.

The previously described argument also gives the basic idea of how to extend a given
condition by diagonally adjoining a finite-dimensional block in which, modulo a small
error, all algebraic operations and the norm of all elements are preserved. This hints
that a generic filter induces (analogously to the case of Boolean algebras in the previous
subsection; see also proposition 2.3.5) a map from A into Q(H) which is an isometric (and
thus injective) ∗-homomorphism.

2.3 The General Case

In this section we proceed to define the forcing notion EA and give the proof of theorem
2.0.3.

2.3.1 The Poset

For what follows in this section, A is a simple unital C∗-algebra. Fix P ⊆ B(H)
an increasing countable sequence of finite-rank projections converging strongly to the
identity and C a countable dense subset of F(H)≤1

+ . For R ∈ P and h ∈ C let SR,h be the
orthogonal projection onto the span of h+[H] ∪R[H]. Fix a countable dense subset

DR,h ⊆ {SR,hTh+ : T ∈ B(H)}

that contains h+. We need the dense sets DR,h and C to satisfy certain closure properties
in order to carry out the arguments below. We describe these properties in detail here,
but the reader can safely ignore them for now and come back to them when reading the
proof of proposition 2.3.4.

Definition 2.3.1. The countable sets C and DR,h previously defined are required to have
the following closure properties.
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1. For all c1, . . . , ck ∈ C and R ∈ P, the intersection of C with the set (recall that
h� c stands for hc = c)

{h ∈ F(H)≤1
+ : h� c1, . . . , h� ck, h ≥ R}

is dense in the latter.

2. Given R ∈ P and h, k ∈ C, the intersection of DR,h with the set

{T ∈ SR,hB(H)h+ : Tk−[H] ⊆ h−[H], Th−[H] ⊆ h+[H]}

is dense in the latter.

3. Given R,R′ ∈ P, h1, h2, k ∈ C, and T ′ ∈ DR′,h2 , the intersection of DR,h1 with the
set

{T ∈ SR,h1B(H)h+
1 : Th+

1 = T ′, h−2 T = h−2 T
′, Tk−[H] ⊆ h−1 [H], Th−1 [H] ⊆ h+

1 [H]}

is dense in the latter.

It is straightforward to build countable dense sets with such properties by countable
iteration.5

Before proceeding to the definition of the poset, we pause to give some insight and
justify the considerably higher complexity it possesses when compared with the abelian
or quasidiagonal case. The rough idea is, again, to define a poset where each condition
represents a partial map from a finite subset of A into some finite-dimensional corner of
B(H). The ordering guarantees that stronger conditions behave like ∗-homomorphisms
on larger and larger subspaces of H up to an error which tends to zero. The countable,
dense sets DR,h considered in the beginning of this section serve as the codomains of these
partial maps and, as a result, for any finite subset of A there are only countable many
possible maps into any given corner. The main difference with the quasidiagonal case is
that we cannot expect conditions to look like block-diagonal matrices anymore. This has
troublesome consequences, mostly caused by the multiplication (and to a minor extent by
the adjoint operation). The main issue is that, given p < q, one cannot expect that a
property similar to the consequence of item 8 of definition 2.2.6, that is

Rnqψp(a)(1−Rnq) = (1−Rnq)ψp(a)Rnq = 0

can hold in general. Therefore (and with the comments succeeding definition 2.2.6 in
mind), even defining a partial order that is transitive proves to be non-trivial. An even
bigger issue that comes up is the extension of a condition to a stronger one with larger
domain. While in the quasidiagonal case it is sufficient to add a finite-dimensional block
with some prescribed properties, completely ignoring how ψp is defined, in the general
case one has to explicitly require for ψp to allow at least one extension in order to avoid
EA having atomic conditions6. These and other technical reasons lead to the following
definition.

Definition 2.3.2. Let EA be the set of the tuples

p = (Fp, εp, hp, Rp, ψp)

where
5A logician can use a large enough countable elementary submodel of a sufficiently large hereditary set

containing all the relevant objects as a parameter to outright define these sets.
6Given a poset (P, <), p ∈ P is atomic if q ≤ p implies q = p.
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1. Fp b A, 1 ∈ Fp and if a ∈ Fp then a∗ ∈ Fp,

2. εp ∈ Q+,

3. hp ∈ C,

4. Rp ∈ P,

5. ψp : Fp → DRp,hp , is a map and there exist a faithful, essential, unital ∗-homomorphism
Φp : C∗(Fp)→ B(H) and a projection kp ≤ h−p such that for all a ∈ Fp

(a) kp = k− for some k ∈ C,

(b) ψp(1) = h+
p ,

(c) ‖(ψp(a)− Φp(a))(h+
p − kp)‖ <

εp
3Mp

, where

LFp = max{|λ| : λ ∈ C and ∃µ ∈ C ,∃a, b ∈ Fp s.t. a 6= 0 and λa+ µb ∈ Fp}

and

Mp = max{3‖a‖, 3‖ψp(a)‖, LFp : a ∈ Fp},

(d) ‖ψp(a) + Φp(a)(1− h+
p )‖ < 3

2‖a‖,
(e) ψp(a)kp[H] ⊆ h−p [H] and ψp(a)h−p [H] ⊆ h+

p [H],

(f) Φp(a)kp[H] ⊆ h−p [H] and Φp(a)h−p [H] ⊆ h+
p [H].

We refer to the pair (kp,Φp) as the promise for the condition p. Given p, q ∈ EA, we write
p < q if and only if

6. Fp ⊇ Fq,

7. εp < εq,

8. hp � hq,

9. Rp ≥ Rq,

10. ψp(a)h+
q = ψq(a) for all a ∈ Fq,

11. h−q ψp(a) = h−q ψq(a) for all a ∈ Fq,

12. (a) ‖∆p,+
a,b,λ,µ(h−p − h−q )‖ < εq − εp for a, b, λa+ µb ∈ Fq,

(b) ‖∆p,∗
a (h−p − h−q )‖ < εq − εp for a ∈ Fq,

(c) ‖∆p,·
a,b(h

−
p − h−q )‖ < εq − εp for a, b, ab ∈ Fq,

where the quantities ∆p,+
a,b,λ,µ, ∆p,∗

a and ∆p,·
a,b are as in definition 2.2.6.

Item 5e above is an example of how the problem of transitivity is addressed and this
becomes clear in the next proposition. The promise in item 5 is witnessing that there is at
least one way to extend p (via Φp) to conditions with arbitrarily large (finite-dimensional)
domain. It will become clear later (see propositions 2.3.4, 2.3.6, 2.3.7) how corollary 2.1.4
implies that the choice of a specific Φp is not a real constraint to how extensions of p are
going to look like.

Proposition 2.3.3. The relation < defined on EA is transitive.
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Proof. Let p, q, s ∈ EA be such that p < q < s. It is straightforward to check that
conditions 6-9 hold between p and s. Clauses 10 and 11 follow since hq � hs implies
h−q ≥ h+

s . We recall that for two projections p, q the relation p ≤ q is equivalent to
pq = qp = p. We divide the proof of condition 12 in three claims, one for each item.

Claim 2.3.3.1. If a, b, λa+ µb ∈ Fs then ‖∆p,+
a,b,λ,µ(h−p − h−s )‖ < εs − εp.

Proof. We have

‖∆p,+
a,b,λ,µ(h−p − h−s )‖ ≤ ‖∆p,+

a,b,λ,µ(h−p − h−q )‖+ ‖∆p,+
a,b,λ,µ(h−q − h−s )‖.

Since p < q < s, we know that ψp(c)h
+
q = ψq(c) for all c ∈ Fq, hence we can conclude

‖∆p,+
a,b,λ,µ(h−p − h−q )‖+ ‖∆p,+

a,b,λ,µ(h−q − h−s )‖ = ‖∆p,+
a,b,λ,µ(h−p − h−q )‖+ ‖∆q,+

a,b,λ,µ(h−q − h−s )‖
< εq − εp + εs − εq = εs − εp

as required.

Claim 2.3.3.2. If a ∈ Fs then ‖∆p,∗
a (h−p − h−s )‖ < εs − εp.

Proof. We have

‖∆p,∗
a (h−p − h−s )‖ ≤ ‖∆p,∗

a (h−p − h−q )‖+ ‖∆p,∗
a (h−q − h−s )‖.

Since p < q < s, for all c ∈ Fq we have ψp(c)h
+
q = ψq(c) and h−q ψp(c) = h−q ψq(c), which

entails ψp(c)
∗h−q = ψq(c)

∗h−q . Thus we conclude that

‖∆p,∗
a (h−p − h−q )‖+ ‖∆p,∗

a (h−q − h−s )‖ = ‖∆p,∗
a (h−p − h−q )‖+ ‖∆q,∗

a (h−q − h−s )‖ < εs − εp,

as required.

Claim 2.3.3.3. If a, b, ab ∈ Fs then ‖∆p,·
a,b(h

−
p − h−s )‖ < εs − εp.

Proof. We have

‖∆p,·
a,b(h

−
p − h−s )‖ ≤ ‖∆p,·

a,b(h
−
p − h−q )‖+ ‖∆p,·

a,b(h
−
q − h−s )‖ < εq − εp + ‖∆p,·

a,b(h
−
q − h−s )‖

Since ψp(c)h
+
q = ψq(c) for all c ∈ Fq we get

(ψp(ab)− ψp(a)ψp(b))(h
−
q − h−s ) = (ψq(ab)− ψp(a)ψq(b))(h

−
q − h−s )

and therefore

(ψp(ab)− ψp(a)ψp(b))(h
−
q − h−s ) = ∆q,·

a,b(h
−
q − h−s ) + (ψq(a)− ψp(a))ψq(b)(h

−
q − h−s ).

The rightmost term is zero since ψq(b)ξ ∈ h+
q [H] for all ξ ∈ h−q [H] and ψp(a)hq = ψq(a)hq.

This ultimately leads to the thesis since ‖∆q,·
a,b(h

−
q − h−s )‖ < εs − εq.

This completes the proof.
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2.3.2 Density and Countable Chain Condition

As in definition 2.3.2, for F b A, let

LF = max{|λ| : λ ∈ C and ∃µ ∈ C, ∃a, b ∈ F such that λa+ µb ∈ F}

and
JF = max{‖a‖ : a ∈ F}.

For p ∈ EA, let
Mp = max{3‖a‖, 3‖ψp(a)‖, LFp : a ∈ Fp}.

For F b A and p ∈ EA let

M(p, F ) = 3 max{3Mp + 1, LF , 2JF + 1}.

Finally, for p ∈ EA and a fixed promise (kp,Φp) for the condition p, define the constants

N(p,Φp) = max{‖(ψp(a)− Φp(a))(h+
p − h−p )‖ : a ∈ Fp}

and
D(p,Φp) = min{3‖a‖/2− ‖ψp(a) + Φp(a)(1− h+

p )‖ : a ∈ Fp}.

Proposition 2.3.4. Given F b A, ε ∈ Q+, h ∈ C and R ∈ P, the set

∆F,ε,h,R = {p ∈ EA : Fp ⊇ F, εp ≤ ε, hp � h,Rp ≥ R}

is open dense in EA.

Proof. It is straightforward to check that ∆F,ε,h,R is open. Fix a condition

q = (Fq, εq, hq, Rq, ψq)

and let (kq,Φq) be a promise for the condition q. By item 5c of definition 2.3.2 there is a
δ such that

N(q,Φq) < δ <
εq

3Mq
.

Fix moreover a small enough γ, more precisely such that

γ ≤ min{ε, εq − 3Mqδ,D(q,Φq)}.

Let Fp = Fq ∪ F ∪ F ∗. Applying corollary 2.1.3, let Φ be a faithful essential unital
representation of C∗(Fp) such that

‖Φ�Fq − Φq�Fq‖ <
γ

36M

with M = M(q, Fp). Consider, by condition 1 of definition 2.3.1, an operator k ∈ C be
such that k � h, k � hq, k � Rq and denote k− by kp. Let T be the finite-rank projection
onto the space spanned by the set {Φ(a)k[H] : a ∈ Fp}. By item 1 of definition 2.3.1,
since T � k, we can pick l ∈ C such that l� k and l ≈ γ

18M
T . Moreover, by lemma 2.1.6,

picking l closer to T if needed, there is a unitary u ∈ U(H) such that:

1. u is a compact perturbation of the identity,

2. uT [H] ⊆ l[H],
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3. u is the identity on kp[H] (since l� kp),

4. ‖(Ad(u)Φ(a)− Φ(a))kp‖ < γ
36M for all a ∈ Fp.

This entails that Φ′ = Ad(u) ◦ Φ is such that Φ′(a)kp[H] ⊆ l[H] and

‖(Φ′(a)− Φq(a))kp‖ <
γ

18M

for all a ∈ Fq. Let Q be the finite-rank projection onto the space spanned by the set
{Φ′(a)l[H] : a ∈ Fp} and let K be the finite-rank operator equal to the identity on

l[H], equal to 1
2 Id on Q(H) ∩ l[H]⊥ (remember that Q ≥ l+ since 1 ∈ Fp) and equal

to zero on Q[H]⊥. By item 1 of definition 2.3.1 there is hp ∈ C such that hp � l
and hp ≈ γ

15M
K. Moreover, picking hp closer to K if necessary we may assume that

dim(hpQ[H]) = dim(Q[H]) and that h−p = l+. The first equality can be obtained with
the argument exposed at the beginning of the proof of lemma 2.1.6, while the second is
as follows. Suppose ξ ∈ l[H]⊥ is a norm one vector, then ξ = ξ1 + ξ2, where ξ1 and ξ2 are
orthogonal vectors of norm smaller than 1 such that Kξ1 = 1

2ξ1 and Kξ2 = 0. Hence, if hp
is close enough to K it follows that ‖hpξ‖ < 1. The equality dim(hpQ[H]) = dim(Q[H])
allows us to find a unitary v such that

5. v is a compact perturbation of the identity,

6. v sends Q[H] in hp[H],

7. v is the identity on l[H].

The representation Φp = Ad(v) ◦ Φ′ is such that

8. Φp(a)kp[H] ⊆ h−p [H] for all a ∈ Fp,

9. Φp(a)h−p [H] ⊆ h+
p [H] for all a ∈ Fp,

10. ‖(Φp(a)− Φq(a))kp‖ < γ
18M for all a ∈ Fq.

Let Rp ∈ P be such that Rp ≥ R,Rq and

‖(1−Rp)Φp(a)h+
p ‖ <

γ

18M

for all a ∈ Fp. Consider now, given a ∈ Fq, the operator

ϕ(a) = ψq(a) + (1− h−q )Φp(a)(h−p − h+
q ) + (1− h−q )RpΦp(a)(h+

p − h−p )

and for a ∈ Fp \ Fq the operator

ϕ(a) = Φp(a)h−p +RpΦp(a)(h+
p − h−p ).

For all a ∈ Fp we have
ϕ(a)kp[H] ⊆ h−p [H]

and
ϕ(a)h−p [H] ⊆ h+

p [H],

moreover for a ∈ Fq we also have

ϕ(a)h+
q = ψq(a)

and
h−q ϕ(a) = h−q ψq(a).

Let ψp : Fp → DRp,hp be a function such that:
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11. ψp(1) = h+
p ,

12. for all a ∈ Fp, ψp(a) ≈ γ
18M

ϕ(a) and we also require that

(a) ψp(a)kp[H] ⊆ h−p [H] for all a ∈ Fp,
(b) ψp(a)h−p [H] ⊆ h+

p [H] for all a ∈ Fp,
(c) ψp(a)h+

q = ψq(a) for all a ∈ Fq,
(d) h−q ψp(a) = h−q ψq(a) for all a ∈ Fq.

Such a function ψp exists because of the requirements on DRp,hp we asked in items 2 and
3 of definition 2.3.1.

Claim 2.3.4.1. For all a ∈ Fp we have ‖(ψp(a)− Φp(a))(h+
p − kp)‖ <

γ
6M .

Proof. The inequality is trivially true for a = 1. For a ∈ Fp \ Fq we have

ψp(a)(h+
p − kp) ≈ γ

18M
Φp(a)(h−p − kp) +RpΦp(a)(h+

p − h−p ) ≈ γ
18M

Φp(a)(h+
p − kp),

where the last approximation is a consequence of

‖(1−Rp)Φp(a)h+
p ‖ <

γ

18M
.

Now let a ∈ Fq \ {1}. Similarly to the previous case we get

ψp(a)(h+
p − kp) ≈ γ

9M
(1− h−q )Φp(a)(h+

p − kp).

By definition we have (h+
p − h+

q )Φq(a)h−q = 0. We use

‖(Φp(a)− Φq(a))kp‖ <
γ

18M

and kp ≥ h−q to infer that (h+
p − h+

q )Φp(a)h−q ≈ γ
18M

0. Since Fq is self-adjoint, we also
obtain that

h−q Φp(a)(h+
p − h+

q ) ≈ γ
18M

0.

This allows us to conclude that ψp(a)(h+
p − kp) ≈ γ

6M
Φp(a)(h+

p − kp).

Claim 2.3.4.2. For all a ∈ Fp we have ‖ψp(a) + Φp(a)(1− h+
p )‖ < 3

2‖a‖.

Proof. Let a ∈ Fp \ Fq. Then we have

ψp(a) + Φp(a)(1− h+
p ) ≈ γ

18M
Φp(a)h−p +RpΦp(a)(h+

p − h−p ) + Φp(a)(1− h+
p ) ≈ γ

18M
Φp(a),

hence the thesis follows since ‖Φp(a)‖ ≤ ‖a‖ and we can assume γ ≤ ‖a‖. Consider now
a ∈ Fq. Since in the previous claim we showed that

h−q Φp(a)(h+
p − h+

q ) ≈ γ
18M

0,

we have

ψp(a) + Φp(a)(1− h+
p ) ≈ γ

18M
ϕ(a) + Φp(a)(1− h+

p ) ≈ γ
9M

ψq(a) + Φp(a)(1− h+
q ).

Recall that Φp = Ad(w) ◦ Φ, where w is a unitary which behaves like the identity on kp
(hence on h+

q and Rq as well), thus w(1−h+
q ) = (1−h+

q )w and ψq(a) = Ad(w)(ψq(a)) for
all a ∈ Fq. Moreover Φ was defined so that
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‖Φ�Fq − Φq�Fq‖ <
γ

36M
.

Therefore the following holds

‖ψq(a)+Φp(a)(1−h+
q )‖ = ‖ψq(a)+Φ(a)(1−h+

q )‖ ≈ γ
36M
‖ψq(a)+Φq(a)(1−h+

q )‖ < 3

2
‖a‖,

which implies the thesis since γ ≤ ‖a‖.

This finally entails that, letting εp = γ
6

p = (Fp, εp, hp, Rp, ψp)

is an element of ∆F,ε,h,R. It is in fact straightforward to check that Mp ≤ M = M(q, Fp)
if γ is small enough. We are left with checking that p < q. Conditions 6-11 follow from
the definition of p.

Claim 2.3.4.3. For all a, b, λa+ µb ∈ Fq we have ‖(∆p,+
a,b,λ,µ)(h−p − h−q )‖ < εq − εp.

Proof. Given c ∈ Fq we have, by definition of δ (see the beginning of the proof), ‖(ψq(c)−
Φq(c))(h

+
q − kq)‖ < δ, and the same is true if we replace (h+

q − kq) with (h−p − h−q ), since
(h+
q − kq) ≥ (h−p − h−q ). Moreover, by definition of Φp, ‖(Φp(c)− Φq(c))kp‖ < γ

18M holds.
This, along with the fact that Fq is self-adjoint, Φq(c)h

−
q [H] ⊆ h+

q [H] (item 5f of definition
2.3.2) and kp ≥ h+

q , entails that ‖h−q Φp(c)(h
+
p − kp)‖ <

γ
18M . Therefore

(∆p,+
a,b,λ,µ)(h−p − h−q ) ≈ γ

6
(ϕ(λa+ µb)− λϕ(a)− µϕ(b))(h−p − h−q ) ≈3Mqδ+

γ
3

0,

as required.

Claim 2.3.4.4. For all a ∈ Fq we have ‖(∆p,∗
a )(h−p − h−q )‖ < εq − εp.

Proof. Using approximations analogous to previous claim, we have that

(∆p,∗
a )(h−p − h−q ) ≈ γ

9
(ϕ(a∗)− ϕ(a)∗)(h−p − h−q )

≈δ+ γ
9

(Φp(a
∗)− ψq(a)∗ − (h−p − h+

q )Φp(a
∗)(1− h−q )

− (h+
p − h−p )Φp(a

∗)Rp(1− h−q ))(h−p − h−q ).

Since Fp is self-adjoint and by definition of Rp

‖h+
p Φp(c)(1−Rp)‖ <

γ

18M

for all c ∈ Fq, thus (h+
p −h−p )Φp(a

∗)Rp(1−h−q ) ≈ γ
18M

(h+
p −h−p )Φp(a

∗)(1−h−q ). Hence we
obtain

(∆p,∗
a )(h−p − h−q ) ≈δ+5 γ

18
(Φp(a

∗)− ψq(a)∗ − (h+
p − h+

q )Φp(a
∗)(1− h−q ))(h−p − h−q ).

Furthermore we have

ψq(a)∗(h−p − h−q ) = ((h−p − h−q )ψq(a))∗ = ((h−p − h−q )ψq(a)h+
q )∗

= ((h−p − h−q )ψq(a)(h+
q − kq))∗,
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where the last equality is a consequence of ψq(c)kqH ⊆ h−q H for all c ∈ Fq (item 5e of
definition 2.3.2). Since

‖(ψq(c)− Φq(c))(h
+
q − kq)‖ < δ, ‖(Φp(c)− Φq(c))kp‖ <

γ

18M
,

we get that

(∆p,∗
a )(h−p − h−q ) ≈2δ+ γ

3
Φp(a

∗)(h−p − h−q )− (h+
p − kq)Φp(a

∗)(h−p − h−q ).

Moreover, by how we defined Φp we have

Φp(a
∗)(h−p − h−q ) = h+

p Φp(a
∗)(h−p − h−q )

and

(1− h−q )Φp(c)kq ≈ γ
18M

(1− h−q )Φq(c)kq = 0

for all c ∈ Fq. This last approximation entails, since Fq is self-adjoint, that

‖kqΦp(c)(1− h−q )‖ < γ

18M

for all c ∈ Fq.

Claim 2.3.4.5. For all a, b, ab ∈ Fq we have ‖(∆p,·
a,b)(h

−
p − h−q )‖ < εq − εp.

Proof. Similarly to the previous claims, we have the following approximations

(∆p,·
a,b)(h

−
p −h−q ) ≈ γ

6
(ϕ(ab)−ϕ(a)ϕ(b))(h−p −h−q ) ≈2Mqδ+

2γ
9
‖(Φp(ab)−ϕ(a)Φp(b))(h

−
p −h−q )‖.

As noted in the previous claim, for all c ∈ Fq we have

‖kqΦp(c)(1− h−q )‖ < γ

18M
,

hence the same is true with (h−p − h−q ) in place of (1− h−q ). Thus

ϕ(a)Φp(b)(h
−
p − h−q ) ≈ γ

18M
ϕ(a)(1− kq)Φp(b)(h

−
p − h−q )

≈Mqδ+
γ
6

Φp(a)(1− kq)Φp(b)(h
−
p − h−q )

≈ γ
18M

Φp(a)Φp(b)(h
−
p − h−q ),

as required.

This completes the proof.

Fix B a dense unital (Q + iQ)-∗-subalgebra of A with cardinality equal to the density
character7 of A. We define the family D as follows

D = {∆F,ε,h,R : F b B, ε ∈ Q+, h ∈ C,R ∈ P}.

Proposition 2.3.5. Suppose there exists a D-generic filter G for EA. Then there exists
a unital embedding ΦG of A into the Calkin algebra.

7The density character of a topological space X is defined as χ(X) = min{|D| : D ⊆ X dense}
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Proof. Let G be a D-generic filter and fix a ∈ B. The net {ψp(a)}{p∈G:a∈Fp} (indexed
according to (G,>), which is directed since G is a filter) is strongly convergent in B(H).
Indeed, given q ∈ G, ε > 0 and ξ1, . . . ξk norm one vectors in H, let p ∈ G be such that
p < q and h+

p ξj ≈ ε
3‖a‖/2

ξj for 1 ≤ j ≤ k (which exists by genericity of G). Then, for all

s < p in G and 1 ≤ j ≤ k we have

ψs(a)ξj ≈ε ψs(a)h+
p ξj = ψp(a)ξj .

Thus the net {ψp(a)}{p∈G:a∈Fp} strongly converges to a linear map from H to H, which is
bounded since ‖ψp(a)‖ < 3‖a‖/2 for all p ∈ G. Let ΦG : B → Q(H) be the map π ◦Ψ.

Claim 2.3.5.1. The map ΦG : B → Q(H) is a unital ∗-homomorphism of (Q + iQ)-
algebras. .

Proof. For a, b ∈ B, we prove that Ψ(ab)−Ψ(a)Ψ(b) is compact. Let ε > 0 and pick p ∈ G
such that a, b, ab ∈ Fp and εp < ε. We claim that

‖(Ψ(ab)−Ψ(a)Ψ(b))(1− h−p )‖ < ε.

Suppose this fails, and let ξ ∈ (1− h−p )[H] be a norm one vector such that

‖(Ψ(ab)−Ψ(a)Ψ(b))ξ‖ > ε.

By genericity of G we can find q ∈ G such that q < p and

‖(Ψ(ab)−Ψ(a)Ψ(b))η‖ > ε,

where η = hqξ. Now let s < q in G such that Ψ(b)η is close enough to hsΨ(b)η to obtain

‖(ψs(ab)− ψs(a)ψs(b))η‖ > ε.

This is a contradiction since s < p implies

‖(ψs(ab)− ψs(a)ψs(b))(h
−
s − h−p )‖ < εp < ε.

Similarly it can be checked that ΦG is (Q + iQ)-linear and self-adjoint. Moreover, ΦG

is bounded since Ψ is. The claim follows since Ψ maps the unit of A to the identity on
H.

Extending ΦG to the complex linear span of B, we obtain a unital, bounded ∗-
homomorphism into the Calkin algebra. This is a dense (complex) ∗-subalgebra of A,
hence we can uniquely extend to obtain a unital ∗-homomorphism from A into Q(H),
which is injective, since A is simple.

Note that the fact that ΦG above is bounded is crucial in allowing to extend it and
obtain a ∗-homomorphism defined on all of the algebra A. To see how this can fail, the
identity map on the (algebraic) group algebra of any non-amenable discrete group cannot
be extended to a ∗-homomorphism from the reduced group C∗-algebra to the universal
one (see [BO08, Theorem 2.6.8]).

With the only part of theorem 2.0.3 remaining unproven being the fact that the poset is
ccc, we begin with the following lemma yielding sufficient conditions for the compatibility
of elements of EA.
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Lemma 2.3.6. Let p, q ∈ EA be two conditions such that:

1. hp = hq and Rp = Rq,

2. ψp(a) = ψq(a) for all a ∈ Fp ∩ Fq,

3. there exist unital ∗-homomorphisms Φp : C∗(Fp)→ B(H) and Φq : C∗(Fq)→ B(H)
which are faithful and essential, and a projection k satisfying the following.

(a) The pairs (k,Φp) and (k,Φq) are promises for p and q, respectively.

(b) There are δp and δq such that N(p,Φp) < δp <
εp

3Mp
and N(q,Φq) < δq <

εq
3Mq

,
and if

γ ≤ min{εp − 3Mpδp, D(p,Φp), εq − 3Mqδq, D(q,Φq)}

and

M = max{M(p, Fp ∪ Fq),M(q, Fp ∪ Fq)},

then every a ∈ Fp ∩ Fq satisfies ‖Φp(a)− Φq(a)‖ < γ
18M .

(c) There is a trivial embedding Θ : C∗(Fp∪Fq)→ Q(H) such that π◦Φp = Θ�C∗(Fp)

and π ◦ Φq = Θ�C∗(Fq).

Then p and q are compatible.

Proof. We suppress the notation and denote hp by h, Rp by R and kp by k. Let Φ be a
faithful essential unital representation lifting Θ to B(H). Since Φp and Φ�Fp agree modulo
the compacts, and Φq and Φ�Fq agree modulo the compacts, there exists (by condition 1
of definition 2.3.1) k ∈ C such that k � h, k � R, and in addition the following holds.
For all a ∈ Fp we have

‖(Φp(a)− Φ(a))(1− k−)‖ < γ

36M
,

and for all a ∈ Fq we have

‖(Φq(a)− Φ(a))(1− k−)‖ < γ

36M
.

We shall denote k− by ks. Arguing as in the first part of the proof of proposition 2.3.4 we
can find hs � ks in C and a unitary w such that:

1. w is a compact perturbation of the identity,

2. wks = ksw = ks,

and by letting Φ′p = (Adw) ◦Φp, Φ′q = (Adw) ◦Φq and Φ′ = (Adw) ◦Φ, we also have that

3. ‖(Φ′p(a)− Φp(a))ks‖ < γ
36M for all a ∈ Fp,

4. ‖(Φ′q(a)− Φq(a))ks‖ < γ
36M for all a ∈ Fq,

5. ‖(Φ′(a)− Φ(a))ks‖ < γ
36M for all a ∈ Fp ∪ Fq,

6. Φ′p(a)ks[H] ⊆ h−s [H] and Φ′p(a)h−s [H] ⊆ h+
s [H] for all a ∈ Fp,

7. Φ′q(a)ks[H] ⊆ h−s [H] and Φ′q(a)h−s [H] ⊆ h+
s [H] for all a ∈ Fq,

8. Φ′(a)ks[H] ⊆ h−s [H] and Φ′(a)h−s [H] ⊆ h+
s [H] for all a ∈ Fp ∪ Fq.
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Let Rs ∈ P be such that Rs ≥ R and for all a ∈ Fp and all b ∈ Fq we have

‖(1−Rs)Φ′p(a)h+
s ‖ <

γ

18M
,

‖(1−Rs)Φ′q(b)h+
s ‖ <

γ

18M
.

Given a ∈ Fp, consider the operator

ϕ(a) = ψp(a) + (1− h−)Φ′p(a)(h−s − h+) + (1− h−)RsΦ
′
p(a)(h+

s − h−s )

and for a ∈ Fq \ Fp

ϕ(a) = ψq(a) + (1− h−)Φ′q(a)(h−s − h+) + (1− h−)RsΦ
′
q(a)(h+

s − h−s ).

Define now the function ψs : Fp ∪ Fq → Ds as an approximation of ϕ in the same way it
was done in the proof of proposition 2.3.4. Suitably adapting the arguments in such proof
to the present situation allows to show that

s = (Fp ∪ Fq, γ/6, hs, Rs, ψs)

is an element of EA with promise (ks,Φ
′). We follow the proof of claim 2.3.4.1 in order to

check that the quantity ‖(ψs(a)−Φ′(a))(h+
s − ks)‖ is small enough for a ∈ Fp ∪ Fq, using

in addition that for all a ∈ Fp

‖(Φp(a)− Φ(a))(1− ks)‖ <
γ

36M

and that for all a ∈ Fq
‖(Φq(a)− Φ(a))(1− ks)‖ <

γ

36M
.

This entails the same inequality between Φ′p and Φ′ (and between Φ′q and Φ′) since the
unitary w fixes ks. The proofs of s < p and s < q go along the lines of those in claim 2.3.4.3,
2.3.4.4 and 2.3.4.5, keeping the following caveat in mind. It might happen, for instance,
that p and q are such that a ∈ Fp ∩Fq and b, ab ∈ Fq \Fp. In this case ∆q,·

a,b(h
−
s − h−q ) can

be approximated (following the proof of claim 2.3.4.5) as (Φq(ab)−Φp(a)Φq(b))(h
−
s −h−q ).

This is where the condition Φp(a) ≈ γ
18M

Φq(a), required in item 3b of the statement of
the present lemma, plays a key role, showing that the latter term is close to zero. The
same argument applies for the analogous situations where Φp and Φq appear in the same
formulas for the addition and the adjoint operation.

Property K is a strengthening of the countable chain condition (see definition the
beginning of section 2.1).

Proposition 2.3.7. The poset EA has property K and hence satisfies the countable chain
condition.

Proof. We prove that the poset EA has property K, namely that any uncountable family
of conditions has an uncountable subset of compatible conditions. Let {pα : α < ℵ1} be a
set of conditions8 in EA and for each α < ℵ1 fix a promise (kα,Φα) for the condition pα.
By passing to an uncountable subset if necessary, we may assume εα = ε, hα = h, Rα = R,
kα = k for all α < ℵ1. An application of the ∆-system lemma yields a finite set Z b A

8We suppress the notation and denote Fpα by Fα, εpα by εα, etc.
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such that Fα ∩ Fβ = Z for all α, β < ℵ1. Since Z is finite and DR,h is countable, we can
furthermore assume that for all α, β < ℵ1 if a ∈ Fα ∩ Fβ then ψα(a) = ψβ(a). Consider

F =
⋃
α<ℵ1

Fα.

By [FHV17] there is a locally trivial embedding Θ : C∗(F )→ Q(H). For each α < ℵ1 fix
a lift Θα : C∗(Fα)→ B(H) of Θ�C∗(Fα). Corollary 2.1.4 applied to Φα and Θα provides a
faithful essential unital Φ′α : C∗(Fα)→ B(H) such that

1. Φ′α(a)−Θα(a) ∈ K(H) for all a ∈ Fα, hence π ◦ Φ′α = Θ�C∗(Fα),

2. Φ′α(a)h+
α = Φα(a)h+

α for all a ∈ Fα.

This entails that the pair (kα,Φ
′
α) is still a promise for pα. Hence, with no loss of generality,

we can assume π ◦ Φα = Θ�C∗(Fα) for every α < ℵ1. This in particular implies that

Φα(a) ∼K(H) Φβ(a), for all a ∈ Z

Fix an arbitrary γ > 0. We can assume that for all α, β ∈ ℵ1 and all a ∈ Fα ∩ Fβ

‖Φα(a)− Φβ(a)‖ < γ.

Indeed, start by fixing δ < ℵ1. Then for each α < ℵ1 there is Pα ∈ P such that

‖(Φα − Φδ)�Z(1− Pα)‖ < γ/5

and Rα ∈ P such that

‖(1−Rα)Φα�ZPα‖ < γ/5.

By the pigeonhole principle there is an uncountable U ⊆ ℵ1 such that Rα = R and Pα = P
for all α ∈ U . Since RB(H)P is finite-dimensional we can also require that

‖R(Φα − Φβ)�ZP‖ < γ/5

for all α, β ∈ U . Thus, for a ∈ Z, we have that:

‖Φα(a)−Φβ(a)‖ ≤ ‖(Φα−Φβ)�ZP‖+ ‖(Φα−Φδ)�Z(1−P )‖+ ‖(Φβ −Φδ)�Z(1−P )‖ < γ.

Since the choice of γ in the claim is arbitrary, lemma 2.3.6 implies that we can pass to an
uncountable subset in which any two conditions pα and pβ are compatible.

Proof of Corollary 2.0.4. By proposition 2.1.1 it suffices to prove the statement for unital
and simple C∗-algebras. For any unital and simple C∗-algebra A, the collection D of
open, dense subsets of EA (as defined prior to proposition 2.3.5) has cardinality equal to
the density character of A. Since the poset EA is ccc, this implies that if the density
character of A is strictly less than 2ℵ0 , then Martin’s axiom ensures the existence of a
D-generic filter for EA and the corollary follows by proposition 2.3.5.
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2.4 Concluding Remarks on Theorem 2.0.3

It would be desirable to have a simpler forcing notion in place of EA defined in the
course of the proof of theorem 2.0.3. This would allow for an analysis of the names for
C∗-subalgebras of Q(H) and better control of the structure of Q(H) in the extension.
In particular, it would be a step towards proving that a given C∗-algebra can be ‘gently
placed’ into Q(H) (cf. [Woo84, p. 17-18]). In this regard, we conjecture the following.

Conjecture 2.4.1. Let A be an abelian and nonseparable C∗-algebra. If the density
character of A is greater than 2ℵ0 , then EA forces that A does not embed into `∞/c0.

We now propose related directions of study, taking inspiration from the commutative
setting.

2.4.1 The Question of Minimality of Generic Embeddings

From the very beginnings of forcing, it has been known that a given partial ordering
E can be embedded into P(N)/Fin by a ccc forcing. The simplest such forcing notion was
denoted HE and studied in [Far96] where it was proved that HE embeds E into P(N)/Fin
in a minimal way. If a cardinal κ > 2ℵ0 is such that E does not have a chain of order type
κ or κ∗, then in the forcing extension P(N)/Fin does not have chains of order type κ or
κ∗ (this is a consequence of [Far96, Theorem 9.1]). In addition, if min(κ, λ) > 2ℵ0 and E
does not have (κ, λ)-gaps9 then in the forcing extension by HE there are no (κ, λ)-gaps
([Far96, Theorem 9.2]) in v. We do not know whether analogous results apply to EA or
some variant thereof. In the noncommutative setting, the following question is even more
natural.

Question 2.4.2. Consider the class E = E(Q(H)) of all C∗-algebras that embed into the
Calkin algebra. Can any notrivial closure properties of E be proved in ZFC? For example:

1. Do A ∈ E and B ∈ E together imply A⊗ B in E (take the spatial tensor product,
or even the algebraic tensor product)?

2. If An ∈ E for n ∈ N and A = limnAn, is A ∈ E?

We conjecture that the answers to both 1 and 2 are negative. The analogous class
EFin of all linear orderings that embed into P(N)/Fin does not seem to have any nontrivial
closure properties provable in ZFC. For example, it is relatively consistent with ZFC that
there exists a linear ordering L and a partition L = L1 t L2 such that L1 ∈ EFin and
L2 ∈ EFin but L /∈ EFin ([Far96, Proposition 1.4]).

2.4.2 Complete embeddings

Given a forcing notion P, its subordering P0 is a complete subordering of P if for every
generic filter G ⊆ P0 one can define a forcing notion P/G such that P is forcing equivalent
to the two-step iteration P0 ∗ P/G (for an intrinsic characterization of this relation see
[Kun11, Definition III.3.65]).

A salient property of the forcing notion HE (section 2.4.1) is that E 7→ HE is a co-
variant functor from the category of partial orderings and order-isomorphic embeddings

9Given two cardinals κ and λ, a (κ, λ)-gap in a poset P is composed by a strictly increasing sequence
{fα : α < κ} ⊆ P and a strictly decreasing sequence {gβ : β < λ} ⊆ P such that fα < gβ for all α < κ and
β < λ, and moreover such that there is no h ∈ P greater than all fα’s and smaller than all gβ ’s.
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as maps into the category of forcing notions with complete embeddings as morphisms.
This is a consequence of [Far96, Proposition 4.2], where the compatibility relation in HE
has been shown to be ‘local’ in the sense that the conditions p and q are compatible in
Hsupp(p)∪supp(q) if and only if they are compatible in HE.

Analogous arguments show that the mapping B 7→ EB defined on section 2.2.1 is a
covariant functor from the category of Boolean algebras and injective homomorphisms
into the category of ccc forcing notions with complete embeddings as morphisms. As a
result, if D is a Boolean subalgebra of B and G is ED-generic, then forcing with the poset
EB is equivalent to first forcing with ED and then with EB/G.

It is not difficult to prove that the association A 7→ QDA as in proposition 2.2.6 does
not have this property, as QDC, naturally considered as a subordering of QDM2(C), is not
a complete subordering. More generally, if m is a proper divisor of n then the poset
QDMm(C) is not a complete subordering of QDMn(C). We do not know whether there is an
alternative definition of a functor A 7→ QDA that satisfies the conclusion of proposition
2.2.6. The latter remark also applies to the poset EA given in theorem 2.0.3.

2.4.3 2ℵ0-universality

One line of research following the path opened with theorem 2.0.2, would be to un-
derstand which C∗-algebras of density character 2ℵ0 embed into the Calkin algebra. We
recall from the beginning of section 2.1 that for a cardinal λ, a C∗-algebra A is (injec-
tively) λ-universal if it has density character λ and all C∗-algebras of density character
λ embed into A. The results in [FHV17] entail that the 2ℵ0-universality of the Calkin
algebra is independent from ZFC. On the one hand CH implies that Q(H) is 2ℵ0-universal.
Conversely, the proper forcing axiom implies that Q(H) is not 2ℵ0-universal because some
abelian C∗-algebras of density 2ℵ0 do not embed into it (see [Vig17a, Corollary 5.3.14 and
theorem 5.3.15]; see also corollary 2.5.5). Can the Calkin algebra be 2ℵ0-universal even
when CH fails? The analogous fact for P(N)/Fin and linear orders, namely that there is
a model of ZFC where CH fails and all linear orders of size 2ℵ0 embed into P(N)/Fin, has
been proved in [Lav79] (see also [BFZ90] for the generalization to boolean algebras). We
do not know whether these techniques can be generalized to provide a model in which
CH fails and the Calkin algebra is a 2ℵ0-universal C∗-algebra, but the fact that EA has
property K is a step (possibly small) towards such a model. A poset with property K is
productively ccc, in the sense that its product with any ccc poset is still ccc. A salient
feature of the forcing iterations used in both [Lav79] and [BFZ90] is that they are not
‘freezing’ any gaps in NN/Fin and P(N)/Fin.10

Lemma 2.4.3. For any C∗-algebra A, the poset EA cannot freeze any gaps in P(N)/Fin.

Proof. Every gap in P(N)/Fin or NN/Fin that can be split without collapsing ℵ1 can be
split by a ccc forcing. This is well-known result of Kunen ([Kun76]) not so easy to find
in the literature.11 Therefore if a gap can be split by a ccc forcing P, then a poset which
freezes it destroys the ccc-ness of P. But EA has property K, and is therefore productively
ccc.

While the gap spectra of P(N)/Fin and NN/Fin are closely related, the gap spectrum
of the poset of projections in the Calkin algebra is more complicated. The following

10A gap is ‘frozen’ if it cannot be split in a further forcing extension without collapsing ℵ1.
11See e.g., [TF95, Fact on p. 76]. It is not difficult to see that a ‘Suslin gap’ as in [TF95, Definition 9.4]

can be split by a natural ccc forcing whose conditions are finite K0-homogeneous sets.
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proposition was proved, but not stated, in [ZA14], and we include a proof for reader’s
convenience.

Theorem 2.4.4. Martin’s axiom implies that the poset of projections in the Calkin algebra
contains a (2ℵ0 , 2ℵ0)-gap which cannot be frozen.

Proof. By [ZA14, Theorem 4], there exists (in ZFC) a gap in this poset whose sides are
analytic and σ-directed. This gap cannot be frozen, and Martin’s axiom is used only to
‘linearize’ it. By the discussion following [ZA14, Corollary 2], each of the sides of this gap
is Tukey equivalent to the ideal of Lebesgue measure zero sets ordered by the inclusion.
Since the additivity of the Lebesgue measure can be increased by a ccc poset ([Kun11,
Lemma III.3.28]), Martin’s axiom implies that this gap contains an (2ℵ0 , 2ℵ0)-gap and that
any further ccc forcing that increases the additivity of the Lebesgue measure will split the
gap.

2.5 C∗-algebras of Density Continuum

Given a model M of ZFC, it is generally extremely hard to identify the class of the
C∗-algebras of density continuum of M that embed into Q(H). A preliminary and more
reasonable task could be to focus on simple examples of C∗-algebras of density 2ℵ0 (e.g.
group C∗-algebras of groups of size 2ℵ0 , nonseparable UHF algebras, etc.), and see whether
they consistently fail to embed into Q(H) or not.

In this section we address this matter for some of specific example. In the first part,
using a trick derived from Kunen’s PhD thesis [Kun68], we show that, after adding any
number of Cohen reals, there are no well-ordered increasing chains of projections in Q(H)
of size larger than the ground model continuum. This also allows us to present a simple
model of ZFC where the Calkin algebra is not ℵ2-universal and 2ℵ0 ≥ ℵ2 (see also [FHV17,
Corollary 3.1]). In the second part of this section, with a simple application of the results
in [HT05], we show that the reduced group C∗-algebra generated by the free group on
2ℵ0 generators embeds into Q(H). Similarly, we use the fact that the full group C∗-
algebra generated by the free group Fr, for r ∈ N, is residually finite-dimensional to show
that C∗max(F2ℵ0 ) also embeds into Q(H). Finally, in the last subsection, we prove that⊗

α<2ℵ0 Mnα(C), as nα varies in N and Mnα(C) is the algebra of nα×nα complex matrices,
embeds into Q(H), regardless of the model of ZFC.

2.5.1 Isomorphic Names

Definition 2.5.1. Given a set of ordinals S, (CS ,≤) is the set of all partial functions with
finite domain from S to 2 with the order relation given by the extension.

When S is a cardinal κ, the previous definition gives the Cohen forcing adding a generic
subset of κ. It is straightforward to check that the forcing notion adding κ Cohen reals
can be identified with Cκ.

The following fact about the poset (NN,≤∗) is a well-known consequence of the contents
of [Kun68, Section 12].12

Proposition 2.5.2. In the generic extension given by Cκ, there are no chains in (NN,≤∗)
of size bigger than the ground model continuum.

12For f, g ∈ NN, we write f ≤∗ g iff f(n) ≤ g(n) for all but finitely many n.
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Proof. Let λ = (2ℵ0)+, let {fα : α < λ} be a set of names for reals and p ∈ Cκ forcing it
to be a λ-chain in NN. By [Kun11, IV.3.10] we can assume that for every α < λ

fα =
⋃
{{(n,m)} ×Aαn,m : n,m ∈ N},

where Aαn,m is a maximal antichain of conditions q such that q  fα(n) = m. For each
α < λ we define the support of fα as the subset of κ

supp(fα) :=
⋃
{dom(q) : q ∈ ∪n,m∈NAαn,m}.

Each of these supports is countable, hence by [Kun68, Lemma 12.6] we can assume there
is a countable S ⊆ κ containing the domain of p such that supp(fα) ∩ supp(fβ) ⊆ S for
all α, β < λ. In order to add a single fα to the generic model we only need a countable
iteration of Cohen’s forcing, in particular fα is added by a forcing which is isomorphic to
CS ∗ Cα, where CS is the poset of all conditions in Cκ whose domain is contained in S,
and Cα is the poset of all conditions in Cκ whose domain is contained in supp(fα)\S. We
remark that, modulo taking a subset of λ of cardinality λ, supp(fα) \ S is non-empty for
every α < λ. If that were not the case ∪α<λsupp(fα) would be countable, and there could
be at most 2ℵ0 different names in {fα : α < λ}, which is a contradiction. Without loss of
generality we assume that supp(fα)\S has the same order type for all α < λ, and therefore
that all Cα’s are isomorphic. We can moreover assume that all fα’s correspond to the same
name in CS ∗Cα, as there are at most 2ℵ0 different names for reals in a countable iteration
of Cohen’s forcing. Given α < β < λ, the bijection from κ to κ swapping supp(fα) \ S
with supp(fβ) \ S induces an automorphism θ on Cκ and on the Cκ-names (see [Jec03,
Lemma 14.36]) which fixes p and switches fα with fβ, thus on the one hand we have

p  fα <
∗ fβ,

on the other

θ(p)  θ(fα) <∗ θ(fβ)⇔ p  fβ <
∗ fα,

which is a contradiction.

The proof we just exposed is rather flexible, in fact it can be used also to prove the
following corollary.

Corollary 2.5.3. Identify NN with the real numbers with their standard Borel structure,
and let E be a Borel order on NN. Then, in the generic extension given by Cκ, there are
no chains in (NN,E) of size bigger than the ground model continuum.

Proof. Any Borel subset of NN can be coded by a real r ⊆ N. Repeat verbatim the proof
of proposition 2.5.2 adding the support of the standard Cκ-name of r to S (such support
is countable). Because of this, r, and therefore the order E, is fixed by the automorphism
θ introduced in proposition 2.5.2.

The corollary above allows to generalize proposition 2.5.2 to chains of projections of
the Calkin algebra as follows. First observe that all projections of Q(H) lift to projections
of B(H) (see [FW12, Lemma 5.3]). Thus, in order to check that there are no λ-chains of
projections in Q(H), it is sufficient to prove that there are no λ-chains of projections in
B(H) for the order �∗ defined as

P �∗ Q⇔ P (1−Q) ∈ K(H).
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Second, the unit ball of B(H) is an uncountable Polish space (i.e. a separable and com-
pletely metrizable topological space) when equipped with the strong topology, and the
set of its projections is Borel, hence Borel isomorphic to the real numbers. Therefore, in
order to show that after forcing with Cκ there are no well-ordered increasing chains of
projections in Q(H) of size larger than the ground model continuum, it is sufficient to
show (thanks to corollary 2.5.3) that the order �∗ on the projections of B(H) is Borel.

Proposition 2.5.4. The order relation �∗ on the projections of B(H) is Borel with respect
of the strong operator topology.

Proof. Fix a projection R and ξ ∈ H. Fix moreover an orthonormal basis {ξj}j∈N of H
and {ηk}k∈N countable dense in the unit sphere of H. The set of all pairs of projections
(P,Q) such that

‖PQ(1−R)ξ‖ < ε

is open in B(H) × B(H) by continuity (in the strong topology) of the multiplication on
bounded sets. We have that P �∗ Q if and only if P (1−Q) ∈ K(H) if and only if for all
n ∈ N there is N ∈ N such that for all k ∈ N

‖P (1−Q)(1−RN )ξk‖ < 1/n,

where RN is the projection onto the space spanned by {ξj : j ≤ N}. The relation �∗ is
therefore Borel.

Corollary 2.5.5. In the generic extension given by Cκ there are no increasing chains of
projections in Q(H) of size bigger than the ground model continuum. In particular it is
consistent with the failure of CH that the Calkin algebra is not ℵ2-universal.

Proof. A model of ZFC witnessing the second assertion can be obtained adding ℵ2 Cohen
reals to a model of CH.

2.5.2 Embedding C∗red(F2ℵ0 ) into the Calkin Algebra

In the paper [HT05] the authors show that for r ∈ N ∪ {ℵ0} the C∗-algebra C∗red(Fr),
i.e. the reduced C∗-algebra generated by the free group with r generators, embeds into∏
n∈NMn(C)/

⊕
n∈NMn(C),13 thus into the Calkin algebra. They prove in fact the fol-

lowing theorem.

Theorem 2.5.6 ([HT05, Theorem B]). Let λ : Fr → B(`2(Fr)) be the left regular rep-
resentation of the free group on r generators, with r ∈ N ∪ {ℵ0}. Then there exists a
sequence of unitary representations πn : Fr → Mn such that for all a1, . . . , ak ∈ Fr and
c1, . . . , ck ∈ C the following holds

lim
n→∞

∥∥∥∑ cjπn(aj)
∥∥∥ =

∥∥∥∑ cjλ(aj)
∥∥∥ .

The algebra C∗max(F2) (and similarly C∗max(Fr) for every r ∈ N and C∗max(F∞)) is
residually finite-dimensional, namely it has a faithful representation which is direct sum of
finite-dimensional representation (see [Cho80, Theorem 7]). We have thus the analogous
version of the theorem above.

13∏
n∈NMn(C) is the C∗-algebra of all uniformly bounded sequence of matrix algebras, while⊕

n∈NMn(C) is the ideal of
∏
n∈NMn(C) of the sequences converging to zero.
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Lemma 2.5.7. Let σ : Fr → B(Hu) be the universal representation of the free group on
r generators, with r ∈ N ∪ {ℵ0}. Then there exists a sequence of unitary representations
πσn : Fr →Mn such that for all a1, . . . , ak ∈ Fr and c1, . . . , ck ∈ C the following holds

lim
n→∞

∥∥∥∑ cjπ
σ
n(aj)

∥∥∥ =
∥∥∥∑ cjσ(aj)

∥∥∥ .
We remark that a crucial difference between the πλn’s and the πσn’s is that the latter

can always be extended to representations of C∗max(Fr), while the former do not extend
to C∗red(Fr) (this is the key point to show that Ext(C∗red(Fr)) is not a group, see [HT05,
Remark 8.6]).

We have therefore the following result.

Theorem 2.5.8. Let λ : F2ℵ0 → B(`2(F2ℵ0 )) and σ : F2ℵ0 → B(Hu) be the left regular
representation and the universal representation of the free group on 2ℵ0 generators, respec-
tively. For θ ∈ {λ, σ}, there exists a sequence of unitary representations τ θn : F2ℵ0 →Mk(n)

such that for all a1, . . . , ak ∈ F2ℵ0 and c1, . . . , ck ∈ C the following holds

lim
n→∞

∥∥∥∑ cjτ
θ
n(aj)

∥∥∥ =
∥∥∥∑ cjθ(aj)

∥∥∥ .
Proof. For each r ∈ N ∪ {ℵ0}, index the generators of F2r with the set of strings of 0’s
and 1’s of length r. Fix D0 ⊆ D1 ⊆ . . . an increasing countable sequence of finite subsets
of C such that

⋃
n∈NDn is dense in C. Given an element s in a certain free group Fr,

we think it as a finite word whose letters are taken from the set of the generators of
Fr and their inverses. The length of s is the length of its reduced form, i.e. the word
representing s where no non-trivial simplifications are possible. For every n ∈ N fix a
unitary representation πθn : F2n → Mk(n) given by theorem 2.5.6 and lemma 2.5.7 such
that for all a1, . . . , an ∈ F2n of length at most n and c1, . . . , cn ∈ Dn the following holds∥∥∥∑ cjπ

θ
n(aj)

∥∥∥ ≈1/n

∥∥∥∑ cjθn(aj)
∥∥∥ ,

where λn : F2n → B(`2(F2n)) and σn : F2n → B(Hn) are the left regular representation
and the universal representation of F2n respectively, and θn ∈ {λn, σn}. Given n ∈ N,
let moreover ζn : F2ℵ0 → Fn be the group homomorphism which sends as to as�n. Define
τ θn : F2ℵ0 →Mk(n) as πθn◦ζn for every n ∈ N. Fix ε > 0, a1 . . . ak ∈ F2ℵ0 and c1, . . . , ck ∈ C.
Pick n ∈ N big enough so that n ≥ k, 1/n < ε/2, cj is approximated up to ε/2k by some
c′j ∈ Dn for all j ≤ k, aj has length smaller than n and ζn is injective when restricted to
the set of all generators of F2ℵ0 which (or whose inverses) appear in some aj for j ≤ k. By
enlarging, if necessary, such set it is possible to define an injective group homomorphism
ηn : F2n → F2ℵ0 which is a section of ζn. Thus by [BO08, Propositions 2.5.8-2.5.9] and
the previous definitions we get∥∥∥∑ cjθ(aj)

∥∥∥ =
∥∥∥∑ cjθn(ζn(aj))

∥∥∥ ≈ε ∥∥∥∑ cjπ
θ
n(ζn(aj))

∥∥∥ =
∥∥∥∑ cjτ

θ
n(aj)

∥∥∥ .
We remark that when θ = σ in the proof above, all the maps τσn extend to representa-

tions of C∗max(F2ℵ0 ), hence we also get the following corollary.

Corollary 2.5.9. The C∗-algebra C∗max(F2ℵ0 ) is residually finite dimensional. In partic-
ular it embeds into B(H).
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2.5.3 Embedding
⊗

α<2ℵ0 Mnα(C) into the Calkin algebra

A nonseparable C∗-algebra A is UHF if it is isomorphic to a tensor product of full
matrix algebras (see [FK10], [FK15]). This subsection is devoted to prove the following
proposition.

Proposition 2.5.10. Let (nα)α<2ℵ0 be a 2ℵ0-sequence of natural numbers. The C∗-algebra⊗
α<2ℵ0 Mnα(C), where Mnα(C) is the C∗-algebra of nα×nα matrices with complex entries,

embeds into Q(H).

Proof. Identify the elements of 2ℵ0 with infinite sequences with entries in {0, 1} and 2n

with the set of finite strings with entries in {0, 1} of length n. For every n ∈ N define

Hn = Cn! ⊗ · · · ⊗ Cn!︸ ︷︷ ︸
2n times

.

Decompose H as follows.

H =
⊕
n∈N

Hn.

Fix α < 2ℵ0 and, for a ∈Mnα(C), let σα(a) ∈ B(H) be the operator acting as the identity
on Hn if n < nα, and otherwise as:

Idn! ⊗ · · · ⊗ Idn! ⊗ (a⊗ Idn!/nα)⊗ Idn! ⊗ · · · ⊗ Idn!,

where (a ⊗ Idn!/nα) appears in the position corresponding to α�n, the restriction of α to
the first n entries.

The composition of σα with the quotient map π : B(H)→ Q(H) is a unital embedding
of Mnα(C) into Q(H). Moreover, given two different α, β < 2ℵ0 , the images of σα and
σβ commute on

⊕
n≥kHn, being k is the first coordinate where α and β differ. Thus

the images of π ◦ σα and π ◦ σβ commute. Therefore there exists a ∗-homomorphism σ
of
⊗

α<2ℵ0 Mnα(C) into Q(H) such that σ�Mnα (C) = σα. Finally, σ is injective since it is
unital and

⊗
α<2ℵ0 Mnα(C) is simple.

The next step in this setting would be to investigate whether the argument used in
this proof can be adapted to

⊗
α<2ℵ0 O2.

2.6 Voiculescu’s Theorem for Nonseparable C∗-algebras

In [Arv77], the author gave a proof of theorem 2.1.2 which (is different from the original
one and) relies on the use of quasicentral approximate units of the compact operators.
We recall, from the beginning of section 2.1, that, given a C∗-algebra A ⊆ B(H), an
approximate unit {hλ}λ∈Λ of K(H) is quasicentral for A if limλ‖hλa − ahλ‖ = 0 for all
a ∈ A. The main point we want to make in this section is that the arguments used in the
first two sections of [Arv77] to prove Voiculescu’s theorem, are diagonalization arguments
equivalent to applications of the Baire category theorem (lemma 2.1.7) to some appropriate
ccc posets. This allows us to generalize Voiculescu’s theorem as follows.

Theorem 2.6.1. Assume MA. Let H,L be two separable Hilbert spaces, A ⊆ B(H) a
unital C∗-algebra of density less than 2ℵ0 and σ : A → B(L) a unital completely positive
map such that σ(a) = 0 for all a ∈ A ∩ K(H). Then there is a sequence of isometries
Vn : L → H such that σ(a) − V ∗n aVn ∈ K(L) and limn→∞‖σ(a) − V ∗n aVn‖ = 0 for all
a ∈ A.
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We recall that MA is consistent with 2ℵ0 being as big as desired. On the other hand
the spaces H and L are still assumed to be separable, hence the theorem applies only to
separably representable C∗-algebras.

It is known that for every C∗-algebra A ⊆ B(H) there is an approximate unit of the
compact operators which is quasicentral forA (see [Arv77, Theorem 1 p.330]). Moreover, if
A is separable, the quasicentral approximate unit can be chosen to be sequential. We start
by showing how MA pushes this property to C∗-algebras of density less than continuum.
This is a simple fact, nevertheless it should give an idea of the flavor of this section and it
should clarify, at least to the reader familiar with the proof of Voiculescu’s theorem given
in [Arv77], how to get to the proof of theorem 2.6.1.

Proposition 2.6.2. Assume MA. Let A ⊆ B(H) be a C∗-algebra of density less than 2ℵ0.
Then there exists a sequential approximate unit {hn}n∈N of K(H) which is quasicentral
for A.

Proof. Fix a countable denseK inK(H)1
+ andB dense inA of size smaller than continuum.

Let P be the set of tuples

p = (Fp, Jp, np, (h
p
j )j≤np)

where Fp b A, Jp b K(H), np ∈ N and hpj ∈ K for all j ≤ np. For p, q ∈ P we say p < q if
and only if

1. Fq ⊆ Fp,

2. Jq ⊆ Jp,

3. nq ≤ np,

4. hpj = hqj for all j ≤ nq,

5. if nq < np then, for all nq < j ≤ np, all k ∈ Jq and all a ∈ Fq, the following holds

‖[a, hpj ]‖ < 1/j, ‖hpjk − k‖ < 1/j.

The relation < makes P a partial order which satisfies the ccc, since any two conditions
p, q such that np = nq and (hpj )j≤np = (hqj)j≤nq are compatible (since there always exists
a sequential approximate unit of K(H) which is quasicentral for the C∗-algebra generated
by a finite subset of A). Let D be the collection of the sets

∆F,J,n = {p ∈ P : Fp ⊇ F, Jp ⊇ J, np ≥ n},

where F b B, J b K and n ∈ N. The sets ∆F,J,n are open dense because for every
separable subalgebra of B(H) there there is a sequential approximate unit of K(H) which
is quasicentral for it. A generic D-filter produces a sequential approximate unit of K(H)
which is quasicentral for A. Since D has size smaller than 2ℵ0 , MA guarantees the existence
of such a filter.

2.6.1 Finite Dimension

The following lemma is a preliminary step in the proof of Voiculescu’s theorem in
[Arv77], and it can be thought as a finite-dimensional version of Voiculescu’s theorem.

55



Lemma 2.6.3 ([Arv77, Lemma p. 335]). Let H be a separable, infinite-dimensional
Hilbert space, A ⊆ B(H) a separable unital C∗-algebra and σ : A → B(Cm) a unital
completely positive map such that σ(a) = 0 for all a ∈ A∩K(H). Then there is a sequence
of isometries Vn : Cm → H such that limn→∞‖σ(a)−V ∗n aVn‖ = 0 for all a ∈ A. Moreover,
given L ⊆ H a finite-dimensional subspace, the isometries Vn can be chosen to have range
orthogonal to L.

This lemma is used in [Arv77] to carry on the argument in the infinite dimensional
case, passing through block-diagonal maps. We follow the same path.

2.6.2 Block-Diagonal Maps

A completely positive map σ : A → B(L) is block-diagonal if there is a decomposition
L =

⊕
n∈N Ln, where Ln is finite-dimensional for all n ∈ N, which induces a decomposition

σ =
⊕

n∈N σn into completely positive maps σn : A → B(Ln). We use lemma 2.6.3 to
prove theorem 2.6.1 in the case where σ is block-diagonal.

Lemma 2.6.4. Assume MA. Let H,L be two separable Hilbert spaces, A ⊆ B(H) a unital
C∗-algebra of density less than 2ℵ0 and σ : A → B(L) a block-diagonal unital completely
positive map such that σ(a) = 0 for all a ∈ A ∩ K(H). Then there is a sequence of
isometries Vn : L → H such that σ(a) − V ∗n aVn ∈ K(L) and limn→∞‖σ(a) − V ∗n aVn‖ = 0
for all a ∈ A.

Proof. By hypothesis L =
⊕

n∈N Ln, where Ln is finite-dimensional for all n ∈ N, and σ
decomposes as

⊕
n∈N σn, where σn(a) = 0 whenever a ∈ A ∩ K(H) for all n ∈ N. Let

K be a countable dense subset of the unit ball of H such that, for every ξ ∈ K the set
{η ∈ K : η ⊥ ξ} is dense in {η ∈ H : ‖η‖ = 1, η ⊥ ξ}. Let B be a dense subset of A of size
smaller than 2ℵ0 and fix an orthonormal basis {ξnj }j≤kn for each Ln. Consider the set P
composed by tuples

p = (Fp, np, (W
p
i )i≤np),

where Fp is a finite subset of A, np ∈ N and W p
i is an isometry of Li into H such that

W p
i ξ

i
j ∈ K for every j ≤ ki and i ≤ np. We say p ≤ q for two elements in P if and only if

1. Fq ⊆ Fp,

2. nq ≤ np,

3. W p
i = W q

i for all i ≤ nq,

4. for nq < i ≤ np (if any) we require WiLi to be orthogonal to {WjLj , aWjLj , a
∗WjLj :

j ≤ i, a ∈ Fq} and
‖σi(a)−W ∗i aWi‖ < ε/2i+1

for all a ∈ Fq.

By lemma 2.6.3 two conditions p, q such that np = nq and (W p
i )i≤np = (W q

i )i≤nq are
compatible, thus a standard uniformization argument entails that the poset (P, <) is ccc.
Let D be the collection of the sets

∆F,n = {p ∈ P : Fp ⊇ F, np ≥ n}

as F varies among the finite subsets of B and n ∈ N. Again by lemma 2.6.3, ∆F,n is
open dense in P. By MA, let G be a D-generic filter. Let V be the isometry from

⊕
Ln
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into H defined as
⊕

n∈NWn where Wn = W p
n for some p ∈ G such that np ≥ n. The

isometry is well defined since G is a filter. The proof that σ(a)− V ∗aV ∈ K(L) and that
‖σ(a) − V ∗aV ‖ < ε for all a ∈ A is the same as the first part of the proof of [Arv77,
Theorem 4].

Lemma 2.6.5. Assume MA. Let H be a separable Hilbert space, A a unital C∗-algebra
of density less than 2ℵ0 and σ : A → B(H) a unital completely positive map. Then
there is a block-diagonal completely positive map σ′ : A → B(L), where L is separable,
and a sequence of isometries Vn : H → L such that σ(a) − V ∗n σ

′(a)Vn ∈ K(H) and
limn→∞‖σ(a)− V ∗n σ′(a)Vn‖ = 0 for all a ∈ A.

Proof. We use the same poset (and notation) defined in proposition 2.6.2 to generate an
approximate unit of K(H) which is quasicentral for σ[A]. Adjusting suitably the inequality
in item 5 of the definition of the poset (see [Arv77, Lemma p.332]), by MA there is a generic
filter of P which generates a quasicentral unit (hn)n∈N such that if a ∈ Fp for some p ∈ G,
then for all n > np we have

‖[(hn+1 − hn)1/2, σ(a)]‖ < ε/2n.

From here, the proof is the same as in [HR00, Theorem 3.5.5].

The proof of theorem 2.6.1 follows composing the isometries coming from lemmas 2.6.4
and 2.6.5.

Similarly to how is done in [HR00, Theorem 3.4.6], it is possible to obtain that the
sequence (Vn)n∈N in theorem 2.6.1 is composed of unitaries if σ is a ∗-homomorphism. We
get therefore the following strengthening of corollaries 2.1.3 and 2.1.4.

Corollary 2.6.6. Assume MA. Let A be a unital C∗-algebra of density less than 2ℵ0 and let
ϕ,ψ : A → B(H) be two essential faithful unital representations. Then, for every F b A
and ε > 0, there exists a unitary u ∈ U(H) such that

1. Ad(u) ◦ ϕ ∼K(H) ψ,

2. Ad(u) ◦ ϕ(a) ≈ε ψ(a) for all a ∈ F .

Corollary 2.6.7. Assume MA. Let A be a unital C∗-algebra of density less than 2ℵ0 and let
ϕ,ψ : A → B(H) be two essential faithful unital representations. Then, for every F b A
and every finite-dimensional subspace K ⊆ H, there exists a unitary w ∈ U(H) such that

1. Ad(w) ◦ ϕ ∼K(H) ψ,

2. Ad(w) ◦ ϕ(a)(ξ) = ϕ(a)(ξ) for every a ∈ F and ξ ∈ K.

In particular, the set

{Ad(w) ◦ ϕ : w ∈ U(H),Ad(w) ◦ ϕ(a) ∼K(H) ψ(a) for all a ∈ A}

has ϕ in its closure with respect to strong convergence.
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2.6.3 Independece

Consider the following question.

Question 2.6.8. Is the thesis of theorem 2.6.1 (and corollaries 2.6.6 and 2.6.7) indepen-
dent from ZFC, or is it true even without assuming MA?

A possible strategy to show that theorem 2.6.1 consistently fails without MA could
revolve around the following proposition.

Proposition 2.6.9. There exists a C∗-algebra M of density character 2ℵ0 which ad-
mits two essential faithful unital representations ϕ,ψ on a separable, infinite-dimensional
Hilbert space H, such that there is no unitary u of H that satisfies Ad(u) ◦ ϕ ∼K(H) ψ.

Proof. Consider the diagonal embedding ϕ of M = L∞([0, 1]) into B(L2([0, 1])) mapping
f to the operator Mf , which sends each g ∈ L2([0, 1]) to fg. Consider moreover the
amplification of the diagonal embedding

ψ :M→ B(L2([0, 1])⊕ L2([0, 1])) ∼= B(L2([0, 1]))

f 7→ (Mf ,Mf )

Denote by Φ the composition of ϕ with π (the quotient map from B(L2([0, 1])) onto the
Calkin algebra), and by Ψ the composition of ψ with π. Although, by corollary 2.1.3,
for every countable subset F of M there is a unitary transformation u of L2([0, 1]) such
that π(u∗)Φ(f)π(u) = Ψ(f) for all f ∈ C∗(F ), there is no unitary transformation sending
globally Φ to Ψ. The reason for this is that Φ[M] is a masa of the Calkin algebra (and so
is every unitary transformation of it) while Ψ[M] is not.

Starting from the algebra M given by the previous proposition, suppose there is a
forcing extension of the universe where 2ℵ0 is bigger than the ground model continuum,
but no unitary transformation of L2([0, 1]) that sends Φ to Ψ is added. This would provide
a model of ZFC answering question 2.6.8.14

14After the submission of this dissertation, it was shown in [Vac18b, Section 4] that indeed there exists
of a model of ZFC where MA does not hold and the thesis of theorem 2.6.1 fails. The model is not obtained
following the remark about proposition 2.6.9 given above, but via an application of Cohen’s forcing and a
simple cardinality argument.
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Chapter 3

Obstructions to Lifting Abelian
Subalgebras of Corona Algebras

Given a C∗-algebra A, its multiplier algebra M(A) is the largest unital C∗-algebra
containing A as an essential ideal (see [Bla06, Section II.7.3]). In the abelian case the
multiplier algebra corresponds, via the Gelfand transform, to the Čech-Stone compactifi-
cation of a locally compact Hausdorff space. The corona algebra Q(A) of a C∗-algebra A
is the quotient M(A)/A. In this chapter we denote by π the canonical projection from
M(A) onto Q(A). A lifting in M(A) of a set B ⊆ Q(A) is a set A ⊆ M(A) (possibly
of the same size of B) such that π[A] = B. The study of which properties of B ⊆ Q(A)
can be preserved in a lifting, and the analysis of the relations between B and its preimage
π−1[B], have developed into a theory in its own right with strong connections with the
study of stable relations in C∗-algebras. A general introduction to this subject can be
found in [Lor97].

This chapter focuses on liftings of abelian subalgebras of Q(A), a topic which has been
widely studied, for instance, as a mean to produce interesting examples (or counterexam-
ples) of ∗-algebras and in the investigation of masas in the Calkin algebra. Before starting,
we give a short list of references for the reader interested in some applications. Remark-
ably, a lot of these works (even the older ones) rely on combinatorial or diagonalization
arguments of set-theoretic nature.

In [AD79] the authors, assuming the continuum hypothesis, produce a nonseparable
C∗-algebra A whose abelian subalgebras are all separable. The algebra A is a lifting in
`∞(M2(C)) of an abelian subalgebra of `∞(M2(C))/c0(M2(C)) generated by ℵ1 orthogo-
nal projections. Here `∞(M2(C)) is the C∗-algebra of all countable bounded (in norm)
sequences of elements of M2(C) and c0(M2(C)) ⊆ `∞(M2(C)) is the C∗-algebra of those
sequences which converge to zero. It was later shown that the continuum hypothesis is not
necessary to prove the existence of nonseparable C∗-algebra whose abelian subalgebras are
all separable (see [BK17]; see also [Pop83, Corollary 6.7]).

Another example of a lifting result which was proven assuming the continuum hypothe-
sis is due to Anderson in [And79]. The paper shows the existence of a masa (i.e. a maximal
abelian subalgebra) of the Calkin algebra which is generated by its projections and which
does not lift to a masa in B(H). It is not known whether the continuum hypothesis is
necessary to prove this fact (see also [SS11]).

More recently, the study of liftings led to the first example in [CFO14] (and its refine-
ment in [Vig15]) of an amenable nonseparable Banach algebra which is not isomorphic to
a C∗-algebra. Once again, this algebra is the lift in `∞(M2(C)) of an abelian C∗-algebra in
`∞(M2(C))/c0(M2(C)) of density ℵ1. The problem of the existence of a separable Banach
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algebra which is not isomorphic to a C∗-algebra is still open.

In this chapter we focus on the following problem. Let A be a noncommutative non-
unital C∗-algebra, and let B be a commutative family in Q(A).What kind of obstructions
could prevent the existence of a commutative lifting of B inM(A)? We consider collections
with various properties, but our main concern and focus is the role played by the cardinality
of the set we want to lift. The following table summarizes all the cases we are going to
analyze. The symbols “X” and “×” indicate whether it is possible or not to have a lifting
for collections on the left column whose size is the cardinal in the top line. Q(H) is, as in
the previous chapter, the Calkin algebra on a separable Hilbert space H.

Q(A)→M(A) < ℵ0 ℵ0 ℵ1

Commuting self-adjoint → Commuting self-adjoint × × ×
Commuting projections → Commuting projections X in Q(H) X in Q(H) ×

Commuting projections → Commuting positive X X ×
Orthogonal positive → Orthogonal positive X X ×
Orthogonal positive → Commuting positive X X ×

It is clear from the table that starting with an uncountable collection is a fatal obstruc-
tion. We also remark that the two columns in the middle, representing the lifting problem
for finite and countable collections, have the same values. One reason for this phenomenon
is that the obstructions in this scenario are all of K-theoretic nature and involve only a
finite number of elements, as we shall see in the next paragraph (see also [Dav85]). This
situation also relates to other compactness phenomena (at least at the countable level) that
corona algebras of σ-unital algebras satisfy, due to their partial countable saturation (see
[FH13]). Most of the results in the table about finite and countable families are already
known ([Lor97], [FW12, Lemma 5.34], [Lor97, Lemma 10.1.12]). The main contribution
of this paper concerns the right column, for which some theorems about projections in the
Calkin algebra have already been proved ([FW12, Theorem 5.35], [BK17]).

Let A be K(H), the algebra of the compact operators on a separable Hilbert space H,
so that M(A) = B(H) and Q(A) = Q(H). By a well-known K-theoretic obstruction, the
unilateral shift is a normal element in Q(H) which does not lift to a normal element in
B(H) (more on this in [BDF77] and [Dav10]). An element is normal if and only if its real
and imaginary part commute. This proves that it is not always possible to lift a couple of
commuting self-adjoint elements in a corona algebra to commuting self-adjoint elements
in the multiplier algebra.

One possible way to bypass this obstruction is to strengthen the hypotheses on the
collection we start with. In [FW12, Lemma 5.34] it is proved that any countable family of
commuting projections in the Calkin algebra can be lifted to a family of commuting pro-
jections in B(H). Moreover, the authors provide a lifting of simultaneously diagonalizable
projections. Proving a more general statement about liftings, in section 3.1 we show that
any countable collection of commuting projections in a corona algebra can be lifted to a
commutative family of positive elements in the multiplier algebra. We remark that it is
not always possible to lift projections in a corona algebra to projections in the multiplier
algebra. This occurs when Q(A) has real rank zero but M(A) has not, which is the case
for instance if A = Q(H)⊗K(H) (see [Zha92, Example 2.7(iii)]) or A = Z ⊗K(H), where
Z is the Jiang-Su algebra (see [LN16]).

Two elements in a C∗-algebra are orthogonal if their product is zero. Any countable
family of orthogonal positive elements in a corona algebra admits a commutative lifting.
This is a consequence of the more general result [Lor97, Lemma 10.1.12], which is relaid
in this paper as proposition 3.1.2.
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We cannot expect to be able to generalize verbatim the above result for uncountable
families of orthogonal positive elements. This is the case since, by a cardinality obstruction,
a multiplier algebraM(A) which can be faithfully represented on a separable Hilbert space
H, cannot contain an uncountable collection of orthogonal positive elements. The existence
of such a collection in M(A) (and thus in B(H)) would in fact imply the existence of an
uncountable set of orthogonal vectors in H, contradicting the separability of H.

We could still ask whether it is possible to lift an uncountable family of orthogonal
positive elements to a family of commuting positive elements. This leads to an obstruction
of set-theoretic nature. In [FW12, Theorem 5.35], it is shown that there exists an ℵ1-sized
collection of orthogonal projections in the Calkin algebra whose uncountable subsets can-
not be lifted to families of simultaneously diagonalizable projections in B(H). This result
is refined in [BK17, Theorem 7], where the authors provide an ℵ1-sized set of orthogonal
projections in Q(H) which contains no uncountable subset that lifts to a collection of
commuting operators in B(H). The main result of this paper is a generalization of [BK17,
Theorem 7].

Theorem 3.0.1. Assume A is a primitive, non-unital, σ-unital C∗-algebra. Then there is
a collection of ℵ1 pairwise orthogonal positive elements of Q(A) containing no uncountable
subset that simultaneously lifts to commuting elements in M(A).

Corollary 3.0.2. Assume A is a primitive, real rank zero, non-unital, σ-unital C∗-algebra.
Then there is a collection of ℵ1 pairwise orthogonal projections of Q(A) containing no
uncountable subset that simultaneously lifts to commuting elements in M(A).

The proof of theorem 3.0.1 is inspired by the combinatorics used in [BK17] and [FW12],
which goes back to Luzin and Hausdorff and the study of uncountable almost disjoint
families of subsets of N and Luzin’s families (see [Luz47]). We remark that no extra set
theoretic assumption (such as the continuum hypothesis) is required in our proof.

The chapter is structured as follows: in section 3.1 we report the results needed to settle
the problem for liftings of countable families of commuting projections and of orthogonal
positive elements. Section 3.2 is devoted to the proof of theorem 3.0.1. In section 3.3
we introduce a reflection (in the set-theoretic sense) problem related to this topic and a
partial solution to it.

3.1 Countable Collections

In [FW12, Lemma 5.34] Farah and Wofsey prove that any countable set of commuting
projections in the Calkin algebra can be lifted to a set of simultaneously diagonalizable
projections in B(H). The thesis in the following proposition is weaker, but it holds in a
more general context.

Proposition 3.1.1. Let ϕ : A → B be a surjective ∗-homomorphism between two C∗-
algebras and let {pn}n∈N be a collection of commuting projections of B. Then there exists
a set {qn}n∈N of commuting positive elements of A such that ϕ(qn) = pn.

Proof. We can assume that both A and B are unital, that ϕ(1A) = 1B and that 1B ∈
{pn}n∈N. Let C ⊆ B be the abelian C∗-algebra generated by the set {pn}n∈N. Consider
the element

b =
∑
n∈N

2pn − 1

3n
.
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Let X be the spectrum of b in A. The algebra C is generated by b (see [Ric60, p. 293] for a
proof), thus C ∼= C(X). Fix a ∈ A such that ϕ(a) = b. The element (a+a∗)/2 is still in the
preimage of b since b is self-adjoint, thus we can assume a ∈ Asa. If Y is the spectrum of
a, we have in general that X ⊆ Y . Fix fn ∈ C(X)+ such that fn(b) = pn. Since the range
of fn is contained in [0, 1] and the spaces Y and X are compact and Hausdorff, by the
Tietze extension theorem ([Wil70, Theorem 15.8]), for every n ∈ N, there is a continuous
Fn : Y → [0, 1] such that Fn �X= fn. Set qn = Fn(a). The map ϕ acts on C(Y ) as the
restriction on X (here we identify C∗(a) and C∗(b) with C(Y ) and C(X) respectively),
therefore ϕ(qn) = pn for every n ∈ N.

The qn’s can be chosen to be projections if there is a self-adjoint a in the preimage of
b whose spectrum is X. By the Weyl-von Nuemann theorem, this is the case when ϕ is
the quotient map from B(H) onto the Calkin algebra (see [Dav96, Theorem II.4.4]).

We focus now on lifting sets of orthogonal positive elements, starting with a set of size
two. Let therefore ϕ : A → B be a surjective ∗-homomorphism of C∗-algebras, and let
b1, b2 ∈ B+ be such that b1b2 = 0. Consider the self-adjoint b = b1 − b2 and let a ∈ A
be a self-adjoint such that ϕ(a) = b. Then the positive and negative part of a are two
orthogonal positive elements such that ϕ(a+) = b1, ϕ(a−) = b2. The situation is not much
different when dealing with countable collections, as shown in [Lor97, Lemma 10.1.12].
We report here the full proof.

Proposition 3.1.2 ([Lor97, Lemma 10.1.12]). Assume ϕ : A → B is a surjective ∗-
homomorphism between two C∗-algebras. Let {bn}n∈N be a collection of orthogonal ele-
ments in B≤1

+ . Then there exists a set {an}n∈N of orthogonal elements in A≤1
+ such that

ϕ(an) = bn.

Proof. Define for j ∈ N
cj =

∑
i≥j

2−ibi

For each j ∈ N, let Cj be the hereditary C∗-algebra cjBcj . We have therefore that

1. bi ∈ Cj for i ≥ j;

2. bicj = 0 for i < j.

Start lifting b1 and c2 to two orthogonal positive elements in A, call them a1 and d2

respectively. Let D2 be the hereditary subalgebra generated by d2 in A. Notice that a1 is
orthogonal to every element in D2 and that π[D2] = C2. Consider now b2 and c3, which
belong to C2. Lift them to two orthogonal positive elements in D2. Call these lifts a2

and d3 respectively. The elements a1, a2 and d3 are orthogonal. Let D3 be the hereditary
subalgebra generated by d3 in A and iterate this procedure.

3.2 Uncountable Collections

Throughout this section, let A be a σ-unital non-unital primitive C∗-algebra. A C∗-
algebra is σ-unital if it admits a countable approximate unit, and it is primitive if it admits
a faithful irreducible representation. We can thus assume that A is a noncommutative
strongly dense C∗-subalgebra of B(H) for a certain Hilbert space H. A sequence of oper-
ators {xn}n∈N strictly converges to x ∈ B(H) if and only if xna → xa and axn → ax in
norm for all a ∈ A. In this scenario M(A) can be identified with the idealizer

{x ∈ B(H) : xA ⊆ A,Ax ⊆ A}
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or with the strict closure of A in B(H) ([Bla06, II.7.3.5]). Given two elements a, b in a
C∗-algebra A, we denote the commutator ab− ba by [a, b]. Moreover, from now on denote
by (en)n∈N an approximate unit of A such that:

1. e0 = 0,

2. ‖ei − ej‖ = 1 for i 6= j,

3. eiej = ei (i.e. ej � ei) for every i < j.

Such an approximate unit exists since A is σ-unital, as proved in [Ped90, Section 2].
The proof of theorem 3.0.1 follows closely the one given by Bice and Koszmider for

[BK17, Theorem 7], and a lemma similar to [BK17, Lemma 6] is required.

Lemma 3.2.1. Let A be a primitive, non-unital, σ-unital C∗-algebra. There exists a
family (aβ)β∈ℵ1 ⊆M(A)+ \ A such that:

1. ‖aβ‖ = 1 for all β ∈ ℵ1;

2. aαaβ ∈ A for all distinct α, β ∈ ℵ1;

3. given d1, d2 ∈M(A), for all β ∈ ℵ1, all n ∈ N, and all but finitely many α < β:

‖[(aα + d1en), (aβ + d2en)]‖ ≥ 1

8
.

The rough idea to prove this lemma is to build, for every β < ℵ1, a strictly increasing
function fβ : N→ N and a norm-bounded sequence {cβk}k∈N ⊆ A+ to define

aβ =
∑
k∈N

(efβ(2k+1) − efβ(2k))
1
2 cβk(efβ(2k+1) − efβ(2k))

1
2 .

Note that this series belongs toM(A) by [Ped90, Theorem 4.1] (see also [FH13, item (10)

p.48]). In order to satisfy the thesis of the lemma, we build each cβk so that, for some
α < β and some n ∈ N, the following holds

‖[(aα + en), (cβk + en)]‖ ≥ 1

8
.

The choice of fβ will guarantee orthogonality in Q(A) exploiting, for n2 < n1 < m2 < m1,
the following fact:

(em1 − em2)(en1 − en2) = 0.

The main ingredient used to build cβk is Kadison’s transitivity theorem, which we are
allowed to use since A is primitive.

Proof of lemma 3.2.1. Since the C∗-algebra A is primitive, we can assume that there is
a Hilbert space H such that A ⊆ B(H) and A acts irreducibly on H. For each n < m,
denote the space (em − en)H by Sn,m. We start by building a0. Let f : N→ N be defined
as follows:

f(n) =

{
2n+1 − 1 if n is even

2n if n is odd.

For every k ∈ N there is a unit vector ξ in the range of ef(2k+1)− ef(2k). By the definition
of the approximate unit (en)n∈N, the vector ξ is a 1-eigenvector of ef(2k+2). This, along
with the (algebraic) irreducibility of A ⊆ B(H), entails that

ASf(2k+1),f(2k) = H.
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Denote the algebra (ef(2k+1) − ef(2k))A(ef(2k+1) − ef(2k)) by Ak. We have that

AkH ⊇ Sf(2k),f(2k+1).

Let ξ0
k, η

0
k ∈ Sf(2k),f(2k+1) be two orthogonal1 norm one vectors. Since A acts irreducibly

on H andAk is a hereditary subalgebra ofA, it follows thatAk acts irreducibly on B(AkH)
(see [Mur90, Theorem 5.5.2]). Therefore, by Kadison’s transitivity theorem, we can find
a self-adjoint c0

k ∈ Ak such that
c0
k(ξ

0
k) = ξ0

k,

c0
k(η

0
k) = 0,

and ‖c0
k‖ = 1. We can suppose that c0

k is positive by taking its square, doing so will not
change its norm nor the image of ξ0

k and η0
k. Consider the function

f0(n) =

{
f(n)− 1 if n is even

f(n) + 1 if n is odd.

We have that
ef0(2k+1)c

0
k = c0

kef0(2k+1) = c0
k,

ef0(2k)c
0
k = c0

kef0(2k) = 0.

This entails
(ef0(2k+1) − ef0(2k))c

0
k = c0

k = c0
k(ef0(2k+1) − ef0(2k))

and therefore also

c0
k = (ef0(2k+1) − ef0(2k))

1/2c0
k(ef0(2k+1) − ef0(2k))

1/2.

The norm ‖c0
k‖ is bounded by 1 for every k ∈ N, therefore the sum

a0 =
∑
k∈N

c0
k =

∑
k∈N

(ef0(2k+1) − ef0(2k))
1/2c0

k(ef0(2k+1) − ef0(2k))
1/2

is strictly convergent (see [Ped90, Theorem 4.1] or [FH13, Item (10) p.48]), hence a0 ∈
M(A)+. Furthermore:

‖a0‖ = ‖
∑
k∈N

(ef0(2k+1) − ef0(2k))
1/2c0

k(ef0(2k+1) − ef0(2k))
1/2‖ ≤

≤ ‖
∑
k∈N

ef0(2k+1) − ef0(2k)‖ ≤ 1.

In order to show that a0 /∈ A, first observe that

a0(ξ0
k) =

∑
m<k

c0
m(ξ0

k) + c0
k(ξ

0
k) +

∑
m>k

c0
m(ξ0

k) = c0
k(ξ

0
k) = ξ0

k.

The first sum annihilates since ξ0
k ∈ Sf(2k),f(2k+1) implies ξ0

k = (ef0(2k+1) − ef0(2k))(ξ
0
k),

and for m < k

c0
m(ef0(2k+1) − ef0(2k))(ξ

0
k) = c0

mef0(2m+1)(ef0(2k+1) − ef0(2k))(ξ
0
k) = 0,

1 We can always assume Sn,n+1 has at least 2 linearly independent vectors for each n ∈ N by taking, if
necessary, a subsequence (ekj )j∈N from the original approximate unit.
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which follows by f0(2m + 1) < f0(2k) < f0(2k + 1). The second series also annihilates,
indeed for m > k we have c0

mef0(2k+1) = c0
mef0(2m)ef0(2k+1) = 0 (the same equation also

holds for ef0(2k)). Using the same argument, it can be proved that

a0(ξ) = c0
n(ξ)

for every ξ ∈ Sf0(2n),f0(2n+1). Observe that ‖(a0 − ef0(2m+1)a0)(ξ0
k)‖ = 1 for k > m, thus

a0 /∈ A.
The construction proceeds by transfinite induction on ℵ1, the first uncountable cardi-

nal. At step β < ℵ1 we assume to have a sequence of elements (aα)α<β in M(A)+ and
functions (fα)α<β such that:

i. For all α < β the function fα : N → N is strictly increasing and, given any other
γ < α, for all k ∈ N there exists N ∈ N such that for all j > N and all i ∈ N the
following holds

|fα(j)− fγ(i)| > 2k.

Furthermore, we ask that for all α < β and all k ∈ N:

fα(2(k + 1))− fα(2k + 1) > 22k+1.

ii. For each α < β there exists a sequence (cαk )k∈N of positive norm 1 elements in A such
that

aα =
∑
k∈N

cαk .

Moreover we require that

efα(2k+1)c
α
k = cαk efα(2k+1) = cαk ,

efα(2k)c
α
k = cαk efα(2k) = 0,

and that there exist ξαk , η
α
k ∈ Sfα(2k),fα(2k+1), two norm one orthogonal vectors, such

that cαk (ξαk ) = ξαk and cαk (ηαk ) = 0.

iii. Given α < β and d1, d2 ∈ M(A), for all l ∈ N, and for all but possibly l many γ < α
the following holds:

‖[(aα + d1el), (aγ + d2el)]‖ ≥
1

2
.

It can be shown, as we already did for a0, that for all α < β:

a. aα ∈M(A)+ \ A;

b. ‖aα‖ = 1;

c. aα(ξ) = cαk (ξ) ∈ Sfα(2k),fα(2k+1) for every ξ ∈ Sfα(2k),fα(2k+1).

Moreover, by items (i)-(ii), along with the fact that for n2 < n1 < m2 < m1

(em1 − em2)(en1 − en2) = 0,

we have that aαaγ ∈ A for all α, γ < β.
We want to find fβ and aβ such that the families {aα}α<β+1 and {fα}α<β+1 satisfy

the three inductive hypotheses. This will be sufficient to continue the induction and to
obtain the thesis of the lemma. Since β is a countable ordinal, the sequence (aα)α<β is
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either finite or can be written as (aαn)n<N, where n 7→ αn is a bijection between N and β.
We assume that β is infinite, since the finite case is easier. In order to ease the notation,
we shall denote aαn by an (and similarly fαn by fn, ckαn by ckn, etc.).

The construction of aβ proceeds inductively on the set {(i, j) ∈ N×N : i ≤ j} ordered
along with any well-ordering of type ω such that (i, j) ≤ (i′, j′) implies j ≤ j′, like for
example

(i, j) ≤ (i′, j′) ⇐⇒ j ≤ j′ or j = j′, i ≤ i′.

Suppose we are at step M , which corresponds to a certain couple (i, j). At step M we

provide a cβM ∈ A+ such that, for every d1, d2 ∈M(A)

‖[(aj + d1ei), (c
β
M + d2ei)]‖ ≥

1

2

and we define two values of fβ. Assume that fβ(n) has been defined for n ≤ 2M − 1. Let
m ∈ N be the smallest natural number such that

fj(2m) > max
{
i+ 2, fβ(2M − 1) + 22M−1 + 1

}
and such that, for l ≥ 2m, the inequality |fj(l) − fk(n)| > 2M + 1 holds for all k ∈ N
such that αk < αj , and all n ∈ N. By inductive hypothesis there are two norm one

orthogonal vectors ξjm, η
j
m ∈ Sfj(2m),fj(2m+1) such that cjm(ξjm) = ξjm and cjm(ηjm) = 0. Set

ξβM = 1√
2
(ξmj + ηmj ) and ηβM = 1√

2
(ξmj − ηmj ). Using Kadison’s transitivity theorem, fix a

positive, norm one element

cβM ∈ (efj(2m+1) − efj(2m))A(efj(2m+1) − efj(2m))

such that
cβM (ξβM ) = ξβM ,

cβM (ηβM ) = 0.

Let fβ(2M) = fj(2m)− 1 and fβ(2M + 1) = fj(2m+ 1) + 1. We have therefore that

efβ(2M+1)c
β
Mefβ(2M+1) = cβM ,

efβ(2M)c
β
M = cβMefβ(2M) = 0.

Moreover:

‖(aj + d1ei)(c
β
M + d2ei)(ξ

β
M )− (cβM + d2ei)(aj + d1ei)(ξ

β
M )‖ = (∗)

‖ajcβM (ξβM )− cβMaj(ξ
β
M )‖ =

1

2
√

2
‖ξmj − ηmj ‖ =

1

2
.

This is the case since ei(ξ) = 0 for every ξ ∈ Sfj(2m),fj(2m+1) (we chose m so that fj(2m) >

i+ 2) and cβM (ξβM ), aj(ξ
β
M ) = cjm(ξβM ) ∈ Sfj(2m),fj(2m+1). Define

aβ =
∑
n∈N

cβn =
∑
n∈N

(efβ(2n+1) − efβ(2n))
1
2 cβn(efβ(2n+1) − efβ(2n))

1
2 .

This series is strictly convergent since all cβn’s have norm 1. The families {fn}n<N ∪ {fβ}
and {an}n<N ∪ {aβ} satisfy items (i)-(ii) of the inductive hypothesis2.

2The induction to define aβ and fβ is on the set {(i, j) ∈ N × N : i ≤ j} ordered with a well-ordering
of type ω such that (i, j) ≤ (i′, j′) implies j ≤ j′. This is used to show that fβ satisfies clause i of the
inductive hypothesis.
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Finally we verify clause (iii). Notice that, by construction, for every k ∈ N, given
ξ ∈ Sfβ(2k),fβ(2k+1) we have

aβ(ξ) = cβk(ξ).

Let i ≤ j ∈ N, denote the step corresponding to the couple (i, j) by M , and let m ∈ N be
such that fβ(2M) = fj(2m) − 1 (by construction we can find such m). Remember that

ξβM = 1√
2
(ξmj + ηmj ) ∈ Sfβ(2M),fβ(2M+1). Given d1, d2 ∈M(A), we have that

‖(aj + d1ei)(aβ + d2ei)(ξ
β
M )− (aβ + d2ei)(aj + d1ei)(ξ

β
M )‖ =

‖ajaβ(ξβM )− aβaj(ξβM )‖ =
1

2
√

2
‖ξmj − ηmj ‖ =

1

2
.

This equation can be shown using the same arguments used to prove (∗).
Notice that if β is finite, we only obtain a finite number of cβn, therefore their sum

(which is finite) does not belong toM(A)\A. In this case it is sufficient to add an infinite
number of addends, as we did for a0. Suppose that β is (the ordinal corresponding to)
N ∈ N, then the previous construction defines fN only up until 2N + 1. Let fN (2(N + 1))
be the smallest integer such that

• fN (2(N + 1))− fN (2N + 1) > 22N+1;

• |fN (2(N + 1))− fj(n)| > 22(N+1) for all j < N ; and for all n ∈ N.

Define

fN (2(N + 1) + 1) = fN (2(N + 1)) + 3

and continue inductively the definition of fN . For each n > N we can therefore, as we did
for a0 using Kadison’s transitivity theorem, find a positive element

cNn ∈ (efN (2n+1)−1 − efN (2n)+1)A(efN (2n+1)−1 − efN (2n)+1)

which moves a norm one vector ξNn ∈ SfN (2n),fN (2n+1) into itself, and another orthogonal

norm one vector ηNn to zero. If we define aN to be the sum of such cNn ’s, it is possible
to show, using the same arguments exposed when β was assumed to be infinite, that the
families {fn}n<N ∪ {fβ} and {an}n<N+1 satisfy items i-iii of the inductive hypothesis.

The proof of theorem 3.0.1 is analogous to the one given in [BK17, Theorem 7], but it
uses our lemma 3.2.1 instead of [BK17, Lemma 6].

Proof of theorem 3.0.1. Let (en)n∈N ⊆ A be the approximate unit defined at the beginning
of the current section, and let (aβ)β∈ℵ1 be the ℵ1-sized collection obtained from lemma
3.2.1. Suppose there is an uncountable U ⊆ ℵ1 and (dβ)β∈U ⊆ A such that

[(aα + dα), (aβ + dβ)] = 0

for all α, β ∈ U . By using the pigeonhole principle, we can suppose that ‖dβ‖ ≤ M for
some M ∈ R, and that there is a unique n ∈ N such that

‖dβ − dβen‖ ≤
1

64(M + 1)

for all β ∈ U .

69



Therefore, for every β ∈ U and all but finitely many α ∈ U such that α < β, we have

0 = ‖[(aα + dα), (aβ + dβ)]‖ ≥ ‖[(aα + dαen), (aβ + dβen)]‖ − 1

16
≥ 1

16
.

This is a contradiction when {α ∈ U : α < β} is infinite. Indeed, in this case there exists
at least one (in fact infinitely many!) α < β for which the inequality that we displayed
above holds.

Proof of corollary 3.0.2. The proof follows verbatim the one given for lemma 3.2.1 plus
theorem 3.0.1. The only difference is that, each time Kadison’s transitivity theorem is
invoked in lemma 3.2.1, it is possible to use a stronger version of Kadison’s transitivity
theorem for C∗-algebras of real rank zero (see for instance [Bic13, Theorem 6.5]) which
allows to chose at each step a projection. This stronger version of Kadison’s transitivity
theorem can be used throughout the whole iteration since hereditary subalgebras of real
rank zero C∗-algebras have real rank zero.

If A is a commutative non-unital C∗-algebra, then the problem of lifting commuting
elements from Q(A) to M(A) is trivial, as both Q(A) and M(A) are abelian. In section
3.2 we ruled out this possibility by asking for A to be primitive. From this perspective,
primitivity can be thought as a strong negation of commutativity.

The other important feature we required to prove theorem 3.0.1 is σ-unitality. We do
not know whether this assumption could be weakened, but it certainly cannot be removed
tout-court. Indeed, there are extreme examples of primitive, non-σ-unital C∗-algebras
whose corona is finite-dimensional (see [Sak71] and [GK18]), for which theorem 3.0.1 is
trivially false. Our conjecture is that there might be a condition on the order structure
of the approximate unit of A which is weaker than σ-unitality, but still makes theorem
3.0.1 true. For instance, it would be interesting to know whether the techniques used in
theorem 3.0.1 could be applied to the algebra of the compact operators on a nonseparable
Hilbert space, or more in general to a C∗-algebra A with a projection p ∈M(A) such that
pAp is primitive, non-unital and σ-unital.

We remark that the proof of theorem 3.0.1 we gave can be adapted to any primitive
C∗-algebra A which admits an increasing approximate unit {eα}α∈κ, for κ regular cardinal,
to produce a κ+-sized family of orthogonal positive elements in Q(A) which cannot be
lifted to a set of commuting elements in M(A).

3.3 A Reflection Problem

Question 3.3.1. Assume F ⊆ Q(A)sa is a commutative family such that any smaller (in
the sense of cardinality) subset can be lifted to a set of commuting elements in M(A)sa.
Can F be lifted to a collection of commuting elements in M(A)sa?

Theorem 3.0.1 and proposition 3.1.2 entail that this is not true in general for primitive,
non-unital, σ-unital C∗-algebras if |F | = ℵ1, pointing out the set theoretic incompactness
of ℵ1 for this property.

If the family F is infinite and countable, then question 3.3.1 has a positive answer in
the Calkin algebra.

Proposition 3.3.2. Suppose that A is a separable abelian C∗-subalgebra of Q(H) such
that every finitely-generated subalgebra of A has an abelian lift. Then A has an abelian
lift.
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The proof of this proposition relies on Voiculescu’s theorem [Arv77, Theorem 4] (see
also theorem 2.1.2), starting from the following lemma. We recall that an embedding of
a given C∗-algebra A into the Calkin algebra is trivial if it admits a multiplicative lift to
B(H).

Lemma 3.3.3. Let A be a separable unital abelian C∗-subalgebra of Q(H). If there exists
a unital abelian C∗-algebra B ⊆ B(H) lifting A, then the identity map on A, saw as an
embedding into Q(H), is trivial.

Proof. Since B is abelian, there exists a masa (maximal abelian subalgebra) of B(H) con-
taining B. Masas in B(H) are von Neumann algebras and, as such, they are generated by
their projections. This entails that A is contained in a separable unital abelian subalgebra
C(Y ) of Q(H) which is generated by its projections. By [BDF77, Theorem 1.15] there
exists a unital ∗-homomorphism Ψ : C(Y )→ B(H) lifting the identity on C(Y ). Let Φ be
the restriction of Ψ to C(X).

Proof of proposition 3.3.2. Suppose that F = {an}n∈N ⊆ Q(H)sa is an abelian family such
that every finite subset of F has a commutative lift. Without loss of generality, we can
assume that a0 = 1. By lemma 3.3.3 we can assume that, for every k ∈ N, there is a unital
∗-homomorphism Φk : C∗({an}n≤k)→ B(H) lifting the identity map on C∗({an}n≤k). By
Voiculescu’s theorem [Arv77, Theorem 4] (theorem 2.1.2) we can moreover assume that,
for every n ∈ N, the sequence {Φk(an)}k≥n converges to some self-adjoint operator An
in B(H) such that An − Φk(an) is compact for every k ∈ N. The family {An}n∈N is a
commutative lifting of {an}n∈N.

More general forms of Voiculescu’s theorem are known to hold for extensions of various
separable C∗-algebras other than K(H) (see [EK01], [Gab16], [Sch18, Section 2.2]). Such
generalizations could potentially be used to carry out the arguments exposed above for
coronas of other separable nuclear stable C∗-algebras. We remark however the importance
of being able to lift separable abelian subalgebras of Q(H) to abelian algebras in B(H)
with the same spectrum, as guaranteed by lemma 3.3.3. This is false in general in other
coronas, as it happens for instance when A = Z⊗K(H). In this case, projections in Q(A)
do not necessarily lift to projections inM(A), since the former has real rank zero but the
latter has not (see [LN16]).

The following example proves that question 3.3.1 has negative answer for finite families
with an even number of elements.

Example 3.3.4. Let Sn be the n-dimensional sphere. The algebra C(Sn) is generated by
n+ 1 self-adjoint elements {hi}0≤i≤n satisfying the relation

h2
0 + · · ·+ h2

n = 1.

Let F = {hi}0≤i≤n. The relation above implies that the joint spectrum of a subset of F
of size m ≤ n is the m-dimensional ball Bm. The space Bm is contractible, therefore the
group Ext(Bm) is trivial (see [HR00, Section 2.6-2.7] for the definition of the functor Ext
and its basic properties). As a consequence, for any [τ ] ∈ Ext(Sn), any proper subset of
τ [F ] can be lifted to a set of commuting self-adjoint operators in B(H). On the other
hand Ext(S2k+1) = Z for every k ∈ N. We conclude that any non-trivial extension τ of
C(S2k+1) produces, by lemma 3.3.3, a family τ [F ] of size 2k+ 2 in the Calkin algebra for
which Question 3.3.1 has negative answer.
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The argument above does not apply to families of odd cardinality, since Ext(S2k) = {0}
for every k ∈ N. However, in [Dav85] (see also [Voi81], [Lor88]), the author builds a set
of three commuting self-adjoint elements in the corona algebra of

⊕
n∈NMn(C) with no

commutative lifting to the multiplier algebra, whose proper subsets of size two all admit
a commutative lifting. The answer to question 3.3.1 for larger finite families with an odd
number of elements is, to the best of our knowledge, unknown.
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[Wey09] H. Weyl, Über beschränkte quadratische formen, deren differenz vollstetig ist,
Rendiconti del Circolo Matematico di Palermo (1884-1940) 27 (1909), no. 1,
373–392.

[Wil70] S. Willard, General topology, Addison-Wesley Publishing Co., Reading, Mass.-
London-Don Mills, Ont., 1970. MR 0264581

[Woo84] W. H. Woodin, Discontinuous Homomorphisms of C(Ω) and Set Theory, Pro-
Quest LLC, Ann Arbor, MI, 1984, Thesis (Ph.D.)–University of California,
Berkeley. MR 2634119

[ZA14] B. Zamora-Aviles, Gaps in the poset of projections in the Calkin algebra, Isr.
J. Math. 202 (2014), no. 1, 105–115.

[Zha92] S. Zhang, Certain C∗-algebras with real rank zero and their corona and multi-
plier algebras. I, Pacific J. Math. 155 (1992), no. 1, 169–197. MR 1174483

80


	Abstract
	Introduction
	Acknowledgments
	Trace Spaces of Counterexamples to Naimark's Problem
	Preliminary Notions
	Background on C-algebras and Diamond
	How to Build a Counterexample to Naimark's Problem

	Trace Spaces
	A Variant of the Kishimoto-Ozawa-Sakai Theorem
	Paths of Unitaries
	Gluing Paths

	Outer Automorphisms

	Embedding C-algebras into the Calkin Algebra
	Preliminary results
	C-algebras
	Set Theory and Forcing

	Boolean Algebras and Quasidiagonal C-algebras
	Embedding Abelian C-algebras into /c0
	Embedding Quasidiagonal C-algebras into the Calkin Algebra

	The General Case
	The Poset
	Density and Countable Chain Condition

	Concluding Remarks on Theorem 2.0.3
	The Question of Minimality of Generic Embeddings
	Complete embeddings
	20-universality

	C-algebras of Density Continuum
	Isomorphic Names
	Embedding Cred(F20) into the Calkin Algebra
	Embedding < 20 Mn(C) into the Calkin algebra

	Voiculescu's Theorem for Nonseparable C-algebras
	Finite Dimension
	Block-Diagonal Maps
	Independece


	Obstructions to Lifting Abelian Subalgebras of Corona Algebras
	Countable Collections
	Uncountable Collections
	A Reflection Problem

	Bibliography

