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Linear generalized functions: Dirac’s δ-impulse

Physical interpretation: singular object with an infinite concentration
at the origin x = 0, e.g. mass distribution of a unit point mass.

Formal property:
∫

Rn δ(x)ϕ(x) dx = ϕ(0), for each ϕ ∈ C∞(Rn). (∗)

Observation 1

The map C∞c (Rn) → R: ϕ 7→ ϕ(0) is a continuous linear map.

This map captures the essence of the formal property (∗).

Observation 2

For any (locally integrable) function f , the map
C∞c (Rn) → R: ϕ 7→

∫
Rn f (x)ϕ(x) dx is a continuous linear map.

This map determines f completely (up to measure zero).

C∞c (Rn) = { smooth functions with compact support }
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Linear generalized functions: distributions

Definition

A continuous linear map C∞c (Rn) → R is called a (Schwartz) distribution.

There exists a natural definition of partial differentiation on distributions,
extending the classical definition for C1-functions.
Every distribution has partial derivatives ∂1, . . . , ∂n in this sense.

Applications

Justification of formulas containing derivatives of nondifferentiable
functions used by physicists

Theory of partial differential equations (PDEs):
every linear PDE with constant coefficients has a distributional
solution (L. Ehrenpreis, B. Malgrange, 1955).

Formulation of Quantum Field Theory.
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Multiplication of distributions

Linear operations (+, ∂j ,
∫

) can be defined naturally on distributions.

Products and other nonlinear operations have no natural counterpart
on the space of distributions.

Example: δ2,
√

δ do not make sense as distributions.

Yet:

In theoretical physics, formal products of distributions are used (e.g.,
in quantum field theory, general relativity).

Nonlinear PDEs with singular (discontinuous or distributional) data
occur as models of real-world phenomena (e.g. in geophysics).

Need for a mathematical theory.

Generalized Functions and N.S.A. . (Hans Vernaeve) 5 / 15



Multiplication of distributions

Linear operations (+, ∂j ,
∫

) can be defined naturally on distributions.

Products and other nonlinear operations have no natural counterpart
on the space of distributions.

Example: δ2,
√

δ do not make sense as distributions.

Yet:

In theoretical physics, formal products of distributions are used (e.g.,
in quantum field theory, general relativity).

Nonlinear PDEs with singular (discontinuous or distributional) data
occur as models of real-world phenomena (e.g. in geophysics).

Need for a mathematical theory.

Generalized Functions and N.S.A. . (Hans Vernaeve) 5 / 15



The algebra G of nonlinear generalized functions

Idea

A (Colombeau) nonlinear generalized function ∈ G is constructed
by means of a net (=family) of C∞-functions.

G should contain the space of distributions.

A product in G should be defined that coincides with the product of
(sufficiently regular) usual functions.

G will be a differential algebra provided with an embedding (=injective
morphism) of the space of distributions.
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The algebra G of nonlinear generalized functions

Construction of G (J.F. Colombeau):
(C∞)(0,1) := {nets of smooth functions indexed by a parameter ε ∈ (0, 1)}.

To ensure an embedding of distributions with good properties, the nets are
restricted by a growth condition:

A = {(uε)ε ∈ (C∞)(0,1) :

(∀K ⊂⊂ Rn)(∀α ∈ Nn)(∃N ∈ N)(sup
x∈K

|∂αuε(x)| ≤ ε−N , for small ε)}.

Two nets are identified if their difference belongs to the differential ideal

I = {(uε)ε ∈ A :

(∀K ⊂⊂ Rn)(∀α ∈ Nn)(∀m ∈ N)(sup
x∈K

|∂αuε(x)| ≤ εm, for small ε)}.

By definition, G = A/I.
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The algebra G of nonlinear generalized functions

Distributions are embedded into G by smoothing. The embedding
preserves the vector space operations and ∂j .

Theorem (Nonlinear operations in G)

If F ∈ C∞(Rm) with all derivatives of polynomial growth and
u1, . . . , um ∈ G, the composition F (u1, . . . , um) ∈ G is well-defined and
coincides with the usual composition if u1, . . . , um ∈ C∞.

In particular, G solves the problem of multiplication of distributions.

The theorem is optimal, in the following sense:

Theorem (Schwartz impossibility result)

One cannot construct a differential algebra A containing the distributions
such that the product u1 · u2 in A coincides with the usual product, if u1,
u2 ∈ Ck (for fixed k ∈ N).
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The ring R̃ of generalized numbers

Let u ∈ G.∫
Rnu(x) dx can be defined as a generalized number.

The point value u(a) at a ∈ Rn can be defined as a generalized
number.

The set of generalized numbers R̃ coincides with the set of
generalized functions in G with zero gradient.

R̃ is a non-archimedean partially ordered ring that contains R.

Example: δ(0) ∈ R̃,
∫

Rn δ2(x) dx ∈ R̃ are infinitely large numbers.
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Ultrafilters in generalized function theory

R̃ is a partially ordered ring with zero divisors.

Hard to interpret: the value of a generalized function can be a
number not comparable with a real number?

Hard to obtain results: e.g., the Hahn-Banach theorem, a basic tool
in functional analysis, does not hold for Banach spaces over R̃.

By means of ultrafilters, the algebraic properties of nonlinear generalized
functions can be improved (M. Oberguggenberger, T. Todorov, 1998).
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An improved version of G: idea of construction

Let U be a nontrivial ultrafilter on (0, 1).
In the spirit of ultrafilter-models of nonstandard analysis, an algebra of
generalized functions GU := AU/IU can be defined, where

AU = {(uε)ε ∈ (C∞)(0,1) :

(∀K ⊂⊂ Rn)(∀α ∈ Nn)(∃N ∈ N)(sup
x∈K

|∂αuε(x)| ≤ ε−N , U-a.e.)},

IU = {(uε)ε ∈ AU :

(∀K ⊂⊂ Rn)(∀α ∈ Nn)(∀m ∈ N)(sup
x∈K

|∂αuε(x)| ≤ εm, U-a.e.)}.

It can be checked that this modification does not destroy the desirable
properties of G (in particular, the good embedding of the distributions).
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An improved version of G: properties

Within GU :

The generalized numbers are isomorphic with the nonstandard field
of asymptotic numbers ρR (A. Robinson, 1972).
ρR is a totally ordered, real closed field.

GU is isomorphic with an algebra of pointwise, infinitely differentiable
functions ρRn → ρR.

The Hahn-Banach theorem holds for Banach spaces over ρR.

Using principles from nonstandard analysis, problems can be solved more
easily.
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The full algebra Gfull of nonlinear generalized functions

Embedding of distributions in G
Fix a particular net (ϕε)ε that approximates δ.

The embedded image of a distribution T is the net (T ? ϕε)ε ,
approximating T .

The choice of the net (ϕε)ε is not unique and represents one particular
way to approximate δ. If one is free to choose an approximation to solve a
particular problem, G can be used.

If the solution of a problem needs to be independent of the approximation,
the so-called full algebra Gfull (J.-F. Colombeau, 1983) is used.
u ∈ Gfull is a net of smooth functions indexed by C∞c (Rn) (up to a certain
identification).

Embedding of distributions in Gfull (canonical)

The embedded image of a distribution T is the net (T ? ϕ)ϕ.
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An improved version of Gfull

G → GU
Gfull → ?

Gfull = Afull/Ifull , but Afull , Ifull do not lend themselves to an
interpretation as sets of nets in which a certain growth property holds
modulo a filter on C∞c (Rn).

Adapting the definition of Gfull to this requirement causes technical
difficulties: it is no longer clear that the nets representing
distributions (T ? ϕ)ϕ ∈ Afull !

By a careful choice of an ultrafilter U on C∞c (Rn), one can ensure
that (T ? ϕ)ϕ ∈ AU ,full . The resulting algebra GU ,full satisfies both
the good algebraic properties of GU and the good (canonical)
embedding properties of Gfull (T. Todorov, H. Vernaeve, 20071).

1Full algebra of generalized functions and nonstandard asymptotic analysis, to appear
in Logic And Analysis, arXiv:0712:2603.
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Summary

To describe singular physical phenomena, generalized functions
(distributions) were introduced.

When nonlinear operations are used, a more general theory of
nonlinear generalized functions is needed.

Ultrafilters can be used to improve the algebraic properties of
nonlinear generalized function algebras.

Reference for the theory of Colombeau nonlinear generalized functions:

M. Grosser, M. Kunzinger, M. Oberguggenberger, R. Steinbauer, Geometric

Theory of Generalized Functions, Kluwer, 2001.
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