Automatic continuity of nonstandard measures

David A. Ross Department of Mathematics University of Hawai'i at Manoa Honolulu, HI 96822 USA

June 2, 2008

1 What does Nonstandard Analysis give you "for free"?

- Quantifier simplification
- Proof strength (Henson, Kaufman, Keisler)
- Weak limits
- Ideal objects (eg Measures; Neometric spaces of Keisler/Fajardo)
- Automatic uniformization (eg, Gordon Keller's proof that Amenable varieties of groups are uniformly amenable)
- Automatic continuity of measures

Assumption: Nonstandard model is as saturated as it needs to be, but at least \aleph_1 -saturated

Remark: There are interesting FA measures that do not extend to a σ -additive measure, eg:

- \bullet Nonprincipal ultrafilters on ω
- Amenable finitely generated groups

2 Loeb Measures

- Let (Q, \mathcal{A}, μ) be an internal finitely additive finite *-measure.
 - -Q is an internal set
 - \mathcal{A} is an internal *-algebra on \mathcal{Q}
 - $-\mu: \mathcal{A} \to^* [O, \infty)$ is an internal function satisfying (i) $\mu(\emptyset) = O$, (ii) $\mu(\Omega)$ is finite, and and (iii) $\mu(\mathcal{A} \cup \mathcal{B}) = \mu(\mathcal{A}) + \mu(\mathcal{B})$ whenever $\mathcal{A}, \mathcal{B} \in \mathcal{A}$ are disjoint.
- Note: \mathcal{A} is (externally) an algebra on \mathcal{Q} , and st $\circ \mu = {}^{\circ}\mu$ is an "actual" finitely-additive measure on $(\mathcal{Q}, \mathcal{A})$.
- If $A_0 \supseteq A_1 \supseteq A_2 \supseteq \cdots$ is a sequence of elements of \mathcal{A} indexed by the standard natural numbers, and the intersection $\bigcap_n A_n$ is empty, then by \Re_1 -saturation there is a finite N such that $\bigcap_{n \leq N} A_n = \emptyset$. ($\therefore \ ^{\circ}\mu$ is σ -additive on \mathcal{A} .)
- The Carathéodory extension criterion is therefore satisfied trivially, and (Q, \mathcal{A}, μ) extends to a countably-additive measure space $(Q, \mathcal{A}_L, \mu_L)$, (a Loeb space) where \mathcal{A}_L is the smallest (external) sigma-algebra containing \mathcal{A} .
- A useful fact: If $E \in A_L$, and $\epsilon > 0$ is standard, then $\exists A_i, A_o \in A$ such that $A_i \subseteq E \subseteq A_o$ and $\mu(A_o) - \mu(A_i) < \epsilon$,

3 Nonnull subsets of a finite, finitely-additive measure space

Theorem (F.A. Borel-Cantelli). Let (X, \mathcal{A}, μ) be a finite, finitely-additive measure, and for $n \in \mathbb{N}$ let $A_n \in \mathcal{A}$. Suppose that for some $\epsilon > 0$, $\mu(A_n) > \epsilon$ for all n. Then there is an increasing sequence of natural numbers $\{n_m : m \in \mathbb{N}\}$ such that for every $N \in \mathbb{N}$, $\mu(\bigcap_{m=1}^N A_{n_m}) > 0$.

Equivalently: If a countable collection of sets is uniformly nonnull, then there is an infinite subcollection that any finite subcollection of *it* has nonnull intersection.

Case 1 μ is actually σ -additive.

\begin{Graduate exercise}

Put $B = \bigcup \{ \bigcap_{i \in I} A_i : I \subseteq \mathbb{N}, I \text{ finite, } \mu(\bigcap_{i \in I} A_i) = O \}$

This union is over at most countably many nullsets, $\therefore \mu(B) = 0$.

Put
$$A'_n = A_n \setminus B$$
 for each n

Note: If $I \subseteq \mathbb{N}$ is finite, $\mu(\bigcap_{i \in I} A_i) = O$ if and only if $\bigcap_{i \in I} A'_i = \emptyset$.

: suffices to find an increasing sequence n_m such that $\bigcap_{m=1}^N A'_{n_m} \neq \emptyset$ for every N As in easy half of Borel-Cantelli Lemma, $\mu(\bigcap_{N=1}^\infty \bigcup_{n=N}^\infty A'_n) > \epsilon$

let $x \in \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} A'_n$; there is an increasing sequence n_m such that $x \in A'_{n_m}$, done. \end{Graduate exercise} **Theorem (F.A. Borel-Cantelli).** Let (X, \mathcal{A}, μ) be a finite, finitely-additive measure, and for $n \in \mathbb{N}$ let $A_n \in \mathcal{A}$. Suppose that for some $\epsilon > 0$, $\mu(A_n) > \epsilon$ for all n. Then there is an increasing sequence of natural numbers $\{n_m : m \in \mathbb{N}\}$ such that for every $N \in \mathbb{N}$, $\mu(\bigcap_{m=1}^N A_{n_m}) > 0$.

Case 2 μ is **not** assumed to be σ -additive

\begin{Free Lunch}

Pass from (X, \mathcal{A}, μ) to the σ -additive Loeb measure μ_L on $(*X, *\mathcal{A}_L)$.

For each $n \in \mathbb{N}$, $\mu_L(*A_n) = \mu(A_n) > \epsilon$ By Case 1, there is an increasing subsequence n_m in \mathbb{N} such that for any $N \in \mathbb{N}$, $\mu_L(\bigcap_{m=1}^N *A_{n_m}) > 0.$

When N is standard,

$$\mu\big(\bigcap_{m=1}^N A_{n_m}\big) = \mu_L\big(\bigcap_{m=1}^N {}^*A_{n_m}\big) > O,$$

done.

\end{Free Lunch}

Theorem. (Banach)Let X be a set, B(X) be all bounded real functions on X, and $\{f_n : n \in \mathbb{N}\}$ be a uniformly bounded sequence. The following are equivalent:

- (i) $\{f_n\}_n$ coverges weakly to O;
- (ii) for any sequence $\{x_k : k \in \mathbb{N}\}$ in X, $\lim_{n \to \infty} \liminf_{k \to \infty} f_n(x_k) = 0$
- Weak convergence to zero here means that for any positive linear functional T on B(X), $Tf_n \rightarrow 0$ as $n \rightarrow \infty$.
- **Remark:** If X is finite, then it is trivial to verify that (ii) is equivalent to $f_n \rightarrow O$ pointwise on X.

Easy direction: $(\neg ii \Rightarrow \neg i)$

By $(\neg ii)$ there is a sequence x_k in X, a positive real number r, and an increasing sequence n_m of natural numbers such that $\liminf_{k\to\infty} |f_{n_m}(x_k)| > r$ for all m.

For each $m \in \mathbb{N}$ there is a $N \in \mathbb{N}$ such that for all k > N, $|f_{n_m}(x_k)| > r$.

 \therefore For all standard $m \in \mathbb{N}$ and any infinite $k \in (^*\mathbb{N} \setminus \mathbb{N}), |^*f_{n_m}(x_k)| > r$. Fix such a k.

Define $T : B(X) \to \mathbb{R}$ by $T(g) = {}^{\circ*}g(x_k)$.

T is a positive linear functional.

For standard $m \in \mathbb{N}$, $0 < r < |*f_{n_m}(x_k)| \approx |\mathcal{T}(f_{n_m})|$, so $Tf_n \not\to 0$ as $n \to \infty$, done.

Theorem. (Banach)Let X be a set, B(X) be all bounded real functions on X, and $\{f_n : n \in \mathbb{N}\}$ be a uniformly bounded sequence. The following are equivalent:

- (i) $\{f_n\}_n$ coverges weakly to O;
- (ii) for any sequence $\{x_k : k \in \mathbb{N}\}$ in X, $\lim_{n \to \infty} \liminf_{k \to \infty} f_n(x_k) = O$

Proof of $(\neg i \Rightarrow \neg ii)$

By $(\neg i)$ there is a positive linear functional T such that $Tf_n \not\to 0$ as $n \to \infty$.

Note: If (through some miracle) T is given by integration against a measure μ then the rest is trivial:

By the Bounded Convergence Theorem, for some $x \in X$ $f_n(x) \rightarrow O$.

Put $x_k = x$ for all k, then x_k witnesses failure of (ii).

Theorem. (Banach)Let X be a set, B(X) be all bounded real functions on X, and $\{f_n : n \in \mathbb{N}\}$ be a uniformly bounded sequence. The following are equivalent:

- (i) $\{f_n\}_n$ coverges weakly to O;
- (ii) for any sequence $\{x_k : k \in \mathbb{N}\}$ in X, $\lim_{n \to \infty} \liminf_{k \to \infty} f_n(x_k) = O$

Proof of $(\neg i \Rightarrow \neg ii)$

By $(\neg i)$ there is a positive linear functional T such that $Tf_n \not\rightarrow 0$ as $n \rightarrow \infty$.

 $\mu: E \mapsto \mathcal{T}(\chi_E)$ is a finite, finitely-additive measure on $(X, \mathcal{P}(X))$

Pass from (X, \mathcal{A}, μ) to the σ -additive Loeb measure μ_L on $(*X, *\mathcal{A}_L)$

Exercise: For any $f \in B(X)$, $T(f) = \int {}^{\circ*}f_n d\mu_L$.

 $\int^{\circ*} f_n d\mu_L = T(f_n) \not\to 0 \text{ as } n \to \infty$

By Bounded convergence, there is some $x_{\infty} \in {}^*X$, r > 0, and increasing sequence n_m of natural numbers such that $|{}^{\circ*}f_{n_m}(x_{\infty})| > r$ for all $m \in \mathbb{N}$.

For any $N \in \mathbb{N}$, x_{∞} witnesses $(\exists x_N \in {}^*X) \bigwedge_{m=1}^{N} [|{}^*f_{n_m}|(x_N) > r].$

By transfer $(\exists x_N \in X) \bigwedge_{m=1}^N [|f_{n_m}|(x_N) > r].$

For any $m, N \in \mathbb{N}$ with N > m, $|f_{n_m}(x_N)| > r$, $\therefore \lim_{m \to \infty} \liminf_{k \to \infty} |f_{n_m}(x_k)| > r$.

This contradicts (ii), done.

- It is also possible to give an alternate proof of the implication (ii \Rightarrow i) of Theorem 3 by an appeal to Theorem 3. Suppose (i) fails, and obtain T and μ as in the proof above. Then there is an r > 0 and an increasing sequence n_m of natural numbers such that $|T(f_{n_m})| > r$. Let $\delta \in \mathbb{R}$ satisfy $0 < \delta < \frac{r}{2T(1)}$; equivalently, $0 < T(\delta) < r/2$. Note that for any $g \in B(X)$ with $-\delta \leq g \leq \delta$, positivity of T ensures that $-T(\delta) = T(-\delta) \leq T(g) \leq T(\delta)$, so $|T(g)| \leq T(\delta) < r/2$. Let M > 0 be a bound for all the functions f_n .
- For $m \in \mathbb{N}$ put $A_{n_m} = \{x \in X : |f_{n_m}(x)| > \delta\}$. Then $r < |\mathcal{T}(f_{n_m})| = |\mathcal{T}(f_{n_m}\chi_{A_{n_m}}) + \mathcal{T}(f_{n_m}\chi_{A_{n_m}})| \le |\mathcal{T}(f_{n_m}\chi_{A_{n_m}})| + |\mathcal{T}(\delta)| \le M\mathcal{T}(\chi_{A_{n_m}}) + r/2$, so $\mu(A_{n_m}) = \mathcal{T}(\chi_{A_{n_m}}) > \frac{r}{2M} > 0$ for all m.
- By Theorem 3 there is a subsequence (which for simplicity will just be denoted n_m again) such that for every $N \in \mathbb{N}$, $\mu(\bigcap_{m=1}^{N} A_{n_m}) > 0$. Let $x_N \in \mu(\bigcap_{m=1}^{N} A_{n_m})$. For any $m, N \in \mathbb{N}$ with $N > m, x_N \in A_{n_m}$, therefore $|f_{n_m}(x_N)| > \delta$, so $\lim_{m \to \infty} \liminf_{k \to \infty} |f_{n_m}(x_k)| \ge \delta$. This contradicts (ii) and proves the implication.

4 Towards a metatheorem

Is there a metatheorem of the form, "If T is a statement satisfying \bigstar , and T is true for all countably-additive finite measures, then T is true for finitely-additive finite measures?

Yes, if \bigstar is "expressible in the "probability logic" $L_{\omega_1 P}$ of Hoover and Keisler.

Is there something more practically interesting?