Superfilters, Ramsey theory, and van der Waerden's Theorem

Boaz Tsaban
Bar-Ilan University
and
Weizmann Institute of Science

Joint work with Nadav Samet (WIS \rightarrow Google, Inc.)
Ultramath 2008

The Ramsey Phenomenon

The Ramsey Phenomenon

If a rich object is partitioned into few pieces,

If a rich object is partitioned into few pieces, at least one piece must be rich.

If a rich object is partitioned into few pieces, at least one piece must be rich.

Pigeonhole principle. 1234567891011121314 ...

If a rich object is partitioned into few pieces, at least one piece must be rich.

Pigeonhole principle. 1234567891011121314 ...

If a rich object is partitioned into few pieces, at least one piece must be rich.

Pigeonhole principle. $1 \quad 45 \quad 7 \quad 9 \quad 11 \quad 14 \ldots$

If a rich object is partitioned into few pieces, at least one piece must be rich.

Pigeonhole principle. $1 \quad 45 \quad 7 \quad 9 \quad 11 \quad 14 \ldots$
van der Waerden Theorem. $1234567891011121314 \ldots$

If a rich object is partitioned into few pieces, at least one piece must be rich.

Pigeonhole principle. $1 \quad 45 \quad 7 \quad 9 \quad 11 \quad 14 \ldots$
van der Waerden Theorem. $1234567891011121314 \ldots$

If a rich object is partitioned into few pieces, at least one piece must be rich.

Pigeonhole principle. $1 \quad 45 \quad 7 \quad 9 \quad 11 \quad 14 \ldots$
van der Waerden Theorem. $1 \quad 4 \underline{5} \quad \underline{9} \quad \underline{11} \quad 14 \ldots$

Superfilters

Boaz Tsaban Superfilters

Superfilters

\mathcal{S} is superfilter (suf) if:
(1) Infinite members: $\emptyset \neq \mathcal{S} \subseteq[\mathbb{N}]^{\infty}$;

Superfilters

\mathcal{S} is superfilter (suf) if:
(1) Infinite members: $\emptyset \neq \mathcal{S} \subseteq[\mathbb{N}]^{\infty}$;
(2) Closed upwards: $B \supseteq A \in \mathcal{S} \Rightarrow B \in \mathcal{S}$;

Superfilters

\mathcal{S} is superfilter (suf) if:
(1) Infinite members: $\emptyset \neq \mathcal{S} \subseteq[\mathbb{N}]^{\infty}$;
(2) Closed upwards: $B \supseteq A \in \mathcal{S} \Rightarrow B \in \mathcal{S}$;
(3) Accepts: $A \cup B \in \mathcal{S} \Rightarrow A \in \mathcal{S}$ or $B \in \mathcal{S}$.

Superfilters

\mathcal{S} is superfilter (suf) if:
(1) Infinite members: $\emptyset \neq \mathcal{S} \subseteq[\mathbb{N}]^{\infty}$;
(2) Closed upwards: $B \supseteq A \in \mathcal{S} \Rightarrow B \in \mathcal{S}$;
(3) Accepts: $A \cup B \in \mathcal{S} \Rightarrow A \in \mathcal{S}$ or $B \in \mathcal{S}$.
\mathcal{S} is ultrafilter (uf) if in addition:
(9) Closed under finite intersections: $A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$.

Superfilters

\mathcal{S} is superfilter (suf) if:
(1) Infinite members: $\emptyset \neq \mathcal{S} \subseteq[\mathbb{N}]^{\infty}$;
(2) Closed upwards: $B \supseteq A \in \mathcal{S} \Rightarrow B \in \mathcal{S}$;
(3) Accepts: $A \cup B \in \mathcal{S} \Rightarrow A \in \mathcal{S}$ or $B \in \mathcal{S}$.
\mathcal{S} is ultrafilter (uf) if in addition:
(4) Closed under finite intersections: $A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$.

Every uf is suf.

Superfilters

\mathcal{S} is superfilter (suf) if:
(1) Infinite members: $\emptyset \neq \mathcal{S} \subseteq[\mathbb{N}]^{\infty}$;
(2) Closed upwards: $B \supseteq A \in \mathcal{S} \Rightarrow B \in \mathcal{S}$;
(3) Accepts: $A \cup B \in \mathcal{S} \Rightarrow A \in \mathcal{S}$ or $B \in \mathcal{S}$.
\mathcal{S} is ultrafilter (uf) if in addition:
(4) Closed under finite intersections: $A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$.

Every uf is suf.
Pigeon-hole principle. $[\mathbb{N}]^{\infty}$ is suf

Superfilters

\mathcal{S} is superfilter (suf) if:
(1) Infinite members: $\emptyset \neq \mathcal{S} \subseteq[\mathbb{N}]^{\infty}$;
(2) Closed upwards: $B \supseteq A \in \mathcal{S} \Rightarrow B \in \mathcal{S}$;
(3) Accepts: $A \cup B \in \mathcal{S} \Rightarrow A \in \mathcal{S}$ or $B \in \mathcal{S}$.
\mathcal{S} is ultrafilter (uf) if in addition:
(4) Closed under finite intersections: $A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$.

Every uf is suf.
Pigeon-hole principle. $[\mathbb{N}]^{\infty}$ is suf (not uf).

Superfilters

\mathcal{S} is superfilter (suf) if:
(1) Infinite members: $\emptyset \neq \mathcal{S} \subseteq[\mathbb{N}]^{\infty}$;
(2) Closed upwards: $B \supseteq A \in \mathcal{S} \Rightarrow B \in \mathcal{S}$;
(3) Accepts: $A \cup B \in \mathcal{S} \Rightarrow A \in \mathcal{S}$ or $B \in \mathcal{S}$.
\mathcal{S} is ultrafilter (uf) if in addition:
(4) Closed under finite intersections: $A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$.

Every uf is suf.
Pigeon-hole principle. $[\mathbb{N}]^{\infty}$ is suf (not uf).
AP: Sets containing arbitrarily long arithmetic progressions.

Superfilters

\mathcal{S} is superfilter (suf) if:
(1) Infinite members: $\emptyset \neq \mathcal{S} \subseteq[\mathbb{N}]^{\infty}$;
(2) Closed upwards: $B \supseteq A \in \mathcal{S} \Rightarrow B \in \mathcal{S}$;
(3) Accepts: $A \cup B \in \mathcal{S} \Rightarrow A \in \mathcal{S}$ or $B \in \mathcal{S}$.
\mathcal{S} is ultrafilter (uf) if in addition:
(4) Closed under finite intersections: $A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$.

Every uf is suf.
Pigeon-hole principle. $[\mathbb{N}]^{\infty}$ is suf (not uf).
AP: Sets containing arbitrarily long arithmetic progressions.
van der Waerden Theorem. AP is suf

Superfilters

\mathcal{S} is superfilter (suf) if:
(1) Infinite members: $\emptyset \neq \mathcal{S} \subseteq[\mathbb{N}]^{\infty}$;
(2) Closed upwards: $B \supseteq A \in \mathcal{S} \Rightarrow B \in \mathcal{S}$;
(3) Accepts: $A \cup B \in \mathcal{S} \Rightarrow A \in \mathcal{S}$ or $B \in \mathcal{S}$.
\mathcal{S} is ultrafilter (uf) if in addition:
(4) Closed under finite intersections: $A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$.

Every uf is suf.
Pigeon-hole principle. $[\mathbb{N}]^{\infty}$ is suf (not uf).
AP: Sets containing arbitrarily long arithmetic progressions.
van der Waerden Theorem. AP is suf (not uf).

Ramsey's Theorem

Ramsey's Theorem

If the edges of an infinite complete graph have two colors

Ramsey's Theorem

If the edges of an infinite complete graph have two colors

Then \exists infinite complete monochromatic subgraph.

Ramsey superfilters

Ramsey superfilters

$$
\begin{aligned}
& \mathcal{S} \rightarrow(\mathcal{S})_{k}^{n}: \forall A \in \mathcal{S} \forall c:[A]^{n} \rightarrow\{1, \ldots, k\} \exists M \subseteq A, M \in \mathcal{S}, \\
& \left.c\right|_{[M]^{n} \equiv \text { const. }} .
\end{aligned}
$$

Ramsey superfilters

$\mathcal{S} \rightarrow(\mathcal{S})_{k}^{n}: \forall A \in \mathcal{S} \forall c:[A]^{n} \rightarrow\{1, \ldots, k\} \exists M \subseteq A, M \in \mathcal{S}$, $\left.c\right|_{[M]^{n}} \equiv$ const.
Ramsey Theorem. $[\mathbb{N}]^{\infty} \rightarrow\left([\mathbb{N}]^{\infty}\right)_{k}^{n}$.

Ramsey superfilters

$\mathcal{S} \rightarrow(\mathcal{S})_{k}^{n}: \forall A \in \mathcal{S} \forall c:[A]^{n} \rightarrow\{1, \ldots, k\} \exists M \subseteq A, M \in \mathcal{S}$,
c $\left.\right|_{[M]^{n}} \equiv$ const.
Ramsey Theorem. $[\mathbb{N}]^{\infty} \rightarrow\left([\mathbb{N}]^{\infty}\right)_{k}^{n}$.
\mathcal{S} weakly Ramsey:
\forall disjoint $A_{1}, A_{2}, \ldots \notin \mathcal{S}$ with $\bigcup_{n} A_{n} \in \mathcal{S}$,
$\exists A \subseteq \bigcup_{n} A_{n}, A \in \mathcal{S},\left|A \cap A_{n}\right| \leq 1$ for all n.

Ramsey superfilters

$\mathcal{S} \rightarrow(\mathcal{S})_{k}^{n}: \forall A \in \mathcal{S} \forall c:[A]^{n} \rightarrow\{1, \ldots, k\} \exists M \subseteq A, M \in \mathcal{S}$,
c $\left.\right|_{[M]^{n}} \equiv$ const.
Ramsey Theorem. $[\mathbb{N}]^{\infty} \rightarrow\left([\mathbb{N}]^{\infty}\right)_{k}^{n}$.
\mathcal{S} weakly Ramsey:
\forall disjoint $A_{1}, A_{2}, \ldots \notin \mathcal{S}$ with $\bigcup_{n} A_{n} \in \mathcal{S}$,
$\exists A \subseteq \bigcup_{n} A_{n}, A \in \mathcal{S},\left|A \cap A_{n}\right| \leq 1$ for all n.
Booth-Kunen Theorem. Fur uf's \mathcal{U} : weakly Ramsey $\Leftrightarrow \mathcal{U} \rightarrow(\mathcal{U})_{k}^{n}$.

Ramsey superfilters

$\mathcal{S} \rightarrow(\mathcal{S})_{k}^{n}: \forall A \in \mathcal{S} \forall c:[A]^{n} \rightarrow\{1, \ldots, k\} \exists M \subseteq A, M \in \mathcal{S}$,
c $\left.\right|_{[M]^{n}} \equiv$ const.
Ramsey Theorem. $[\mathbb{N}]^{\infty} \rightarrow\left([\mathbb{N}]^{\infty}\right)_{k}^{n}$.
\mathcal{S} weakly Ramsey:
\forall disjoint $A_{1}, A_{2}, \ldots \notin \mathcal{S}$ with $\bigcup_{n} A_{n} \in \mathcal{S}$,
$\exists A \subseteq \bigcup_{n} A_{n}, A \in \mathcal{S},\left|A \cap A_{n}\right| \leq 1$ for all n.
Booth-Kunen Theorem. Fur uf's \mathcal{U} : weakly Ramsey $\Leftrightarrow \mathcal{U} \rightarrow(\mathcal{U})_{k}^{n}$.
\mathcal{S} strongly Ramsey:
\forall disjoint A_{1}, A_{2}, \ldots with $\bigcup_{n \geq m} A_{n} \in \mathcal{S}(\forall m)$,
$\exists A \subseteq \bigcup_{n} A_{n}, A \in \mathcal{S},\left|A \cap A_{n}\right| \leq 1$ for all n.

Characterization of Ramsey superfilters

Characterization of Ramsey superfilters

\mathcal{S} shrinkable: \forall disjoint A_{1}, A_{2}, \ldots with $\bigcup_{n \geq m} A_{n} \in \mathcal{S}(\forall m)$, $\exists B_{n} \subseteq A_{n}, B_{n} \notin \mathcal{S}, \bigcup_{n} B_{n} \in \mathcal{S}$.

Characterization of Ramsey superfilters

\mathcal{S} shrinkable: \forall disjoint A_{1}, A_{2}, \ldots with $\bigcup_{n \geq m} A_{n} \in \mathcal{S}(\forall m)$, $\exists B_{n} \subseteq A_{n}, B_{n} \notin \mathcal{S}, \bigcup_{n} B_{n} \in \mathcal{S}$.

Theorem

For suf's \mathcal{S}, TFAE:
(1) \mathcal{S} is strongly Ramsey.
(2) $\mathcal{S} \rightarrow(\mathcal{S})_{k}^{n}$ and \mathcal{S} is shrinkable.
(3) \mathcal{S} is weakly Ramsey and shrinkable.

Characterization of Ramsey superfilters

\mathcal{S} shrinkable: \forall disjoint A_{1}, A_{2}, \ldots with $\bigcup_{n \geq m} A_{n} \in \mathcal{S}(\forall m)$, $\exists B_{n} \subseteq A_{n}, B_{n} \notin \mathcal{S}, \bigcup_{n} B_{n} \in \mathcal{S}$.

Theorem

For suf's \mathcal{S}, TFAE:
(1) \mathcal{S} is strongly Ramsey.
(2) $\mathcal{S} \rightarrow(\mathcal{S})_{k}^{n}$ and \mathcal{S} is shrinkable.
(3) \mathcal{S} is weakly Ramsey and shrinkable.
$(1) \Rightarrow(2)$ is the hardest.

Characterization of Ramsey superfilters

\mathcal{S} shrinkable: \forall disjoint A_{1}, A_{2}, \ldots with $\bigcup_{n \geq m} A_{n} \in \mathcal{S}(\forall m)$, $\exists B_{n} \subseteq A_{n}, B_{n} \notin \mathcal{S}, \bigcup_{n} B_{n} \in \mathcal{S}$.

Theorem

For suf's \mathcal{S}, TFAE:
(1) \mathcal{S} is strongly Ramsey.
(2) $\mathcal{S} \rightarrow(\mathcal{S})_{k}^{n}$ and \mathcal{S} is shrinkable.
(3) \mathcal{S} is weakly Ramsey and shrinkable.
$(1) \Rightarrow(2)$ is the hardest.
Corollary.
(1) Ramsey Theorem. ([$\mathbb{N}]^{\infty}$ is strongly Ramsey.)

Characterization of Ramsey superfilters

\mathcal{S} shrinkable: \forall disjoint A_{1}, A_{2}, \ldots with $\bigcup_{n \geq m} A_{n} \in \mathcal{S}(\forall m)$, $\exists B_{n} \subseteq A_{n}, B_{n} \notin \mathcal{S}, \bigcup_{n} B_{n} \in \mathcal{S}$.

Theorem

For suf's \mathcal{S}, TFAE:
(1) \mathcal{S} is strongly Ramsey.
(2) $\mathcal{S} \rightarrow(\mathcal{S})_{k}^{n}$ and \mathcal{S} is shrinkable.
(3) \mathcal{S} is weakly Ramsey and shrinkable.
$(1) \Rightarrow(2)$ is the hardest.
Corollary.
(1) Ramsey Theorem. ($[\mathbb{N}]^{\infty}$ is strongly Ramsey.)
(2) Booth-Kunen Theorem. (uf's are shrinkable.)

Scheepers Theorem

Scheepers Theorem

$$
S_{1}(\mathcal{S}, \mathcal{S}): \forall S_{1}, S_{2}, \cdots \in \mathcal{S}, \exists s_{n} \in S_{n},\left\{s_{n}: n \in \mathbb{N}\right\} \in \mathcal{S}
$$

Scheepers Theorem

$$
S_{1}(\mathcal{S}, \mathcal{S}): \forall S_{1}, S_{2}, \cdots \in \mathcal{S}, \exists s_{n} \in S_{n},\left\{s_{n}: n \in \mathbb{N}\right\} \in \mathcal{S}
$$

Theorem

For suf's: \mathcal{S} strongly Ramsey $\Rightarrow \mathrm{S}_{1}(\mathcal{S}, \mathcal{S}) \Rightarrow \mathcal{S}$ is shrinkable.

Scheepers Theorem

$$
S_{1}(\mathcal{S}, \mathcal{S}): \forall S_{1}, S_{2}, \cdots \in \mathcal{S}, \exists s_{n} \in S_{n},\left\{s_{n}: n \in \mathbb{N}\right\} \in \mathcal{S}
$$

Theorem

For suf's: \mathcal{S} strongly Ramsey $\Rightarrow \mathrm{S}_{1}(\mathcal{S}, \mathcal{S}) \Rightarrow \mathcal{S}$ is shrinkable.
$X \subseteq \mathbb{R}$.

Scheepers Theorem

$$
S_{1}(\mathcal{S}, \mathcal{S}): \forall S_{1}, S_{2}, \cdots \in \mathcal{S}, \exists s_{n} \in S_{n},\left\{s_{n}: n \in \mathbb{N}\right\} \in \mathcal{S}
$$

Theorem

For suf's: \mathcal{S} strongly Ramsey $\Rightarrow \mathrm{S}_{1}(\mathcal{S}, \mathcal{S}) \Rightarrow \mathcal{S}$ is shrinkable.
$X \subseteq \mathbb{R} . C(X)=\{$ continuous $f: X \rightarrow \mathbb{R}\} \subseteq \mathbb{R}^{X}$.

Scheepers Theorem

$$
S_{1}(\mathcal{S}, \mathcal{S}): \forall S_{1}, S_{2}, \cdots \in \mathcal{S}, \exists s_{n} \in S_{n},\left\{s_{n}: n \in \mathbb{N}\right\} \in \mathcal{S} .
$$

Theorem

For suf's: \mathcal{S} strongly Ramsey $\Rightarrow \mathrm{S}_{1}(\mathcal{S}, \mathcal{S}) \Rightarrow \mathcal{S}$ is shrinkable.
$X \subseteq \mathbb{R} . C(X)=\{$ continuous $f: X \rightarrow \mathbb{R}\} \subseteq \mathbb{R}^{X}$. Nonmetrizable.

Scheepers Theorem

$$
S_{1}(\mathcal{S}, \mathcal{S}): \forall S_{1}, S_{2}, \cdots \in \mathcal{S}, \exists s_{n} \in S_{n},\left\{s_{n}: n \in \mathbb{N}\right\} \in \mathcal{S} .
$$

Theorem

For suf's: \mathcal{S} strongly Ramsey $\Rightarrow \mathrm{S}_{1}(\mathcal{S}, \mathcal{S}) \Rightarrow \mathcal{S}$ is shrinkable.
$X \subseteq \mathbb{R} . C(X)=\{$ continuous $f: X \rightarrow \mathbb{R}\} \subseteq \mathbb{R}^{X}$. Nonmetrizable.
Closure in $C(X)$ leads to ...
$\mathcal{U} \in \Omega: \forall$ finite $F \subseteq X, \exists U \in \mathcal{U}, F \subseteq U$.

Scheepers Theorem

$$
S_{1}(\mathcal{S}, \mathcal{S}): \forall S_{1}, S_{2}, \cdots \in \mathcal{S}, \exists s_{n} \in S_{n},\left\{s_{n}: n \in \mathbb{N}\right\} \in \mathcal{S} .
$$

Theorem

For suf's: \mathcal{S} strongly Ramsey $\Rightarrow S_{1}(\mathcal{S}, \mathcal{S}) \Rightarrow \mathcal{S}$ is shrinkable.
$X \subseteq \mathbb{R} . C(X)=\{$ continuous $f: X \rightarrow \mathbb{R}\} \subseteq \mathbb{R}^{X}$. Nonmetrizable.
Closure in $C(X)$ leads to ...

$$
\mathcal{U} \in \Omega: \forall \text { finite } F \subseteq X, \exists U \in \mathcal{U}, F \subseteq U
$$

Scheepers Theorem. TFAE:
(1) $\mathrm{S}_{1}(\Omega, \Omega)$.
(2) $\Omega \rightarrow(\Omega)_{k}^{n}$.

Scheepers Theorem

$S_{1}(\mathcal{S}, \mathcal{S}): \forall S_{1}, S_{2}, \cdots \in \mathcal{S}, \exists s_{n} \in S_{n},\left\{s_{n}: n \in \mathbb{N}\right\} \in \mathcal{S}$.

Theorem

For suf's: \mathcal{S} strongly Ramsey $\Rightarrow \mathrm{S}_{1}(\mathcal{S}, \mathcal{S}) \Rightarrow \mathcal{S}$ is shrinkable.
$X \subseteq \mathbb{R} . C(X)=\{$ continuous $f: X \rightarrow \mathbb{R}\} \subseteq \mathbb{R}^{X}$. Nonmetrizable.
Closure in $C(X)$ leads to ...

$$
\mathcal{U} \in \Omega: \forall \text { finite } F \subseteq X, \exists U \in \mathcal{U}, F \subseteq U .
$$

Scheepers Theorem. TFAE:
(1) $S_{1}(\Omega, \Omega)$.

- $\Omega \rightarrow(\Omega)_{k}^{n}$.
$\mathcal{U}_{1} \cup \mathcal{U}_{2} \in \Omega \Rightarrow \mathcal{U}_{1} \in \Omega$ or $\mathcal{U}_{2} \in \Omega$.
$\therefore \mathcal{U}$ countable $\Rightarrow\{\mathcal{V} \subseteq \mathcal{U}: \mathcal{V} \in \Omega\}$ suf on \mathcal{U} !

Di Maio-Kočinac-Meccariello Conjecture (generalized)

Di Maio-Kočinac-Meccariello Conjecture (generalized)

$\mathcal{I} \subseteq P(X)$ ideal $:$
(1) $X \notin \mathcal{I}$;
(2) $A \subseteq B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$;
(3) $A, B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$;
(9) $\{x\} \in \mathcal{I}(\forall x \in X)$.

Di Maio-Kočinac-Meccariello Conjecture (generalized)

$$
\begin{aligned}
& \mathcal{I} \subseteq P(X) \text { ideal: } \\
& \text { (1) } X \notin \mathcal{I} ; \\
& \text { (2) } A \subseteq B \in \mathcal{I} \Rightarrow A \in \mathcal{I} \text {; } \\
& \text { (3) } A, B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I} \text {; } \\
& \text { (1) }\{x\} \in \mathcal{I}(\forall x \in X) \text {. } \\
& \mathcal{U} \in \mathcal{O}_{\mathcal{I}}: \forall B \in \mathcal{I}, \exists U \in \mathcal{U}, B \subseteq U \text {. }
\end{aligned}
$$

Di Maio-Kočinac-Meccariello Conjecture (generalized)

$\mathcal{I} \subseteq P(X)$ ideal:
(1) $X \notin \mathcal{I}$;
(2) $A \subseteq B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$;
(0) $A, B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$;

- $\{x\} \in \mathcal{I}(\forall x \in X)$.
$\mathcal{U} \in \mathcal{O}_{\mathcal{I}}: \forall B \in \mathcal{I}, \exists U \in \mathcal{U}, B \subseteq U$.
Generalization of Sch. Theorem and DM-K-M Conjecture:

Theorem

TFAE:

(1) $\mathrm{S}_{1}\left(\mathcal{O}_{\mathcal{I}}, \mathcal{O}_{\mathcal{I}}\right)$.
(2) \forall disjoint $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots \notin \mathcal{O}_{\mathcal{I}}$ with $\bigcup_{n} \mathcal{U}_{n} \in \mathcal{O}_{\mathcal{I}}, \exists \mathcal{V} \subseteq \bigcup_{n} \mathcal{U}_{n}$, $\mathcal{V} \in \mathcal{O}_{\mathcal{I}},\left|\mathcal{V} \cap \mathcal{U}_{n}\right| \leq 1$ for all n.
(3) $\mathcal{O}_{\mathcal{I}} \rightarrow\left(\mathcal{O}_{\mathcal{I}}\right)_{k}^{n}$.

Back to van der Waerden

Back to van der Waerden

Furstenberg-Weiss: $\mathrm{AP} \nrightarrow(\mathrm{AP})_{2}^{2}$.

Back to van der Waerden

Furstenberg-Weiss: $\mathrm{AP} \nrightarrow(\mathrm{AP})_{2}^{2}$.
AP is not even weakly Ramsey!

Back to van der Waerden

Furstenberg-Weiss: $\mathrm{AP} \rightarrow(\mathrm{AP})_{2}^{2}$.
AP is not even weakly Ramsey!
$\mathcal{S} \rightarrow\lceil\mathcal{S}\rceil_{k}^{n}$ (Baumgartner-Taylor):
$\forall A \in \mathcal{S}, \forall c:[A]^{n} \rightarrow\{1,2, \ldots, k\}$,
$\exists \bigcup_{n} F_{n} \subseteq A\left(F_{n}\right.$ finite $), \cup_{n} F_{n} \in \mathcal{S}, c$ constant on selectors.

Back to van der Waerden

Furstenberg-Weiss: $\mathrm{AP} \rightarrow(\mathrm{AP})_{2}^{2}$.
AP is not even weakly Ramsey!
$\mathcal{S} \rightarrow\lceil\mathcal{S}\rceil_{k}^{n}$ (Baumgartner-Taylor):
$\forall A \in \mathcal{S}, \forall c:[A]^{n} \rightarrow\{1,2, \ldots, k\}$,
$\exists \cup_{n} F_{n} \subseteq A\left(F_{n}\right.$ finite $), \cup_{n} F_{n} \in \mathcal{S}, c$ constant on selectors.

Theorem

For suf's, TFAE:
(1) \mathcal{S} is a P-point (chains have lower bounds).
(2) $\mathrm{S}_{\text {fin }}(\mathcal{S}, \mathcal{S})$.
(3) $\mathcal{S} \rightarrow\lceil\mathcal{S}\rceil_{k}^{n}$ for all n, k, and \mathcal{S} is shrinkable.

Back to van der Waerden

Furstenberg-Weiss: $\mathrm{AP} \rightarrow(\mathrm{AP})_{2}^{2}$.
AP is not even weakly Ramsey!
$\mathcal{S} \rightarrow\lceil\mathcal{S}\rceil_{k}^{n}$ (Baumgartner-Taylor):
$\forall A \in \mathcal{S}, \forall c:[A]^{n} \rightarrow\{1,2, \ldots, k\}$,
$\exists \cup_{n} F_{n} \subseteq A$ (F_{n} finite), $\bigcup_{n} F_{n} \in \mathcal{S}, c$ constant on selectors.

Theorem

For suf's, TFAE:
(1) \mathcal{S} is a P-point (chains have lower bounds).
(2) $\mathrm{S}_{\mathrm{fin}}(\mathcal{S}, \mathcal{S})$.
(3) $\mathcal{S} \rightarrow\lceil\mathcal{S}\rceil_{k}^{n}$ for all n, k, and \mathcal{S} is shrinkable.

Corollary

$\mathrm{AP} \rightarrow\lceil\mathrm{AP}\rceil_{k}^{n}$.

Back to van der Waerden

Furstenberg-Weiss: $\mathrm{AP} \rightarrow(\mathrm{AP})_{2}^{2}$.
AP is not even weakly Ramsey!
$\mathcal{S} \rightarrow\lceil\mathcal{S}\rceil_{k}^{n}$ (Baumgartner-Taylor):
$\forall A \in \mathcal{S}, \forall c:[A]^{n} \rightarrow\{1,2, \ldots, k\}$,
$\exists \cup_{n} F_{n} \subseteq A$ (F_{n} finite), $\bigcup_{n} F_{n} \in \mathcal{S}, c$ constant on selectors.

Theorem

For suf's, TFAE:
(1) \mathcal{S} is a P-point (chains have lower bounds).
(2) $\mathrm{S}_{\mathrm{fin}}(\mathcal{S}, \mathcal{S})$.
(3) $\mathcal{S} \rightarrow\lceil\mathcal{S}\rceil_{k}^{n}$ for all n, k, and \mathcal{S} is shrinkable.

Corollary

$\mathrm{AP} \rightarrow\lceil\mathrm{AP}\rceil_{k}^{n}$. Implies Ramsey and van der Waerden!

Future plans

Boaz Tsaban Superfilters

Future plans

Study the space $\sigma(\mathbb{N})$ of all suf's.
Much $\beta(\mathbb{N})$ stuff holds here too.

Future plans

Study the space $\sigma(\mathbb{N})$ of all suf's.
Much $\beta(\mathbb{N})$ stuff holds here too.
suf $=$ union of uf's. Moreover:
$C \subseteq \beta(\mathbb{N})$ closed $\Leftrightarrow \exists \operatorname{suf} \mathcal{S}, C=\{$ uf $\mathcal{U}: \mathcal{U} \subseteq \mathcal{S}\}$.

Future plans

Study the space $\sigma(\mathbb{N})$ of all suf's.
Much $\beta(\mathbb{N})$ stuff holds here too.
suf $=$ union of uf's. Moreover:
$C \subseteq \beta(\mathbb{N})$ closed $\Leftrightarrow \exists \operatorname{suf} \mathcal{S}, C=\{$ uf $\mathcal{U}: \mathcal{U} \subseteq \mathcal{S}\}$.
\therefore suf's describe the topology of $\beta(\mathbb{N})$.

Study the space $\sigma(\mathbb{N})$ of all suf's.
Much $\beta(\mathbb{N})$ stuff holds here too.
suf $=$ union of uf's. Moreover:
$C \subseteq \beta(\mathbb{N})$ closed $\Leftrightarrow \exists \operatorname{suf} \mathcal{S}, C=\{$ uf $\mathcal{U}: \mathcal{U} \subseteq \mathcal{S}\}$.
\therefore suf's describe the topology of $\beta(\mathbb{N})$.
Use this to establish connections with ergodic theory.

Study the space $\sigma(\mathbb{N})$ of all suf's.
Much $\beta(\mathbb{N})$ stuff holds here too.
suf $=$ union of uf's. Moreover:
$C \subseteq \beta(\mathbb{N})$ closed $\Leftrightarrow \exists \operatorname{suf} \mathcal{S}, C=\{$ uf $\mathcal{U}: \mathcal{U} \subseteq \mathcal{S}\}$.
\therefore suf's describe the topology of $\beta(\mathbb{N})$.
Use this to establish connections with ergodic theory.
I'm working on this. . .

