Ultraproducts and characterizations of classical Banach spaces or lattices.

Yves Raynaud

Institut de Mathématiques de Jussieu (University Paris 06 & CNRS)

Ultramath Conference

Pisa

June 1-7, 2008

1. Ultraproducts of Banach spaces

Let $(X_i)_{i \in I}$ be a family of Banach spaces and \mathcal{U} be an ultrafilter on the set I.

Consider the product $\prod_{i \in I} X_i$, equipped with its natural vector space structure, and the linear subspace of bounded families :

$$V_b = \{ (x_i)_{i \in I} : \sup \|x_i\|_{X_i} < \infty \}$$

A semi-norm $\rho_{\mathcal{U}}$ can be defined on V_b by

$$\rho_{\mathcal{U}}((x_i)) = \lim_{i,\mathcal{U}} \|x_i\|_{X_i}$$

Define an equivalence relation of V_b by

$$(x_i) \sim (y_i) \iff \rho_{\mathcal{U}}((x_i - y_i)) = 0$$

The quotient of V_b by this equivalence relation is a vector space on which ρ induces a norm. The resulting normed space is called the \mathcal{U} -ultraproduct of the given family (X_i) , and denoted by $\prod_{\mathcal{U}} X_i$.

Observe that

$$\prod_{\mathcal{U}} X_i = V_b / N_{\mathcal{U}}$$

where $N_{\mathcal{U}}$ is the linear subspace $N_{\mathcal{U}} = \rho_{\mathcal{U}}^{-1}(0)$. For $(x_i) \in V_b$ denote by $[x_i]_{\mathcal{U}}$ its equivalence class, then clearly $||[x_i]_{\mathcal{U}}|| = \lim_{i,\mathcal{U}} ||x_i||_{X_i}$.

It can be shown that $\prod_{\mathcal{U}} X_i$ is complete (thus a Banach space).

A Banach space X embeds (linearly, isometrically) in any or its ultrapowers by the "diagonal map"

$$D: X \to X_{\mathcal{U}}, x \mapsto [(x)]_{\mathcal{U}}$$

(where (x) is the constant family : $x_i = x$ for all x)

Main examples

Finite dimensional spaces

Any ultrapower $X_{\mathcal{U}}$ of a finite dimensional space X is trivially identifiable to X itself, under the diagonal map. The inverse map is

$$P: X_{\mathcal{U}} \to X, [x_i]_{\mathcal{U}} \mapsto Px = \lim_{i, \mathcal{U}} x_i$$

The class of finite dimensional spaces is thus trivially closed under ultrapowers; of course it is not closed under ultraproducts. Let us illustrate this point :

Fact. Every Banach space X is identifiable to a closed subspace of some of an ultraproduct of its finite-dimensional subspaces.

Indeed let $\mathcal{F}(X)$ be the set of finite dimensional subspaces of X, ordered by inclusion, Φ the filter of cofinal subsets of $\mathcal{F}(X)$, \mathcal{U} an ultrafilter containing Φ . For $F \in \mathcal{F}(X)$ define

$$D_F: X \to F, D_F(x) = \begin{cases} x & \text{if } x \in F \\ 0 & \text{if not} \end{cases}$$

Then

$$D: X \to \prod_{\mathcal{U}} F, x \mapsto Dx = [D_F(x)]_{\mathcal{U}}$$

is the desired linear isometry.

 L_p spaces

By L_p -space we mean any Banach space isometric to some $L_p(\Omega, \mathcal{A}, \mu)$ -space. It can be of finite dimension n (space ℓ_p^n), discrete (ℓ_p , more generally $\ell_p(\Gamma)$), nonatomic ($L_p[0, 1], \ldots$)...

Fact. [Krivine] The class of L_p -spaces is closed under ultraproducts.

The following corollary is an old illustration (perhaps the first one) of the usefullness of ultraproducts in Banach spaces theory :

Corollary. A Banach space is linearly isometric to a subspace of some L_p -space iff all of its finitedimensional subspaces are.

Remark. Say that two Banach spaces X, Y are *C-isomorphic* if there is a linear isomorphism $T : X \to Y$ with $||T|| ||T^{-1}|| \leq C$. Then the preceding corollary is true with "*C*-isomorphic" in place of "isometric".

2. More structure : Banach lattices.

An ordered Banach space is a Banach space X equipped with an order \leq compatible with both the linear structure and the topology. Equivalently :

 $X_+ := \{x \in X : x \ge 0\}$ is a closed convex cone

 $x \le y \quad \Longleftrightarrow \quad (y-x) \in X_+$

X is a Banach lattice if moreover – the ordered space (X, \leq) is a lattice, i. e. $x \lor y := \max(x, y)$ and $x \land y := \min(x, y)$ exist for every pair $\{x, y\}$ in X.

In particular we may define $|x| := x \lor (-x)$.

- the norm is compatible with the order i.e.

$$|x| \le |y| \implies ||x|| \le ||y||$$

Ultraproducts of Banach Lattices.

An important feature of the operations \lor and \land is that they are both separately 1-Lipschitzian with respect to each of their arguments :

$$||x \vee y - x \vee z|| \le ||y - z||$$
, etc

Given a family $(X_i, \leq_i)_{i \in I}$ and an ultrafilter \mathcal{U} we may thus define operations \vee and \wedge on $\prod_{\mathcal{U}} X_i$ by

 $[x_i]_{\mathcal{U}} \vee [y_i]_{\mathcal{U}} := [x_i \vee y_i]_{\mathcal{U}}; \quad [x_i]_{\mathcal{U}} \wedge [y_i]_{\mathcal{U}} := [x_i \wedge y_i]_{\mathcal{U}}$

Define a relation \leq on $\prod_{\mathcal{U}} X_i$ by

 $x \le y \quad \Longleftrightarrow \quad x = x \wedge y$

It turns out that $(\prod_{\mathcal{U}} X_i, \leq)$ is a Banach lattice, the associated max and min functions of which are \lor , resp. \land . This is the Banach lattice ultraproduct of the family $(X_i, \leq_i)_{i \in I}$.

Examples

L_p Banach lattices

By an L_p Banach lattice we mean a Banach lattice which is linearly and order isometric to some $L_p(\Omega, \mathcal{A}, \mu)$ (equipped with the natural partial order of functions).

The class of L_p Banach lattices coincides (if $1 \le p < \infty$) with that of *abstract* L_p *spaces*, i. e. of Banach lattices satisfying the unique axiom

$$(KB_p) \qquad \forall x, \ \|x\|^p = \|x \vee 0\|^p + \|x \wedge 0\|^p$$

(Kakutani-Bohnenblust). We have then clearly :

Fact. The class of L_p Banach lattices is closed under ultraproducts.

This fact implies in turn (by forgetting the order structure) the above stated fact that the class of L_p Banach *spaces* is closed under ultraproducts.

Nakano Banach lattices

Let $(\Omega, \mathcal{A}, \mu)$ be a measure space, and $p : \Omega \to [1, \infty)$ be a **bounded** measurable function. The associated *Nakano space* $L_{p(\cdot)}(\Omega, \mathcal{A}, \mu)$ is the linear space of (classes of) measurable functions f such that :

$$\Theta(f) := \int_{\Omega} |f(\omega)|^{p(\omega)} < \infty$$

Several norms can be considered on $L_{p(\cdot)}$ but probably the most popular is the *Luxemburg norm*

$$||f||_{p(.)} = \inf\{c > 0 : \Theta(f/c) \le 1\}$$

With the Luxemburg norm and the natural order of functions, $L_{p(.)}(\Omega, \mathcal{A}, \mu)$ appears as a Banach lattice. When $p(\cdot)$ is a constant function = p then $L_{p(.)}(\Omega, \mathcal{A}, \mu) = L_p(\Omega, \mathcal{A}, \mu)$ Set $\bar{p} = \mathrm{ess\,supp}(\omega)$. **Theorem.** [L. P. Poitevin] Let $1 \leq D < \infty$. The class of Nakano Banach lattices (and thus of Nakano Banach spaces) with $\bar{p} \leq D$ is closed under ultraproducts.

Remark : define the essential range $R_{p(\cdot)}$ of $p(\cdot)$ as the set of points $t \in \mathbb{R}_+$ such that $\mu(p^{-1}(t - \varepsilon, t + \varepsilon)) > 0$ for every $\varepsilon > 0$. This is a compact subset of $[1, +\infty)$. Poitevin has proved in his thesis (2006) that $R_{p(\cdot)}$ is invariant under lattice-isometries and that given any compact set K, the classes $\mathcal{N}_{\subset K}$ and $\mathcal{N}_{=K}$ of Nakano Banach lattices with $R_{p(\cdot)} \subset K$, resp. $R_{p(\cdot)} = K$ are closed under ultraproducts.

Vector-valued L_p -spaces

Given $(\Omega, \mathcal{A}, \mu), p \in [1, \infty)$ and E a Banach space let $L_p(\Omega, \mathcal{A}, \mu; E)$ be the space of Bochner-measurable functions $\Omega \to E$, such that $\int \|f(\omega)\|_E^p d\mu(\omega) < \infty$, equipped with the norm $\|f\| = (\int \|f(\omega)\|_E^p d\mu(\omega))^{1/p}$.

We shall limit ourselves to the cases

 $E = L_q$ (abstract L_q -space) : then $L_p(E)$ has a natural structure of Banach lattice.

Consider the class $(\mathbf{L}_{\mathbf{p}}\mathbf{L}_{\mathbf{q}})$ of Banach lattices linearly and order isometric to some $L_p(L_q)$ -space;

It turns out that (for $p \neq q$) this classes are *not*

closed under ultraproducts (even under ultrapowers). However some enlarged class that we describe now is closed.

If X is a Banach lattice, an order ideal Y in X is a linear subspace such that

 $y \in Y, |x| \le |y| \quad \Longrightarrow \quad x \in Y$

If $X = L_p(\Omega, \mathcal{A}, \mu; L_q(\Omega', \mathcal{A}', \mu'))$, elements of X can be viewed as measurable functions on $\Omega \times \Omega'$ (w. r. to the product σ -algebra); if the measures μ, μ' are σ -finite, a closed order ideal in X has the form

$$Y_A = \{\chi_A f : f \in X\}$$

for some measurable $A \subset \Omega \times \Omega'$.

Theorem. [M. Levy, Y. R., 1986] Let $\mathbf{BL}_{\mathbf{p}}\mathbf{L}_{\mathbf{q}}$ be the class of Banach lattices order isometric to some closed order ideal in a space $L_p(L_q)$. Then $\mathbf{BL}_{\mathbf{p}}\mathbf{L}_{\mathbf{q}}$ is closed under ultraproducts.

3. Ultra-roots

Definition. Given two Banach spaces X, Y we say that X is a ultra-root of Y iff Y is linearly isometric to some ultrapower $X_{\mathcal{U}}$ of X.

Similarly, if X, Y are two Banach lattices, then X is a ultra-root of Y iff Y is linearly and order isometric to some ultrapower $X_{\mathcal{U}}$ of X.

A class C of Banach spaces (resp. lattices) is axiomatizable iff it is closed under ultraproducts and ultraroots.

Remark. The last sentence above is just a definition.

Recall however that Henson and Iovino have elaborated a language of "positive bounded formulas", in which any class C which is closed under ultrapowers and ultra-roots amits an axiomatisation (= is characterized by a set T of sentences) :

 $X \in \mathcal{C} \quad \Longleftrightarrow \quad X \models T$

(Conversely given a set T of axioms, the class of Banach spaces (resp. lattices) satisfying it is closed under ultraproducts, but perhaps not under ultraroots : it is necessary to pass to some set T^+ of all "approximations" of sentences in T.)

Examples (old)

 L_p -Banach lattices

Fact. For a given $1 \le p < \infty$ the class of L_p Banach lattices is axiomatisable.

Indeed it is closed under ultraproducts and substructures (=sublattices), a fortiori under ultraroots.

The Kakutani-Bohnenblust axiom gives a *characterization* of this class, which can be transcripted in an *axiomatization* in Henson-Iovino language.

 L_p -Banach spaces

Fact. [Henson] The class of L_p Banach spaces is axiomatisable.

For 1 it relies on the fact that the unit $ball of any closed linear subspace of an <math>L_p$ space is compact in the "weak topology".

If $Y_{\mathcal{U}} = X = L_p$ -space then $Y \subset X$ (by the "diagonal embedding" and one can define a linear bounded surjection :

$$P: X \to Y, \ [x_i]_{\mathcal{U}} \mapsto Px = \operatorname{weaklim}_{i,\mathcal{U}} x_i$$

P is a linear norm one projection, and a celebrated theorem by Douglas and Ando states that its range has to be linearly isometric to some L_p -space. A characterization of L_p -Banach spaces (which can be transcripted to HI's language) is the following :

X is a L_p -space iff it is a $\mathcal{L}_{p,1^+}$ -space, that is :

 $\forall \varepsilon > 0, \forall F \in \mathcal{F}(X), \exists G \in \mathcal{F}(X) \text{ with } F \subset G \text{ and } G \text{ is } (1 + \varepsilon)\text{-isomorphic to some finite } \ell_p^d \text{ space (the dimensiond of which is controlled by dim } F \text{ and } \varepsilon).$

Examples (new)

Nakano Banach lattices

Theorem. [Poitevin 2006] Let $D \in [1,\infty)$. The class of Nakano Banach lattices $L_{p(\cdot)}$ with $\bar{p} \leq D$ is axiomatizable. More generally given a compact set $K \subset [1,\infty)$ in the classes $\mathcal{N}_{\subset K}$ and $\mathcal{N}_{=K}$ are axiomatizable.

Characterization of $\mathcal{N}_{\subset K}$:

Definition. Let \mathcal{F} be a class of Banach lattices.

We say that a Banach lattice X is a script $(1^+, \mathcal{F})$ lattice if for every $\varepsilon > 0$ and every finite system $(x_1, ..., x_n)$ of positive disjoint elements there exists a finite-dimensional sublattice F of X which is $1 + \varepsilon$ isomorphic to a member of \mathcal{F} , and dist $(x_j, F) < \varepsilon$, for j = 1, ..., n. Observe that a d-dimensional Nakano space is the space ${\rm I\!R}^d$ equipped with a modular

$$\Theta_{\mathbf{p}}(x) = \sum_{j=1}^{d} |x_j|^{p_j} \text{ if } x = (x_1, \dots, x_d)$$

Its essential range is $K_{\mathbf{p}} = \{p_1, \ldots, p_d\}.$

Theorem. [L. Poitevin, Y. R.] Members of $\mathcal{N}_{\subset K}$ are exactly the script $(1^+, \mathcal{N}_{\subset K})$ -Banach lattices.

Class $\mathbf{BL}_{\mathbf{p}}\mathbf{L}_{\mathbf{q}}$ of closed order ideals in $L_p(L_q)$ -Banach lattices

Theorem. [Henson, Y.R. 2007] For $1 \leq p, q < \infty$ the class $\mathbf{BL_pL_q}$ is axiomatizable. Members of $\mathbf{BL_pL_q}$ are exactly the script $(1^+, \mathbf{BL_pL_q})$ -Banach lattice.

Observe that a finite dimensional Banach lattice is simply a finite *p*-direct sum of finite dimensional ℓ_q spaces.