Algebras of Generalized Functions and Nonstandard Analysis

> Hans Vernaeve (joint work with Todor Todorov)

> > University of Innsbruck

June 2008

1 / 15

Generalized Functions and N.S.A.

Generalized functions: introduction and motivation

- Linear generalized functions (distributions)
- Nonlinear generalized functions

Improving generalized functions by means of ultrafilters

- Idea of construction
- Properties

Linear generalized functions: Dirac's δ -impulse

- Physical interpretation: singular object with an infinite concentration at the origin x = 0, e.g. mass distribution of a unit point mass.
- Formal property: $\int_{\mathbb{R}^n} \delta(x) \varphi(x) \, dx = \varphi(0)$, for each $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}^n)$. (*)

Linear generalized functions: Dirac's δ -impulse

 Physical interpretation: singular object with an infinite concentration at the origin x = 0, e.g. mass distribution of a unit point mass.

• Formal property: $\int_{\mathbb{R}^n} \delta(x) \varphi(x) \, dx = \varphi(0)$, for each $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}^n)$. (*)

Observation 1

- The map $\mathcal{C}^{\infty}_{c}(\mathbb{R}^{n}) \to \mathbb{R}: \varphi \mapsto \varphi(0)$ is a continuous linear map.
- This map captures the essence of the formal property (*).

Observation 2

- For any (locally integrable) function f, the map $\mathcal{C}^{\infty}_{c}(\mathbb{R}^{n}) \to \mathbb{R}: \varphi \mapsto \int_{\mathbb{R}^{n}} f(x)\varphi(x) dx$ is a continuous linear map.
- This map determines f completely (up to measure zero).

 $\mathcal{C}^{\infty}_{c}(\mathbb{R}^{n}) = \{ \text{ smooth functions with compact support } \}$

イロン イロン イヨン イヨン 三日

Linear generalized functions: distributions

Definition

A continuous linear map $\mathcal{C}^{\infty}_{c}(\mathbb{R}^{n}) \to \mathbb{R}$ is called a (Schwartz) distribution.

There exists a natural definition of partial differentiation on distributions, extending the classical definition for C^1 -functions. Every distribution has partial derivatives $\partial_1, \ldots, \partial_n$ in this sense.

Definition

A continuous linear map $\mathcal{C}^{\infty}_{c}(\mathbb{R}^{n}) \to \mathbb{R}$ is called a (Schwartz) distribution.

There exists a natural definition of partial differentiation on distributions, extending the classical definition for C^1 -functions. Every distribution has partial derivatives $\partial_1, \ldots, \partial_n$ in this sense.

Applications

- Justification of formulas containing derivatives of nondifferentiable functions used by physicists
- Theory of partial differential equations (PDEs): every linear PDE with constant coefficients has a distributional solution (L. Ehrenpreis, B. Malgrange, 1955).
- Formulation of Quantum Field Theory.

イロト イ団ト イヨト イヨト

- Linear operations (+, ∂_j , \int) can be defined naturally on distributions.
- Products and other nonlinear operations have no natural counterpart on the space of distributions.

Example: δ^2 , $\sqrt{\delta}$ do not make sense as distributions.

- Linear operations (+, ∂_j , \int) can be defined naturally on distributions.
- Products and other nonlinear operations have no natural counterpart on the space of distributions.

Example: δ^2 , $\sqrt{\delta}$ do not make sense as distributions.

Yet:

- In theoretical physics, formal products of distributions are used (e.g., in quantum field theory, general relativity).
- Nonlinear PDEs with singular (discontinuous or distributional) data occur as models of real-world phenomena (e.g. in geophysics).

Need for a mathematical theory.

Idea

- A (Colombeau) nonlinear generalized function ∈ G is constructed by means of a net (=family) of C[∞]-functions.
- $\mathcal G$ should contain the space of distributions.
- A product in \mathcal{G} should be defined that coincides with the product of (sufficiently regular) usual functions.

 \mathcal{G} will be a differential algebra provided with an embedding (=injective morphism) of the space of distributions.

The algebra \mathcal{G} of nonlinear generalized functions

Construction of \mathcal{G} (J.F. Colombeau):

 $(\mathcal{C}^{\infty})^{(0,1)} := \{ \text{nets of smooth functions indexed by a parameter } \varepsilon \in (0,1) \}.$

To ensure an embedding of distributions with good properties, the nets are restricted by a growth condition:

$$\begin{aligned} \mathcal{A} &= \{ (u_{\varepsilon})_{\varepsilon} \in (\mathcal{C}^{\infty})^{(0,1)} : \\ (\forall \mathcal{K} \subset \subset \mathbb{R}^{n}) (\forall \alpha \in \mathbb{N}^{n}) (\exists \mathcal{N} \in \mathbb{N}) (\sup_{x \in \mathcal{K}} |\partial^{\alpha} u_{\varepsilon}(x)| \leq \varepsilon^{-\mathcal{N}}, \text{ for small } \varepsilon) \}. \end{aligned}$$

The algebra \mathcal{G} of nonlinear generalized functions

Construction of \mathcal{G} (J.F. Colombeau):

 $(\mathcal{C}^{\infty})^{(0,1)} := \{ \text{nets of smooth functions indexed by a parameter } \varepsilon \in (0,1) \}.$

To ensure an embedding of distributions with good properties, the nets are restricted by a growth condition:

$$\mathcal{A} = \{ (u_{\varepsilon})_{\varepsilon} \in (\mathcal{C}^{\infty})^{(0,1)} : \\ (\forall K \subset \subset \mathbb{R}^{n}) (\forall \alpha \in \mathbb{N}^{n}) (\exists N \in \mathbb{N}) (\sup_{x \in K} |\partial^{\alpha} u_{\varepsilon}(x)| \leq \varepsilon^{-N}, \text{ for small } \varepsilon) \}.$$

Two nets are identified if their difference belongs to the differential ideal

$$\begin{aligned} \mathcal{I} &= \{ (u_{\varepsilon})_{\varepsilon} \in \mathcal{A} : \\ (\forall \mathcal{K} \subset \subset \mathbb{R}^n) (\forall \alpha \in \mathbb{N}^n) (\forall m \in \mathbb{N}) (\sup_{x \in \mathcal{K}} |\partial^{\alpha} u_{\varepsilon}(x)| \leq \varepsilon^m, \text{ for small } \varepsilon) \}. \end{aligned}$$

By definition, $\mathcal{G} = \mathcal{A}/\mathcal{I}$.

イロト イポト イヨト イヨト

The algebra \mathcal{G} of nonlinear generalized functions

Distributions are embedded into \mathcal{G} by smoothing. The embedding preserves the vector space operations and ∂_i .

Theorem (Nonlinear operations in \mathcal{G})

If $F \in C^{\infty}(\mathbb{R}^m)$ with all derivatives of polynomial growth and $u_1, \ldots, u_m \in \mathcal{G}$, the composition $F(u_1, \ldots, u_m) \in \mathcal{G}$ is well-defined and coincides with the usual composition if $u_1, \ldots, u_m \in C^{\infty}$.

In particular, $\mathcal G$ solves the problem of multiplication of distributions.

The algebra ${\mathcal G}$ of nonlinear generalized functions

Distributions are embedded into \mathcal{G} by smoothing. The embedding preserves the vector space operations and ∂_i .

Theorem (Nonlinear operations in \mathcal{G})

If $F \in C^{\infty}(\mathbb{R}^m)$ with all derivatives of polynomial growth and $u_1, \ldots, u_m \in \mathcal{G}$, the composition $F(u_1, \ldots, u_m) \in \mathcal{G}$ is well-defined and coincides with the usual composition if $u_1, \ldots, u_m \in C^{\infty}$.

In particular, $\mathcal G$ solves the problem of multiplication of distributions.

The theorem is optimal, in the following sense:

Theorem (Schwartz impossibility result)

One cannot construct a differential algebra \mathcal{A} containing the distributions such that the product $u_1 \cdot u_2$ in \mathcal{A} coincides with the usual product, if u_1 , $u_2 \in C^k$ (for fixed $k \in \mathbb{N}$).

<ロト < 回 > < 回 > < 回 > < 回 >

Let $u \in \mathcal{G}$.

- $\int_{\mathbb{R}^n} u(x) dx$ can be defined as a generalized number.
- The point value u(a) at $a \in \mathbb{R}^n$ can be defined as a generalized number.
- The set of generalized numbers $\widetilde{\mathbb{R}}$ coincides with the set of generalized functions in $\mathcal G$ with zero gradient.
- $\widetilde{\mathbb{R}}$ is a non-archimedean partially ordered ring that contains $\mathbb{R}.$

Example: $\delta(0) \in \widetilde{\mathbb{R}}$, $\int_{\mathbb{R}^n} \delta^2(x) \, dx \in \widetilde{\mathbb{R}}$ are infinitely large numbers.

\mathbb{R} is a **partially ordered** ring with **zero divisors**.

- Hard to interpret: the value of a generalized function can be a number not comparable with a real number?
- Hard to obtain results: e.g., the Hahn-Banach theorem, a basic tool in functional analysis, does not hold for Banach spaces over $\widetilde{\mathbb{R}}$.

By means of ultrafilters, the algebraic properties of nonlinear generalized functions can be improved (M. Oberguggenberger, T. Todorov, 1998).

An improved version of \mathcal{G} : idea of construction

Let \mathcal{U} be a nontrivial ultrafilter on (0, 1).

In the spirit of ultrafilter-models of nonstandard analysis, an algebra of generalized functions $\mathcal{G}_{\mathcal{U}} := \mathcal{A}_{\mathcal{U}}/\mathcal{I}_{\mathcal{U}}$ can be defined, where

$$\mathcal{A}_{\mathcal{U}} = \{ (u_{\varepsilon})_{\varepsilon} \in (\mathcal{C}^{\infty})^{(0,1)} : \\ (\forall \mathcal{K} \subset \subset \mathbb{R}^{n}) (\forall \alpha \in \mathbb{N}^{n}) (\exists \mathcal{N} \in \mathbb{N}) (\sup_{x \in \mathcal{K}} |\partial^{\alpha} u_{\varepsilon}(x)| \leq \varepsilon^{-\mathcal{N}}, \quad \mathcal{U}\text{-a.e.}) \},$$

$$\mathcal{I}_{\mathcal{U}} = \{ (u_{\varepsilon})_{\varepsilon} \in \mathcal{A}_{\mathcal{U}} : \\ (\forall K \subset \subset \mathbb{R}^n) (\forall \alpha \in \mathbb{N}^n) (\forall m \in \mathbb{N}) (\sup_{x \in K} |\partial^{\alpha} u_{\varepsilon}(x)| \leq \varepsilon^m, \quad \mathcal{U}\text{-a.e.}) \}.$$

It can be checked that this modification does not destroy the desirable properties of \mathcal{G} (in particular, the good embedding of the distributions).

Within $\mathcal{G}_{\mathcal{U}}$:

- The generalized numbers are isomorphic with the nonstandard field of asymptotic numbers ^ρℝ (A. Robinson, 1972).
- $\rho_{\mathbb{R}}$ is a totally ordered, real closed field.
- G_U is isomorphic with an algebra of **pointwise**, infinitely differentiable functions ^ρℝⁿ → ^ρℝ.
- The Hahn-Banach theorem holds for Banach spaces over ${}^{\rho}\mathbb{R}$.

Using principles from nonstandard analysis, problems can be solved more easily.

(日) (周) (三) (三)

The full algebra \mathcal{G}_{full} of nonlinear generalized functions

Embedding of distributions in ${\mathcal G}$

- Fix a particular net $(\varphi_{\varepsilon})_{\varepsilon}$ that approximates δ .
- The embedded image of a distribution T is the net $(T \star \varphi_{\varepsilon})_{\varepsilon}$, approximating T.

The choice of the net $(\varphi_{\varepsilon})_{\varepsilon}$ is not unique and represents one particular way to approximate δ . If one is free to choose an approximation to solve a particular problem, \mathcal{G} can be used.

The full algebra $\mathcal{G}_{\textit{full}}$ of nonlinear generalized functions

Embedding of distributions in ${\mathcal G}$

- Fix a particular net $(\varphi_{\varepsilon})_{\varepsilon}$ that approximates δ .
- The embedded image of a distribution T is the net $(T \star \varphi_{\varepsilon})_{\varepsilon}$, approximating T.

The choice of the net $(\varphi_{\varepsilon})_{\varepsilon}$ is not unique and represents one particular way to approximate δ . If one is free to choose an approximation to solve a particular problem, \mathcal{G} can be used.

If the solution of a problem needs to be independent of the approximation, the so-called **full algebra** \mathcal{G}_{full} (J.-F. Colombeau, 1983) is used. $u \in \mathcal{G}_{full}$ is a net of smooth functions **indexed by** $\mathcal{C}_c^{\infty}(\mathbb{R}^n)$ (up to a certain identification).

Embedding of distributions in \mathcal{G}_{full} (canonical)

• The embedded image of a distribution T is the net $(T \star \varphi)_{\varphi}$.

An improved version of \mathcal{G}_{full}

$$egin{array}{ccc} \mathcal{G} &
ightarrow & \mathcal{G}_\mathcal{U} \ \mathcal{G}_{\mathit{full}} &
ightarrow & ? \end{array}$$

- $\mathcal{G}_{full} = \mathcal{A}_{full} / \mathcal{I}_{full}$, but \mathcal{A}_{full} , \mathcal{I}_{full} do not lend themselves to an interpretation as sets of nets in which a certain growth property holds modulo a filter on $\mathcal{C}_c^{\infty}(\mathbb{R}^n)$.
- Adapting the definition of *G_{full}* to this requirement causes technical difficulties: it is no longer clear that the nets representing distributions (*T* ★ φ)_φ ∈ *A_{full}*!
- By a careful choice of an ultrafilter U on C[∞]_c(ℝⁿ), one can ensure that (T ★ φ)_φ ∈ A_{U,full}. The resulting algebra G_{U,full} satisfies both the good algebraic properties of G_U and the good (canonical) embedding properties of G_{full} (T. Todorov, H. Vernaeve, 2007¹).

¹Full algebra of generalized functions and nonstandard asymptotic analysis, to appear in Logic And Analysis, arXiv:0712:2603.

- To describe singular physical phenomena, generalized functions (distributions) were introduced.
- When nonlinear operations are used, a more general theory of nonlinear generalized functions is needed.
- Ultrafilters can be used to improve the algebraic properties of nonlinear generalized function algebras.

Reference for the theory of Colombeau nonlinear generalized functions: M. Grosser, M. Kunzinger, M. Oberguggenberger, R. Steinbauer, *Geometric Theory of Generalized Functions*, Kluwer, 2001.

・ 何 ト ・ ヨ ト ・ ヨ ト ・