Superfilters, Ramsey theory, and van der Waerden's Theorem

Boaz Tsaban

Bar-Ilan University and Weizmann Institute of Science

Joint work with Nadav Samet (WIS \rightarrow Google, Inc.)

Ultramath 2008

The Ramsey Phenomenon

If a rich object is partitioned into few pieces,

Pigeonhole principle. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

Pigeonhole principle. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

Pigeonhole principle. 1 4 5 7 9 11 14 ...

 Pigeonhole principle.
 1
 4
 5
 7
 9
 11
 14
 14
 ...

 van der Waerden Theorem.
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 ...

 Pigeonhole principle.
 1
 4
 5
 7
 9
 11
 14
 ...

 van der Waerden Theorem.
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 ...

Pigeonhole principle.145791114...van der Waerden Theorem.145791114...

Superfilters

 $Infinite members: \ \emptyset \neq \mathcal{S} \subseteq [\mathbb{N}]^{\infty};$

- Infinite members: $\emptyset \neq S \subseteq [\mathbb{N}]^{\infty}$;
- **2** Closed upwards: $B \supseteq A \in S \Rightarrow B \in S$;

Superfilters

\mathcal{S} is superfilter (suf) if:

- Infinite members: $\emptyset \neq S \subseteq [\mathbb{N}]^{\infty}$;
- **2** Closed upwards: $B \supseteq A \in S \Rightarrow B \in S$;

- $\ \, {\rm Infinite\ members:}\ \, \emptyset \neq {\cal S} \subseteq [\mathbb{N}]^{\infty};$
- **2** Closed upwards: $B \supseteq A \in S \Rightarrow B \in S$;
- S is ultrafilter (uf) if in addition:
 - **③** Closed under finite intersections: $A, B \in S \Rightarrow A \cap B \in S$.

- Infinite members: $\emptyset \neq S \subseteq [\mathbb{N}]^{\infty}$;
- **2** Closed upwards: $B \supseteq A \in S \Rightarrow B \in S$;
- \mathcal{S} is ultrafilter (uf) if in addition:
 - **③** Closed under finite intersections: $A, B \in S \Rightarrow A \cap B \in S$.

Every uf is suf.

- Infinite members: $\emptyset \neq S \subseteq [\mathbb{N}]^{\infty}$;
- **2** Closed upwards: $B \supseteq A \in S \Rightarrow B \in S$;
- \mathcal{S} is ultrafilter (uf) if in addition:
 - **③** Closed under finite intersections: $A, B \in S \Rightarrow A \cap B \in S$.

Every uf is suf.

Pigeon-hole principle. $[\mathbb{N}]^{\infty}$ is suf

- $\ \, {\rm Infinite\ members:}\ \, \emptyset \neq {\cal S} \subseteq [\mathbb{N}]^{\infty};$
- **2** Closed upwards: $B \supseteq A \in S \Rightarrow B \in S$;
- \mathcal{S} is ultrafilter (uf) if in addition:
 - **③** Closed under finite intersections: $A, B \in S \Rightarrow A \cap B \in S$.

Every uf is suf.

Pigeon-hole principle. $[\mathbb{N}]^{\infty}$ is suf (not uf).

- $\ \, {\rm Infinite\ members:}\ \, \emptyset \neq {\cal S} \subseteq [\mathbb{N}]^{\infty};$
- **2** Closed upwards: $B \supseteq A \in S \Rightarrow B \in S$;
- \mathcal{S} is ultrafilter (uf) if in addition:
 - **③** Closed under finite intersections: $A, B \in S \Rightarrow A \cap B \in S$.

Every uf is suf.

Pigeon-hole principle. $[\mathbb{N}]^{\infty}$ is suf (not uf).

AP: Sets containing arbitrarily long arithmetic progressions.

- $\ \, {\rm Infinite\ members:}\ \, \emptyset \neq {\cal S} \subseteq [\mathbb{N}]^{\infty};$
- **2** Closed upwards: $B \supseteq A \in S \Rightarrow B \in S$;
- S is ultrafilter (uf) if in addition:
 - **③** Closed under finite intersections: $A, B \in S \Rightarrow A \cap B \in S$.

Every uf is suf.

Pigeon-hole principle. $[\mathbb{N}]^{\infty}$ is suf (not uf).

AP: Sets containing arbitrarily long arithmetic progressions.

van der Waerden Theorem. AP is suf

- $\ \, {\rm Infinite\ members:}\ \, \emptyset \neq {\cal S} \subseteq [\mathbb{N}]^{\infty};$
- **2** Closed upwards: $B \supseteq A \in S \Rightarrow B \in S$;
- \mathcal{S} is ultrafilter (uf) if in addition:
 - **③** Closed under finite intersections: $A, B \in S \Rightarrow A \cap B \in S$.

Every uf is suf.

Pigeon-hole principle. $[\mathbb{N}]^{\infty}$ is suf (not uf).

AP: Sets containing arbitrarily long arithmetic progressions.

van der Waerden Theorem. AP is suf (not uf).

Ramsey's Theorem

Ramsey's Theorem

If the edges of an infinite complete graph have two colors

Ramsey's Theorem

If the edges of an infinite complete graph have two colors

Then \exists infinite complete monochromatic subgraph.

Ramsey superfilters

$$\mathcal{S} \to (\mathcal{S})_k^n$$
: $\forall A \in \mathcal{S} \ \forall c : [A]^n \to \{1, \dots, k\} \ \exists M \subseteq A, \ M \in \mathcal{S}, \ c \mid_{[M]^n} \equiv \text{const.}$

$$\mathcal{S} \to (\mathcal{S})_k^n$$
: $\forall A \in \mathcal{S} \ \forall c : [A]^n \to \{1, \dots, k\} \ \exists M \subseteq A, \ M \in \mathcal{S}, \ c \mid_{[M]^n} \equiv \text{const.}$

Ramsey Theorem. $[\mathbb{N}]^{\infty} \to ([\mathbb{N}]^{\infty})_k^n$.

 $\mathcal{S} \to (\mathcal{S})_k^n : \forall A \in \mathcal{S} \ \forall c : [A]^n \to \{1, \dots, k\} \ \exists M \subseteq A, \ M \in \mathcal{S}, \ c \mid_{[M]^n} \equiv \text{const.}$

Ramsey Theorem. $[\mathbb{N}]^{\infty} \to ([\mathbb{N}]^{\infty})_{k}^{n}$.

 $\begin{array}{l} \mathcal{S} \text{ weakly Ramsey:} \\ \forall \text{ disjoint } A_1, A_2, \ldots \notin \mathcal{S} \text{ with } \bigcup_n A_n \in \mathcal{S}, \\ \exists A \subseteq \bigcup_n A_n, \ A \in \mathcal{S}, \ |A \cap A_n| \leq 1 \text{ for all } n. \end{array}$

 $\mathcal{S} \to (\mathcal{S})_k^n : \forall A \in \mathcal{S} \ \forall c : [A]^n \to \{1, \dots, k\} \ \exists M \subseteq A, \ M \in \mathcal{S}, \ c \mid_{[M]^n} \equiv \text{const.}$

Ramsey Theorem. $[\mathbb{N}]^{\infty} \to ([\mathbb{N}]^{\infty})_{k}^{n}$.

 $\begin{array}{l} \mathcal{S} \text{ weakly Ramsey:} \\ \forall \text{ disjoint } A_1, A_2, \ldots \notin \mathcal{S} \text{ with } \bigcup_n A_n \in \mathcal{S}, \\ \exists A \subseteq \bigcup_n A_n, \ A \in \mathcal{S}, \ |A \cap A_n| \leq 1 \text{ for all } n. \end{array}$

Booth-Kunen Theorem. Fur uf's \mathcal{U} : weakly Ramsey $\Leftrightarrow \mathcal{U} \to (\mathcal{U})_k^n$.

 $\mathcal{S} \to (\mathcal{S})_k^n$: $\forall A \in \mathcal{S} \ \forall c : [A]^n \to \{1, \dots, k\} \ \exists M \subseteq A, \ M \in \mathcal{S}, \ c \mid_{[M]^n} \equiv \text{const.}$

Ramsey Theorem. $[\mathbb{N}]^{\infty} \to ([\mathbb{N}]^{\infty})_k^n$.

 $\begin{array}{l} \mathcal{S} \text{ weakly Ramsey:} \\ \forall \text{ disjoint } A_1, A_2, \ldots \notin \mathcal{S} \text{ with } \bigcup_n A_n \in \mathcal{S}, \\ \exists A \subseteq \bigcup_n A_n, \ A \in \mathcal{S}, \ |A \cap A_n| \leq 1 \text{ for all } n. \end{array}$

Booth-Kunen Theorem. Fur uf's \mathcal{U} : weakly Ramsey $\Leftrightarrow \mathcal{U} \to (\mathcal{U})_k^n$.

 $\begin{array}{l} \mathcal{S} \text{ strongly Ramsey:} \\ \forall \text{ disjoint } A_1, A_2, \dots \text{ with } \bigcup_{n \geq m} A_n \in \mathcal{S} \ (\forall m), \\ \exists \ A \subseteq \bigcup_n A_n, \ A \in \mathcal{S}, \ |A \cap A_n| \leq 1 \text{ for all } n. \end{array}$

S shrinkable: \forall disjoint A_1, A_2, \ldots with $\bigcup_{n \ge m} A_n \in S$ ($\forall m$), $\exists B_n \subseteq A_n, B_n \notin S, \bigcup_n B_n \in S$.

S shrinkable: \forall disjoint A_1, A_2, \ldots with $\bigcup_{n \ge m} A_n \in S$ ($\forall m$), $\exists B_n \subseteq A_n, B_n \notin S, \bigcup_n B_n \in S$.

Theorem

For suf's S, TFAE:

- **1** S is strongly Ramsey.
- **2** $\mathcal{S} \to (\mathcal{S})_k^n$ and \mathcal{S} is shrinkable.
- 3 S is weakly Ramsey and shrinkable.

 $\begin{array}{l} \mathcal{S} \text{ shrinkable: } \forall \text{ disjoint } A_1, A_2, \dots \text{ with } \bigcup_{n \geq m} A_n \in \mathcal{S} \ (\forall m), \\ \exists B_n \subseteq A_n, B_n \notin \mathcal{S}, \bigcup_n B_n \in \mathcal{S}. \end{array}$

Theorem

For suf's S, TFAE:

- **1** S is strongly Ramsey.
- **2** $\mathcal{S} \to (\mathcal{S})_k^n$ and \mathcal{S} is shrinkable.
- 3 S is weakly Ramsey and shrinkable.

 $(1) \Rightarrow (2)$ is the hardest.

 $\begin{array}{l} \mathcal{S} \text{ shrinkable: } \forall \text{ disjoint } A_1, A_2, \dots \text{ with } \bigcup_{n \geq m} A_n \in \mathcal{S} \ (\forall m), \\ \exists B_n \subseteq A_n, B_n \notin \mathcal{S}, \bigcup_n B_n \in \mathcal{S}. \end{array}$

Theorem

For suf's S, TFAE:

- **1** S is strongly Ramsey.
- **2** $\mathcal{S} \to (\mathcal{S})_k^n$ and \mathcal{S} is shrinkable.
- **3** *S* is weakly Ramsey and shrinkable.

 $(1) \Rightarrow (2)$ is the hardest.

Corollary.

• Ramsey Theorem. ($[\mathbb{N}]^{\infty}$ is strongly Ramsey.)

 $\begin{array}{l} \mathcal{S} \text{ shrinkable: } \forall \text{ disjoint } A_1, A_2, \dots \text{ with } \bigcup_{n \geq m} A_n \in \mathcal{S} \ (\forall m), \\ \exists B_n \subseteq A_n, B_n \notin \mathcal{S}, \bigcup_n B_n \in \mathcal{S}. \end{array}$

Theorem

For suf's S, TFAE:

- **1** S is strongly Ramsey.
- **2** $\mathcal{S} \to (\mathcal{S})_k^n$ and \mathcal{S} is shrinkable.
- 3 S is weakly Ramsey and shrinkable.

 $(1) \Rightarrow (2)$ is the hardest.

Corollary.

- Ramsey Theorem. ($[\mathbb{N}]^{\infty}$ is strongly Ramsey.)
- Ø Booth-Kunen Theorem. (uf's are shrinkable.)

$S_1(\mathcal{S},\mathcal{S})$: $\forall S_1, S_2, \dots \in \mathcal{S}, \exists s_n \in S_n, \{s_n : n \in \mathbb{N}\} \in \mathcal{S}.$

$S_1(\mathcal{S},\mathcal{S})$: $\forall S_1, S_2, \dots \in \mathcal{S}, \exists s_n \in S_n, \{s_n : n \in \mathbb{N}\} \in \mathcal{S}.$

Theorem

For suf's: S strongly Ramsey $\Rightarrow S_1(S,S) \Rightarrow S$ is shrinkable.

$S_1(\mathcal{S},\mathcal{S})$: $\forall S_1, S_2, \dots \in \mathcal{S}, \exists s_n \in S_n, \{s_n : n \in \mathbb{N}\} \in \mathcal{S}.$

Theorem

For suf's: S strongly Ramsey $\Rightarrow S_1(S,S) \Rightarrow S$ is shrinkable.

 $X \subseteq \mathbb{R}$.

$$S_1(\mathcal{S},\mathcal{S})$$
: $\forall S_1, S_2, \dots \in \mathcal{S}, \exists s_n \in S_n, \{s_n : n \in \mathbb{N}\} \in \mathcal{S}.$

Theorem

For suf's: S strongly Ramsey $\Rightarrow S_1(S,S) \Rightarrow S$ is shrinkable.

 $X \subseteq \mathbb{R}$. $C(X) = \{$ continuous $f : X \to \mathbb{R} \} \subseteq \mathbb{R}^X$.

$$S_1(\mathcal{S},\mathcal{S})$$
: $\forall S_1, S_2, \dots \in \mathcal{S}, \exists s_n \in S_n, \{s_n : n \in \mathbb{N}\} \in \mathcal{S}.$

Theorem

For suf's: S strongly Ramsey $\Rightarrow S_1(S,S) \Rightarrow S$ is shrinkable.

 $X \subseteq \mathbb{R}$. $C(X) = \{$ continuous $f : X \to \mathbb{R} \} \subseteq \mathbb{R}^X$. Nonmetrizable.

$$S_1(\mathcal{S},\mathcal{S})$$
: $\forall S_1, S_2, \dots \in \mathcal{S}, \exists s_n \in S_n, \{s_n : n \in \mathbb{N}\} \in \mathcal{S}.$

Theorem

For suf's: S strongly Ramsey $\Rightarrow S_1(S,S) \Rightarrow S$ is shrinkable.

 $X \subseteq \mathbb{R}$. $C(X) = \{$ continuous $f : X \to \mathbb{R} \} \subseteq \mathbb{R}^X$. Nonmetrizable. Closure in C(X) leads to ...

 $\mathcal{U} \in \Omega$: \forall finite $F \subseteq X$, $\exists U \in \mathcal{U}, F \subseteq U$.

$S_1(\mathcal{S},\mathcal{S})$: $\forall S_1, S_2, \dots \in \mathcal{S}, \exists s_n \in S_n, \{s_n : n \in \mathbb{N}\} \in \mathcal{S}.$

Theorem

For suf's: S strongly Ramsey $\Rightarrow S_1(S,S) \Rightarrow S$ is shrinkable.

 $X \subseteq \mathbb{R}$. $C(X) = \{$ continuous $f : X \to \mathbb{R} \} \subseteq \mathbb{R}^X$. Nonmetrizable.

Closure in C(X) leads to ...

 $\mathcal{U} \in \Omega$: \forall finite $F \subseteq X$, $\exists U \in \mathcal{U}, F \subseteq U$.

Scheepers Theorem. TFAE:

• $S_1(\Omega, \Omega)$.

 $\ 2 \ \Omega \to (\Omega)_k^n.$

$$S_1(\mathcal{S},\mathcal{S})$$
: $\forall S_1, S_2, \dots \in \mathcal{S}, \exists s_n \in S_n, \{s_n : n \in \mathbb{N}\} \in \mathcal{S}.$

Theorem

For suf's: S strongly Ramsey $\Rightarrow S_1(S,S) \Rightarrow S$ is shrinkable.

 $X \subseteq \mathbb{R}$. $C(X) = \{$ continuous $f : X \to \mathbb{R} \} \subseteq \mathbb{R}^X$. Nonmetrizable.

Closure in C(X) leads to ...

 $\mathcal{U} \in \Omega$: \forall finite $F \subseteq X$, $\exists U \in \mathcal{U}, F \subseteq U$.

Scheepers Theorem. TFAE:

 $S_1(\Omega, \Omega).$

 $\begin{aligned} \mathcal{U}_1 \cup \mathcal{U}_2 \in \Omega \Rightarrow \mathcal{U}_1 \in \Omega \text{ or } \mathcal{U}_2 \in \Omega. \\ \therefore \mathcal{U} \text{ countable } \Rightarrow \{\mathcal{V} \subseteq \mathcal{U} : \mathcal{V} \in \Omega\} \text{ suf on } \mathcal{U}! \end{aligned}$

- $\mathcal{I} \subseteq P(X)$ ideal:
 - $\ \, \bullet \ \, X \notin \mathcal{I};$

 - $\ \, {\bf \textbf{(}} \ \ \) \ \ \ \)}}}}})) }$

- $\mathcal{I} \subseteq P(X)$ ideal:
 - $1 X \notin \mathcal{I};$

 - $\ \, {\bf \textbf{(}} \ \ \) \ \ \ \)}}}}})) }$

 $\mathcal{U} \in \mathcal{O}_{\mathcal{I}}$: $\forall B \in \mathcal{I}, \exists U \in \mathcal{U}, B \subseteq U$.

- $\mathcal{I} \subseteq P(X)$ ideal:
 - $1 X \notin \mathcal{I};$
 - $a \subseteq B \in \mathcal{I} \Rightarrow A \in \mathcal{I};$

 - $\{x\} \in \mathcal{I} \ (\forall x \in X).$

```
\mathcal{U} \in \mathcal{O}_{\mathcal{I}}: \forall B \in \mathcal{I}, \exists U \in \mathcal{U}, B \subseteq U.
```

Generalization of Sch. Theorem and DM-K-M Conjecture:

Theorem

TFAE:

- $S_1(\mathcal{O}_\mathcal{I}, \mathcal{O}_\mathcal{I}).$
- ② ∀ disjoint $U_1, U_2, ... \notin O_{\mathcal{I}}$ with $\bigcup_n U_n \in O_{\mathcal{I}}, \exists \mathcal{V} \subseteq \bigcup_n U_n, \mathcal{V} \in O_{\mathcal{I}}, |\mathcal{V} \cap U_n| \le 1$ for all n.

Furstenberg-Weiss: AP \rightarrow (AP)₂².

Furstenberg-Weiss: AP \rightarrow (AP)₂².

 $A\!P$ is not even weakly Ramsey!

Furstenberg-Weiss: AP \rightarrow (AP)₂².

AP is not even weakly Ramsey!

 $\begin{array}{l} \mathcal{S} \to [\mathcal{S}]_k^n \text{ (Baumgartner-Taylor):} \\ \forall A \in \mathcal{S}, \forall c : [A]^n \to \{1, 2, \dots, k\}, \\ \exists \bigcup_n F_n \subseteq A \text{ (}F_n \text{ finite), } \bigcup_n F_n \in \mathcal{S}, \text{ } c \text{ constant on selectors.} \end{array}$

Furstenberg-Weiss: AP \rightarrow (AP)₂².

AP is not even weakly Ramsey!

$$\begin{array}{l} \mathcal{S} \to [\mathcal{S}]_k^n \text{ (Baumgartner-Taylor):} \\ \forall A \in \mathcal{S}, \ \forall c : [A]^n \to \{1, 2, \dots, k\}, \\ \exists \bigcup_n F_n \subseteq A \ (F_n \ \text{finite}), \ \bigcup_n F_n \in \mathcal{S}, \ c \ \text{constant on selectors.} \end{array}$$

Theorem

For suf's, TFAE:

- S is a P-point (chains have lower bounds).
- **2** $S_{fin}(\mathcal{S}, \mathcal{S})$.
- **3** $\mathcal{S} \to [\mathcal{S}]_k^n$ for all n, k, and \mathcal{S} is shrinkable.

Furstenberg-Weiss: AP \rightarrow (AP)₂².

AP is not even weakly Ramsey!

$$\begin{array}{l} \mathcal{S} \to \lceil \mathcal{S} \rceil_k^n \text{ (Baumgartner-Taylor):} \\ \forall A \in \mathcal{S}, \ \forall c : [A]^n \to \{1, 2, \dots, k\}, \\ \exists \bigcup_n F_n \subseteq A \ (F_n \text{ finite}), \ \bigcup_n F_n \in \mathcal{S}, \ c \text{ constant on selectors.} \end{array}$$

Theorem

For suf's, TFAE:

1 S is a *P*-point (chains have lower bounds).

2
$$\mathsf{S}_{\mathrm{fin}}(\mathcal{S},\mathcal{S}).$$

3 $\mathcal{S} \to [\mathcal{S}]_k^n$ for all n, k, and \mathcal{S} is shrinkable.

$AP \to \lceil AP \rceil_k^n.$

Furstenberg-Weiss: AP \rightarrow (AP)₂².

AP is not even weakly Ramsey!

$$\begin{array}{l} \mathcal{S} \to [\mathcal{S}]_k^n \text{ (Baumgartner-Taylor):} \\ \forall A \in \mathcal{S}, \ \forall c : [A]^n \to \{1, 2, \dots, k\}, \\ \exists \bigcup_n F_n \subseteq A \ (F_n \ \text{finite}), \ \bigcup_n F_n \in \mathcal{S}, \ c \ \text{constant on selectors.} \end{array}$$

Theorem

For suf's, TFAE:

1 S is a *P*-point (chains have lower bounds).

2
$$\mathsf{S}_{\mathrm{fin}}(\mathcal{S},\mathcal{S}).$$

3 $\mathcal{S} \to [\mathcal{S}]_k^n$ for all n, k, and \mathcal{S} is shrinkable.

Corollary

 $AP \rightarrow \lceil AP \rceil_k^n$. Implies Ramsey and van der Waerden!

Future plans

suf = union of uf's. Moreover: $C \subseteq \beta(\mathbb{N})$ closed $\Leftrightarrow \exists$ suf S, $C = \{ uf \mathcal{U} : \mathcal{U} \subseteq S \}$.

suf = union of uf's. Moreover: $C \subseteq \beta(\mathbb{N})$ closed $\Leftrightarrow \exists$ suf S, $C = \{ uf \mathcal{U} : \mathcal{U} \subseteq S \}$.

 \therefore suf's describe the topology of $\beta(\mathbb{N})$.

suf = union of uf's. Moreover: $C \subseteq \beta(\mathbb{N})$ closed $\Leftrightarrow \exists$ suf S, $C = \{ uf \ U : U \subseteq S \}.$

 \therefore suf's describe the topology of $\beta(\mathbb{N})$.

Use this to establish connections with ergodic theory.

suf = union of uf's. Moreover: $C \subseteq \beta(\mathbb{N})$ closed $\Leftrightarrow \exists$ suf S, $C = \{ uf \ U : U \subseteq S \}.$

 \therefore suf's describe the topology of $\beta(\mathbb{N})$.

Use this to establish connections with ergodic theory.

I'm working on this...