Ideal limits of sequences of continuous functions and a game

Ireneusz Recław joined work with M. Laczkovich

University of Gdansk

Applications of Ultrafilters and Ultraproducts in Mathematics Pisa, June 1-7, 2008

• Def. $J - \lim x_n = x$ if for each $\epsilon > 0$ { $n : |x - x_n| > \epsilon$ } $\in J$

- Def. For $f, f_n \in \mathbb{R}^X$, $J \lim f_n = f$ if for each $x \in X$, $J - \lim f_n(x) = f(x)$
- For *F* ⊂ ℝ^X let *J* − lim *F* denotes all *J*-limits of sequences of functions from *F*
- Let $f_n : P(\omega) \to P(\omega);$

$$f_n(A) = \begin{cases} 0 & \text{if } n \in A \\ 1 & \text{if } n \notin A \end{cases}$$

Then $J - \lim f_n = \chi_J$ if J is maximal. So $J - \lim C(P(\omega))$ contains nonmeasurable functions if J maximal.

- Def. $J \lim x_n = x$ if for each $\epsilon > 0$ { $n : |x x_n| > \epsilon$ } $\in J$
- Def. For $f, f_n \in \mathbb{R}^X$, $J \lim f_n = f$ if for each $x \in X$, $J - \lim f_n(x) = f(x)$
- For *F* ⊂ ℝ^X let *J* − lim *F* denotes all *J*-limits of sequences of functions from *F*
- Let $f_n : P(\omega) \to P(\omega);$

$$f_n(A) = \begin{cases} 0 & \text{if } n \in A \\ 1 & \text{if } n \notin A \end{cases}$$

- Def. $J \lim x_n = x$ if for each $\epsilon > 0$ $\{n : |x x_n| > \epsilon\} \in J$
- Def. For $f, f_n \in \mathbb{R}^X$, $J \lim f_n = f$ if for each $x \in X$, $J \lim f_n(x) = f(x)$
- For *F* ⊂ ℝ^X let *J* − lim *F* denotes all *J*-limits of sequences of functions from *F*
- Let $f_n : P(\omega) \to P(\omega)$;

$$f_n(A) = \left\{ egin{array}{cc} 0 & ext{if } n \in A \ 1 & ext{if } n
ot\in A \end{array}
ight.$$

- Def. $J \lim x_n = x$ if for each $\epsilon > 0$ $\{n : |x x_n| > \epsilon\} \in J$
- Def. For $f, f_n \in \mathbb{R}^X$, $J \lim f_n = f$ if for each $x \in X$, $J \lim f_n(x) = f(x)$
- For *F* ⊂ ℝ^X let *J* − lim *F* denotes all *J*-limits of sequences of functions from *F*

• Let
$$f_n: P(\omega) \to P(\omega);$$

$$f_n(A) = \begin{cases} 0 & \text{if } n \in A \\ 1 & \text{if } n \notin A \end{cases}$$

- Def. $J \lim x_n = x$ if for each $\epsilon > 0$ $\{n : |x x_n| > \epsilon\} \in J$
- Def. For $f, f_n \in \mathbb{R}^X$, $J \lim f_n = f$ if for each $x \in X$, $J - \lim f_n(x) = f(x)$
- For *F* ⊂ ℝ^X let *J* − lim *F* denotes all *J*-limits of sequences of functions from *F*
- Let $f_n : P(\omega) \to P(\omega)$;

$$f_n(A) = \begin{cases} 0 & \text{if } n \in A \\ 1 & \text{if } n \notin A \end{cases}$$

• Thm. (Katetov) For each $\alpha < \omega_1$ there is a Borel ideal $\mathcal{N}^{\alpha} \subset \mathcal{P}(\omega)$ with $\mathcal{N}^{\alpha} - \lim \mathcal{C}(X) = \mathcal{B}_{\alpha}(X)$.

 $\mathcal{N}^2 = FIN \times FIN = \{A \subset \omega \times \omega : \forall_n^\infty A_n \text{ is finite}\}\$

 Thm. (Kostyrko, Salat, Wilczynski) Let I be the ideal of sets of density zero. Then J – lim(C(X)) = B₁(X) for Polish space X.

2 methods of proof.

Method 1 Show that J-limit of sequence of continuous functions has a point of continuity on each perfect set.

Nethod 2 if f_n is J-convergent (statistically convergent) and $\{f_n(x)\}_n$ is bounded for each x then $\frac{f_1+f_2+\dots+f_n}{n}$ is pointwise convergent to the same limit.

< ロ > < 同 > < 回 > < 回 >

- Thm. (Katetov) For each α < ω₁ there is a Borel ideal N^α ⊂ P(ω) with N^α lim C(X) = B_α(X).
 N² = FIN × FIN = {A ⊂ ω × ω : ∀_n[∞] A_n is finite}
- Thm. (Kostyrko, Salat, Wilczynski) Let I be the ideal of sets of density zero. Then J – lim(C(X)) = B₁(X) for Polish space X.

Method 1 Show that J-limit of sequence of continuous functions has a point of continuity on each perfect set.

Method 2 if f_n is J-convergent (statistically convergent) and $\{f_n(x)\}_n$ is bounded for each x then $\frac{f_1+f_2+\dots+f_n}{n}$ is pointwise convergent to the same limit.

< ロ > < 同 > < 回 > < 回 >

- Thm. (Katetov) For each α < ω₁ there is a Borel ideal N^α ⊂ P(ω) with N^α lim C(X) = B_α(X).
 N² = FIN × FIN = {A ⊂ ω × ω : ∀_n[∞]A_n is finite}
- Thm. (Kostyrko, Salat, Wilczynski) Let I be the ideal of sets of density zero. Then J – lim(C(X)) = B₁(X) for Polish space X.

Method 1 Show that J-limit of sequence of continuous functions has a point of continuity on each perfect set.

Nethod 2 if f_n is J-convergent (statistically convergent) and $\{f_n(x)\}_n$ is bounded for each x then $\frac{f_1+f_2+\dots+f_n}{n}$ is pointwise convergent to the same limit.

- Thm. (Katetov) For each α < ω₁ there is a Borel ideal N^α ⊂ P(ω) with N^α lim C(X) = B_α(X).
 N² = FIN × FIN = {A ⊂ ω × ω : ∀_n[∞]A_n is finite}
- Thm. (Kostyrko, Salat, Wilczynski) Let I be the ideal of sets of density zero. Then J – lim(C(X)) = B₁(X) for Polish space X.

Method 1 Show that J-limit of sequence of continuous functions has a point of continuity on each perfect set. Method 2 if f_n is J-convergent (statistically convergent) and $\{f_n(x)\}_n$ is bounded for each x then $\frac{f_1+f_2+\dots+f_n}{n}$ is pointwise convergent to the same limit.

- Thm. (Katetov) For each α < ω₁ there is a Borel ideal N^α ⊂ P(ω) with N^α lim C(X) = B_α(X).
 N² = FIN × FIN = {A ⊂ ω × ω : ∀_n[∞]A_n is finite}
- Thm. (Kostyrko, Salat, Wilczynski) Let I be the ideal of sets of density zero. Then J – lim(C(X)) = B₁(X) for Polish space X.

Method 1 Show that J-limit of sequence of continuous functions has a point of continuity on each perfect set.

Method 2 if f_n is J-convergent (statistically convergent) and $\{f_n(x)\}_n$ is bounded for each x then $\frac{f_1+f_2+\cdots+f_n}{n}$ is pointwise convergent to the same limit.

- Thm. (Katetov) For each α < ω₁ there is a Borel ideal N^α ⊂ P(ω) with N^α lim C(X) = B_α(X).
 N² = FIN × FIN = {A ⊂ ω × ω : ∀_n[∞]A_n is finite}
- Thm. (Kostyrko, Salat, Wilczynski) Let I be the ideal of sets of density zero. Then J – lim(C(X)) = B₁(X) for Polish space X.

- Method 1 Show that J-limit of sequence of continuous functions has a point of continuity on each perfect set.
- Method 2 if f_n is J-convergent (statistically convergent) and $\{f_n(x)\}_n$ is bounded for each x then $\frac{f_1+f_2+\dots+f_n}{n}$ is pointwise convergent to the same limit.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Let X be a complete metric space. Assume that one of the following conditions holds

J is an analytic P-ideal.

2 J is an F_{σ} -ideal.

 $I = NWD(\mathbb{Q}).$

Then $J - \lim C(X) = B_1(X)$ *.*

Let X be a complete metric space. Assume that one of the following conditions holds

- J is an analytic P-ideal.
- **2** J is an F_{σ} -ideal.

Then $J - \lim C(X) = B_1(X)$ *.*

< ロ > < 同 > < 回 > < 回 >

Let X be a complete metric space. Assume that one of the following conditions holds

- J is an analytic P-ideal.
- **2** J is an F_{σ} -ideal.
- $I = NWD(\mathbb{Q}).$

Then $J - \lim C(X) = B_1(X)$.

< ロ > < 同 > < 回 > < 回 >

Theorem

Let X be a complete metric space. Assume that player II has a winning strategy in G(J). Then $J - \lim C(X) = B_1(X)$.

Theorem

Assume that player I has a winning strategy in G(J). Then $B_2(X) \subset J - \lim C(X)$.

Theorem

Let X be a complete metric space. Assume that player II has a winning strategy in G(J). Then $J - \lim C(X) = B_1(X)$.

Theorem

Assume that player I has a winning strategy in G(J). Then $B_2(X) \subset J - \lim C(X)$.

Theorem

Let X be a complete metric space. Assume that player II has a winning strategy in G(J). Then $J - \lim C(X) = B_1(X)$.

Theorem

Assume that player I has a winning strategy in G(J). Then $B_2(X) \subset J - \lim C(X)$.

Theorem

Let X be a complete metric space. Assume that player II has a winning strategy in G(J). Then $J - \lim C(X) = B_1(X)$.

Theorem

Assume that player I has a winning strategy in G(J). Then $B_2(X) \subset J - \lim C(X)$.

< ロ > < 同 > < 回 > < 回 >

Theorem

Let X be a complete metric space. Assume that player II has a winning strategy in G(J). Then $J - \lim C(X) = B_1(X)$.

Theorem

Assume that player I has a winning strategy in G(J). Then $B_2(X) \subset J - \lim C(X)$.

Theorem

Let X be a complete metric space. Assume that player II has a winning strategy in G(J). Then $J - \lim C(X) = B_1(X)$.

Theorem

Assume that player I has a winning strategy in G(J). Then $B_2(X) \subset J - \lim C(X)$.

Let J be a Borel ideal. For each complete metric space X, J - lim $C(X) = B_1(X)$ iff J does not contain a copy of FIN × FIN

Theorem

Let *J* be a $F_{\sigma\delta}$ ideal. For each complete metric space *X*, *J* - lim $C(X) = B_1(X)$

Let J be a Borel ideal. For each complete metric space X, J - lim $C(X) = B_1(X)$ iff J does not contain a copy of FIN × FIN

Theorem

Let *J* be a $F_{\sigma\delta}$ ideal. For each complete metric space *X*, *J* - lim $C(X) = B_1(X)$

Assume CH. There is maximal P-ideal such that $(J - \lim C(\mathbb{R})) \cap B_{\omega_1}(\mathbb{R}) = B_1(\mathbb{R})$

Theorem

Assume that G(J) is determined for each analytic ideal J. Then for each ideal J, $(J - \lim C(\mathbb{R})) \cap B_{\omega_1}(\mathbb{R}) = B_1(\mathbb{R})$ iff J does not contain a copy of FIN \times FIN

Assume CH. There is maximal P-ideal such that $(J - \lim C(\mathbb{R})) \cap B_{\omega_1}(\mathbb{R}) = B_1(\mathbb{R})$

Theorem

Assume that G(J) is determined for each analytic ideal J. Then for each ideal J, $(J - \lim C(\mathbb{R})) \cap B_{\omega_1}(\mathbb{R}) = B_1(\mathbb{R})$ iff J does not contain a copy of FIN × FIN

Assume CH. There is maximal P-ideal such that $(J - \lim C(\mathbb{R})) \cap B_{\omega_1}(\mathbb{R}) = B_1(\mathbb{R})$

Theorem

Assume that G(J) is determined for each analytic ideal J. Then for each ideal J, $(J - \lim C(\mathbb{R})) \cap B_{\omega_1}(\mathbb{R}) = B_1(\mathbb{R})$ iff J does not contain a copy of FIN × FIN