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The Ramsey Phenomenon

If a rich object is partitioned into few pieces,
at least one piece must be rich.

Pigeonhole principle.

van der Waerden Theorem.
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Superfilters

S is superfilter (suf) if:

1 Infinite members: ∅ 6= S ⊆ [N]∞;

2 Closed upwards: B ⊇ A ∈ S ⇒ B ∈ S;

3 Accepts: A ∪ B ∈ S ⇒ A ∈ S or B ∈ S.

S is ultrafilter (uf) if in addition:

4 Closed under finite intersections: A,B ∈ S ⇒ A ∩ B ∈ S.

Every uf is suf.

Pigeon-hole principle. [N]∞ is suf (not uf).

AP: Sets containing arbitrarily long arithmetic progressions.

van der Waerden Theorem. AP is suf (not uf).
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Ramsey’s Theorem

If the edges of an infinite complete graph have two colors

Then ∃ infinite complete monochromatic subgraph.
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Ramsey superfilters

S → (S)nk : ∀A ∈ S ∀c : [A]n → {1, . . . , k} ∃M ⊆ A, M ∈ S,
c |[M]n≡ const.

Ramsey Theorem. [N]∞ → ([N]∞)nk .

S weakly Ramsey:
∀ disjoint A1,A2, . . . /∈ S with

⋃
n An ∈ S,

∃A ⊆
⋃

n An, A ∈ S, |A ∩ An| ≤ 1 for all n.

Booth-Kunen Theorem. Fur uf’s U : weakly Ramsey ⇔ U → (U)nk .

S strongly Ramsey:
∀ disjoint A1,A2, . . . with

⋃
n≥m An ∈ S (∀m),

∃ A ⊆
⋃

n An, A ∈ S, |A ∩ An| ≤ 1 for all n.
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Characterization of Ramsey superfilters

S shrinkable: ∀ disjoint A1,A2, . . . with
⋃

n≥m An ∈ S (∀m),
∃Bn ⊆ An, Bn /∈ S,

⋃
n Bn ∈ S.

Theorem

For suf’s S, TFAE:

1 S is strongly Ramsey.

2 S → (S)nk and S is shrinkable.

3 S is weakly Ramsey and shrinkable.

(1) ⇒ (2) is the hardest.

Corollary.

1 Ramsey Theorem. ([N]∞ is strongly Ramsey.)

2 Booth-Kunen Theorem. (uf’s are shrinkable.)
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Scheepers Theorem

S1(S,S): ∀S1,S2, · · · ∈ S, ∃sn ∈ Sn, {sn : n ∈ N} ∈ S.

Theorem

For suf’s: S strongly Ramsey ⇒ S1(S,S) ⇒ S is shrinkable.

X ⊆ R. C (X ) = {continuous f : X → R} ⊆ RX . Nonmetrizable.

Closure in C (X ) leads to . . .

U ∈ Ω: ∀ finite F ⊆ X , ∃U ∈ U , F ⊆ U.

Scheepers Theorem. TFAE:

1 S1(Ω,Ω).

2 Ω → (Ω)nk .

U1 ∪ U2 ∈ Ω ⇒ U1 ∈ Ω or U2 ∈ Ω.
∴ U countable ⇒ {V ⊆ U : V ∈ Ω} suf on U !
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Di Maio-Kočinac-Meccariello Conjecture (generalized)

I ⊆ P(X ) ideal:

1 X /∈ I;

2 A ⊆ B ∈ I ⇒ A ∈ I;

3 A,B ∈ I ⇒ A ∪ B ∈ I;

4 {x} ∈ I (∀x ∈ X ).

U ∈ OI : ∀ B ∈ I, ∃U ∈ U , B ⊆ U.

Generalization of Sch. Theorem and DM-K-M Conjecture:

Theorem

TFAE:

1 S1(OI ,OI).
2 ∀ disjoint U1,U2, . . . /∈ OI with

⋃
n Un ∈ OI , ∃V ⊆

⋃
n Un,

V ∈ OI , |V ∩ Un| ≤ 1 for all n.

3 OI → (OI)nk .
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Back to van der Waerden

Furstenberg-Weiss: AP 9 (AP)22.

AP is not even weakly Ramsey!

S → dSenk (Baumgartner-Taylor):
∀A ∈ S, ∀c : [A]n → {1, 2, . . . , k},
∃

⋃
n· Fn ⊆ A (Fn finite),

⋃
n Fn ∈ S, c constant on selectors.

Theorem

For suf’s, TFAE:

1 S is a P-point (chains have lower bounds).

2 Sfin(S,S).

3 S → dSenk for all n, k, and S is shrinkable.

Corollary

AP → dAPenk . Implies Ramsey and van der Waerden!
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Future plans

Study the space σ(N) of all suf’s.
Much β(N) stuff holds here too.

suf = union of uf’s. Moreover:
C ⊆ β(N) closed ⇔ ∃ suf S, C = {uf U : U ⊆ S}.

∴ suf’s describe the topology of β(N).

Use this to establish connections with ergodic theory.

I’m working on this. . .
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