Automatic continuity of nonstandard measures

David A. Ross
Department of Mathematics
University of Hawai'i at Manoa
Honolulu, HI 96822 USA
June 2, 2008

1 What does Nonstandard Analysis give you "for free"?

- Quantifier simplification
- Proof strength (Henson, Kaufman, Keisler)
- Weak limits
- Ideal objects (eg Measures; Neometric spaces of Keisler/Fajardo)
- Automatic uniformization (eg, Gordon Keller's proof that Amenable varieties of groups are uniformly amenable)
- Automatic continuity of measures

Assumption: Nonstandard model is as saturated as it needs to be, but at least \aleph_{1}-saturated

Remark: There are interesting FA measures that do not extend to a σ-additive measure, eg:

- Nonprincipal ultrafilters on ω
- Amenable finitely generated groups

2 Loeb Measures

- Let $(\underline{O}, \mathcal{A}, \mu)$ be an internal finitely additive finite *-measure.
- O is an internal set
$-\mathcal{A}$ is an internal *-algebra on \underline{Q}
$-\mu: \mathcal{A} \rightarrow^{*}[0, \infty)$ is an internal function satisfying (i) $\mu(\emptyset)=0$, (ii) $\mu(\underline{O})$ is finite, and and (iii) $\mu(A \cup B)=\mu(A)+\mu(B)$ whenever $A, B \in \mathcal{A}$ are disjoint.
- Note: \mathcal{A} is (externally) an algebra on \underline{Q}, and sto $\mu={ }^{\circ} \mu$ is an "actual" finitely-additive measure on ($\underline{O}, \mathcal{A}$).
- If $A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq \cdots$ is a sequence of elements of \mathcal{A} indexed by the standard natural numbers, and the intersection $\bigcap_{n} A_{n}$ is empty, then by \aleph_{1}-saturation there is a finite N such that $\bigcap_{n \leq N} A_{n}=\emptyset .\left(\therefore{ }^{\circ} \mu\right.$ is σ-additive on \mathcal{A}.)
- The Carathéodory extension criterion is therefore satisfied trivially, and ($\underline{O}, \mathcal{A},{ }^{\circ} \mu$) extends to a countably-additive measure space ($\underline{O}, \mathcal{A}_{L}, \mu_{L}$), (a Loeb space) where \mathcal{A}_{L} is the smallest (external) sigma-algebra containing \mathcal{A}.
- A useful fact: If $E \in \mathcal{A}_{L}$, and $\epsilon>0$ is standard, then $\exists A_{i}, A_{0} \in \mathcal{A}$ such that $A_{i} \subseteq E \subseteq A_{0}$ and $\mu\left(A_{0}\right)-\mu\left(A_{i}\right)<\epsilon$,

3 Nonnull subsets of a finite, finitely-additive measure space

Theorem (F.A. Borel-Cantelli). Let (X, \mathcal{A}, μ) be a finite, finitely-additive measure, and for $n \in \mathbb{N}$ let $A_{n} \in \mathcal{A}$. Suppose that for some $\epsilon>0, \mu\left(A_{n}\right)>\epsilon$ for all n. Then there is an increasing sequence of natural numbers $\left\{n_{m}: m \in \mathbb{N}\right\}$ such that for every $N \in \mathbb{N}, \quad \mu\left(\bigcap_{m=1}^{N} A_{n_{m}}\right)>0$.
Equivalently: If a countable collection of sets is uniformly nonnull, then there is an infinite subcollection that any finite subcollection of it has nonnull intersection.

Case 1μ is actually σ-additive.
\begin\{Graduate exercise\} }
Put $B=\bigcup\left\{\bigcap_{i \in I} A_{i}: I \subseteq \mathbb{N}\right.$, I finite, $\left.\mu\left(\bigcap_{i \in I} A_{i}\right)=0\right\}$
This union is over at most countably many nullsets, $\therefore \mu(B)=0$.
Put $A_{n}^{\prime}=A_{n} \backslash B$ for each n
Note: If $I \subseteq \mathbb{N}$ is finite, $\mu\left(\bigcap_{i \in I} A_{i}\right)=0$ if and only if $\bigcap_{i \in I} A_{i}^{\prime}=\emptyset$.
\therefore suffices to find an increasing sequence n_{m} such that $\bigcap_{m=1}^{N} A_{n_{m}}^{\prime} \neq \varnothing$ for every N
As in easy half of Borel-Cantelli Lemma, $\mu\left(\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} A_{n}^{\prime}\right)>\epsilon$
let $x \in \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} A_{n}^{\prime}$; there is an increasing sequence n_{m} such that $x \in A_{n_{m}}^{\prime}$, done.
\end\{Graduate exercise\} }

Theorem (F.A. Borel-Cantelli). Let (X, \mathcal{A}, μ) be a finite, finitely-additive measure, and for $n \in \mathbb{N}$ let $A_{n} \in \mathcal{A}$. Suppose that for some $\epsilon>0, \mu\left(A_{n}\right)>\epsilon$ for all n. Then there is an increasing sequence of natural numbers $\left\{n_{m}: m \in \mathbb{N}\right\}$ such that for every $N \in \mathbb{N}, \quad \mu\left(\bigcap_{m=1}^{N} A_{n_{m}}\right)>0$.

Case 2μ is not assumed to be σ-additive

\begin\{Free Lunch\}

}Pass from (X, \mathcal{A}, μ) to the σ-additive Loeb measure μ_{L} on $\left({ }^{*} X,{ }^{*} \mathcal{A}_{L}\right)$.
For each $n \in \mathbb{N}, \mu_{L}\left({ }^{*} A_{n}\right)=\mu\left(A_{n}\right)>\epsilon$
By Case 1, there is an increasing subsequence n_{m} in \mathbb{N} such that for any $N \in \mathbb{N}$, $\mu_{L}\left(\bigcap_{m=1}^{N}{ }^{*} A_{n_{m}}\right)>0$.

When N is standard,

$$
\mu\left(\bigcap_{m=1}^{N} A_{n_{m}}\right)=\mu_{L}\left(\bigcap_{m=1}^{N} * A_{n_{m}}\right)>0
$$

done.
\end\{Free Lunch\} }

Theorem. (Banach)Let X be a set, $B(X)$ be all bounded real functions on X, and $\left\{f_{n}: n \in \mathbb{N}\right\}$ be a uniformly bounded sequence. The following are equivalent:
(i) $\left\{f_{n}\right\}_{n}$ coverges weakly to O;
(ii) for any sequence $\left\{x_{k}: k \in \mathbb{N}\right\}$ in $X, \lim _{n \rightarrow \infty} \liminf _{k \rightarrow \infty} f_{n}\left(x_{k}\right)=0$

Weak convergence to zero here means that for any positive linear functional T on $B(X)$, $T f_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Remark: If X is finite, then it is trivial to verify that (ii) is equivalent to $f_{n} \rightarrow O$ pointwise on X.

Easy direction: $(\neg i i \Rightarrow \neg i)$
By ($\neg i i$) there is a sequence x_{k} in X, a positive real number r, and an increasing sequence n_{m} of natural numbers such that $\liminf _{k \rightarrow \infty}\left|f_{n_{m}}\left(x_{k}\right)\right|>r$ for all m.

For each $m \in \mathbb{N}$ there is a $N \in \mathbb{N}$ such that for all $k>N,\left|f_{n_{m}}\left(x_{k}\right)\right|>r$.
\therefore For all standard $m \in \mathbb{N}$ and any infinite $k \in\left({ }^{*} \mathbb{N} \backslash \mathbb{N}\right),\left|{ }^{*} f_{n_{m}}\left(x_{k}\right)\right|>r$. Fix such a k.
Define $T: B(X) \rightarrow \mathbb{R}$ by $T(g)={ }^{0 *} g\left(x_{k}\right)$.
T is a positive linear functional.
For standard $m \in \mathbb{N}, 0<r<\left.\right|^{*} f_{n_{m}}\left(x_{k}\right)|\approx| T\left(f_{n_{m}}\right) \mid$, so $T f_{n} \nrightarrow 0$ as $n \rightarrow \infty$, done.

Theorem. (Banach)Let X be a set, $B(X)$ be all bounded real functions on X, and $\left\{f_{n}: n \in \mathbb{N}\right\}$ be a uniformly bounded sequence. The following are equivalent:
(i) $\left\{f_{n}\right\}_{n}$ coverges weakly to O;
(ii) for any sequence $\left\{x_{k}: k \in \mathbb{N}\right\}$ in $X, \lim _{n \rightarrow \infty} \liminf _{k \rightarrow \infty} f_{n}\left(x_{k}\right)=0$

Proof of $\quad(\neg i \Rightarrow \neg i i)$
By $(\neg i)$ there is a positive linear functional T such that $T f_{n} \nrightarrow 0$ as $n \rightarrow \infty$.
Note: If (through some miracle) T is given by integration against a measure μ then the rest is trivial:

By the Bounded Convergence Theorem, for some $x \in X f_{n}(x) \nrightarrow 0$.
Put $x_{k}=x$ for all k, then x_{k} witnesses failure of (ii).

Theorem. (Banach)Let X be a set, $B(X)$ be all bounded real functions on X, and $\left\{f_{n}: n \in \mathbb{N}\right\}$ be a uniformly bounded sequence. The following are equivalent:
(i) $\left\{f_{n}\right\}_{n}$ coverges weakly to O;
(ii) for any sequence $\left\{x_{k}: k \in \mathbb{N}\right\}$ in $X, \lim _{n \rightarrow \infty} \liminf _{k \rightarrow \infty}\left(x_{k}\right)=0$

Proof of $\quad(\neg i \Rightarrow \neg i i)$
By $(\neg i)$ there is a positive linear functional T such that $T f_{n} \nrightarrow 0$ as $n \rightarrow \infty$.
$\mu: E \mapsto T\left(\chi_{E}\right)$ is a finite, finitely-additive measure on $(X, \Phi(X))$
Pass from (X, \mathcal{A}, μ) to the σ-additive Loeb measure μ_{L} on $\left({ }^{*} X,{ }^{*} \mathcal{A}_{L}\right)$
Exercise: For any $f \in B(X), T(f)=\int{ }^{\circ *} f_{n} d \mu_{L}$.
$\int{ }^{\circ *} f_{n} d \mu_{L}=T\left(f_{n}\right) \nrightarrow 0$ as $n \rightarrow \infty$
By Bounded convergence, there is some $x_{\infty} \in{ }^{*} X, r>0$, and increasing sequence n_{m} of natural numbers such that $\left|{ }^{\circ *} f_{n_{m}}\left(x_{\infty}\right)\right|>r$ for all $m \in \mathbb{N}$.

For any $N \in \mathbb{N}$, x_{∞} witnesses $\left(\exists x_{N} \in{ }^{*} X\right) \bigwedge_{m=1}^{N}\left[\left.\right|^{*} f_{n_{m}} \mid\left(x_{N}\right)>r\right]$.
By transfer $\left(\exists x_{N} \in X\right) \bigwedge_{m=1}^{N}\left[\left|f_{n_{m}}\right|\left(x_{N}\right)>r\right]$.
For any $m, N \in \mathbb{N}$ with $N>m,\left|f_{n_{m}}\left(x_{N}\right)\right|>r, \quad \therefore \lim _{m \rightarrow \infty} \liminf _{k \rightarrow \infty}\left|f_{n_{m}}\left(x_{k}\right)\right|>r$.
This contradicts (ii), done.

It is also possible to give an alternate proof of the implication (ii \Rightarrow i) of Theorem 3 by an appeal to Theorem 3. Suppose (i) fails, and obtain T and μ as in the proof above. Then there is an $r>0$ and an increasing sequence n_{m} of natural numbers such that $\left|T\left(f_{n_{m}}\right)\right|>r$. Let $\delta \in \mathbb{R}$ satisfy $0<\delta<\frac{r}{2 T(1)}$; equivalently, $O<T(\delta)<r / 2$. Note that for any $g \in B(X)$ with $-\delta \leq g \leq \delta$, positivity of T ensures that $-T(\delta)=T(-\delta) \leq T(g) \leq T(\delta)$, so $|T(g)| \leq T(\delta)<r / 2$. Let $M>0$ be a bound for all the functions f_{n}.

For $m \in \mathbb{N}$ put $A_{n_{m}}=\left\{x \in X:\left|f_{n_{m}}(x)\right|>\delta\right\}$. Then $r<\left|T\left(f_{n_{m}}\right)\right|=\left|T\left(f_{n_{m}} \chi_{A_{n_{m}}}\right)+T\left(f_{n_{m}} \chi_{A_{n_{m}}^{C}}\right)\right| \leq$ $\left|T\left(f_{n_{m}} \chi_{A_{n_{m}}}\right)\right|+|T(\delta)| \leq M T\left(\chi_{A_{n_{m}}}\right)+r / 2$, so $\mu\left(A_{n_{m}}\right)=T\left(\chi_{A_{n_{m}}}\right)>\frac{r}{2 M}>0$ for all m.

By Theorem 3 there is a subsequence (which for simplicity will just be denoted n_{m} again) such that for every $N \in \mathbb{N}, \mu\left(\bigcap_{m=1}^{N} A_{n_{m}}\right)>0$. Let $x_{N} \in \mu\left(\bigcap_{m=1}^{N} A_{n_{m}}\right)$. For any $m, N \in \mathbb{N}$ with $N>m, x_{N} \in A_{n_{m}}$, therefore $\left|f_{n_{m}}\left(x_{N}\right)\right|>\delta$, so $\lim _{m \rightarrow \infty} \liminf _{k \rightarrow \infty}\left|f_{n_{m}}\left(x_{k}\right)\right| \geq \delta$. This contradicts (ii) and proves the implication.

4 Towards a metatheorem

Is there a metatheorem of the form, "If T is a statement satisfying \star, and T is true for all countably-additive finite measures, then T is true for finitely-additive finite measures?

Yes, if \star is "expressible in the "probability logic" $L_{\omega_{1} p}$ of Hoover and Keisler.
Is there something more practically interesting?

