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1. Ultraproducts of Banach spaces

Let (Xi)i∈I be a family of Banach spaces and U be
an ultrafilter on the set I.
Consider the product

∏
i∈I Xi, equipped with its

natural vector space structure, and the linear sub-
space of bounded families :

Vb = {(xi)i∈I : sup ‖xi‖Xi
< ∞}

A semi-norm ρU can be defined on Vb by

ρU ((xi)) = lim
i,U

‖xi‖Xi

Define an equivalence relation of Vb by

(xi) ∼ (yi) ⇐⇒ ρU ((xi − yi)) = 0

The quotient of Vb by this equivalence relation is
a vector space on which ρ induces a norm. The
resulting normed space is called the U -ultraproduct
of the given family (Xi), and denoted by

∏
U Xi.

Observe that ∏
UXi = Vb/NU

where NU is the linear subspace NU = ρ−1
U (0).

For (xi) ∈ Vb denote by [xi]U its equivalence class,
then clearly ‖[xi]U‖ = limi,U ‖xi‖Xi .

It can be shown that
∏

U Xi is complete (thus a
Banach space).
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A Banach space X embeds (linearly, isometrically)
in any or its ultrapowers by the “diagonal map”

D : X → XU , x �→ [(x)]U

(where (x) is the constant family : xi = x for all x)

Main examples

Finite dimensional spaces
Any ultrapower XU of a finite dimensional space X
is trivially identifiable to X itself, under the diagonal
map. The inverse map is

P : XU → X, [xi]U �→ Px = lim
i,U

xi

The class of finite dimensional spaces is thus trivially
closed under ultrapowers ; of course it is not closed
under ultraproducts. Let us illustrate this point :

Fact. Every Banach space X is identifiable to a
closed subspace of some of an ultraproduct of its
finite-dimensional subspaces.

Indeed let F(X) be the set of finite dimensional sub-
spaces of X , ordered by inclusion, Φ the filter of co-
final subsets of F(X), U an ultrafilter containing Φ.
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For F ∈ F(X) define

DF : X → F, DF (x) =
{

x if x ∈ F
0 if notThen

D : X →
∏
U

F, x �→ Dx = [DF (x)]U

is the desired linear isometry.

Lp spaces
By Lp-space we mean any Banach space isometric to
some Lp(Ω,A, µ)-space. It can be of finite dimension
n (space �n

p ), discrete (�p, more generally �p(Γ)),
nonatomic (Lp[0, 1],. . . ). . .

Fact. [Krivine] The class of Lp-spaces is closed un-
der ultraproducts.

The following corollary is an old illustration (perhaps
the first one) of the usefullness of ultraproducts in
Banach spaces theory :

Corollary. A Banach space is linearly isometric to
a subspace of some Lp-space iff all of its finite-
dimensional subspaces are.

Remark. Say that two Banach spaces X , Y are
C-isomorphic if there is a linear isomorphism T :
X → Y with ‖T‖ ‖T−1‖ ≤ C. Then the preceding
corollary is true with “C-isomorphic” in place of
“isometric”.
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2. More structure : Banach lattices.

An ordered Banach space is a Banach space X
equipped with an order ≤ compatible with both the
linear structure and the topology. Equivalently :

X+ := {x ∈ X : x ≥ 0} is a closed convex cone

x ≤ y ⇐⇒ (y − x) ∈ X+

X is a Banach lattice if moreover
– the ordered space (X,≤) is a lattice, i. e.
x ∨ y := max(x, y) and x ∧ y := min(x, y) exist for
every pair {x, y} in X .
In particular we may define |x| := x ∨ (−x).
– the norm is compatible with the order i.e.

|x| ≤ |y| =⇒ ‖x‖ ≤ ‖y‖
Ultraproducts of Banach Lattices.
An important feature of the operations ∨ and ∧ is
that they are both separately 1-Lipschitzian with
respect to each of their arguments :

‖x ∨ y − x ∨ z‖ ≤ ‖y − z‖, etc

Given a family (Xi,≤i)i∈I and an ultrafilter U we
may thus define operations ∨ and ∧ on

∏
U Xi by
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[xi]U ∨ [yi]U := [xi ∨ yi]U ; [xi]U ∧ [yi]U := [xi ∧ yi]U

Define a relation ≤ on
∏

U Xi by

x ≤ y ⇐⇒ x = x ∧ y

It turns out that (
∏

U Xi,≤) is a Banach lattice, the
associated max and min functions of which are ∨,
resp. ∧. This is the Banach lattice ultraproduct of
the family (Xi,≤i)i∈I .

Examples

Lp Banach lattices
By an Lp Banach lattice we mean a Banach lat-
tice which is linearly and order isometric to some
Lp(Ω,A, µ) (equipped with the natural partial order
of functions).
The class of Lp Banach lattices coincides (if 1 ≤ p <
∞) with that of abstract Lp spaces, i. e. of Banach
lattices satisfying the unique axiom

(KBp) ∀x, ‖x‖p = ‖x ∨ 0‖p + ‖x ∧ 0‖p

(Kakutani-Bohnenblust). We have then clearly :
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Fact. The class of Lp Banach lattices is closed under
ultraproducts.

This fact implies in turn (by forgetting the order
structure) the above stated fact that the class of Lp

Banach spaces is closed under ultraproducts.

Nakano Banach lattices

Let (Ω,A, µ) be a measure space, and p : Ω → [1,∞)
be a bounded measurable function. The associated
Nakano space Lp(·)(Ω,A, µ) is the linear space of
(classes of) measurable functions f such that :

Θ(f) :=
∫

Ω

|f(ω)|p(ω) < ∞

Several norms can be considered on Lp(·) but prob-
ably the most popular is the Luxemburg norm

‖f‖p(.) = inf{c > 0 : Θ(f/c) ≤ 1}

With the Luxemburg norm and the natural order of
functions, Lp(.)(Ω,A, µ) appears as a Banach lattice.

When p(·) is a constant function = p then
Lp(·)(Ω,A, µ) = Lp(Ω,A, µ)
Set p̄ = ess supp(ω).
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Theorem. [L. P. Poitevin] Let 1 ≤ D < ∞. The
class of Nakano Banach lattices (and thus of Nakano
Banach spaces) with p̄ ≤ D is closed under ultra-
products.

Remark : define the essential range Rp(·) of p(·) as
the set of points t ∈ IR+ such that µ(p−1(t − ε, t +
ε)) > 0 for every ε > 0. This is a compact subset
of [1, +∞). Poitevin has proved in his thesis (2006)
that Rp(·) is invariant under lattice-isometries and
that given any compact set K, the classes N⊂K and
N=K of Nakano Banach lattices with Rp(·) ⊂ K,
resp. Rp(·) = K are closed under ultraproducts.

Vector-valued Lp-spaces

Given (Ω,A, µ), p ∈ [1,∞) and E a Banach space let
Lp(Ω,A, µ; E) be the space of Bochner-measurable
functions Ω → E, such that

∫ ‖f(ω)‖p
Edµ(ω) < ∞,

equipped with the norm ‖f‖ = (
∫ ‖f(ω)‖p

Edµ(ω))1/p.

We shall limit ourselves to the cases
E = Lq (abstract Lq-space) : then Lp(E) has a
natural structure of Banach lattice.
Consider the class (LpLq) of Banach lattices linearly
and order isometric to some Lp(Lq)-space ;
It turns out that (for p �= q) this classes are not
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closed under ultraproducts (even under ultrapow-
ers). However some enlarged class that we describe
now is closed.
If X is a Banach lattice, an order ideal Y in X is a
linear subspace such that

y ∈ Y, |x| ≤ |y| =⇒ x ∈ Y

If X = Lp(Ω,A, µ; Lq(Ω′,A′, µ′)), elements of X can
be viewed as measurable functions on Ω × Ω′ (w. r.
to the product σ-algebra) ; if the measures µ, µ′ are
σ-finite, a closed order ideal in X has the form

YA = {χAf : f ∈ X}

for some measurable A ⊂ Ω × Ω′.

Theorem. [M. Levy, Y. R., 1986] Let BLpLq be
the class of Banach lattices order isometric to some
closed order ideal in a space Lp(Lq). Then BLpLq

is closed under ultraproducts.
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3. Ultra-roots

Definition. Given two Banach spaces X, Y we say
that X is a ultra-root of Y iff Y is linearly isometric
to some ultrapower XU of X .

Similarly, if X, Y are two Banach lattices, then X is
a ultra-root of Y iff Y is linearly and order isometric
to some ultrapower XU of X .

A class C of Banach spaces (resp. lattices) is axioma-
tizable iff it is closed under ultraproducts and ultra-
roots.

Remark. The last sentence above is just a defini-
tion.
Recall however that Henson and Iovino have elabo-
rated a language of “positive bounded formulas”, in
which any class C which is closed under ultrapowers
and ultra-roots amits an axiomatisation (= is char-
acterized by a set T of sentences) :

X ∈ C ⇐⇒ X |= T

(Conversely given a set T of axioms, the class of
Banach spaces (resp. lattices) satisfying it is closed
under ultraproducts, but perhaps not under ultra-
roots : it is necessary to pass to some set T+ of all
“approximations” of sentences in T .)
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Examples (old)

Lp-Banach lattices

Fact. For a given 1 ≤ p < ∞ the class of Lp Banach
lattices is axiomatisable.

Indeed it is closed under ultraproducts and substruc-
tures (=sublattices), a fortiori under ultraroots.

The Kakutani-Bohnenblust axiom gives a character-
ization of this class, which can be transcripted in an
axiomatization in Henson-Iovino language.

Lp-Banach spaces

Fact. [Henson] The class of Lp Banach spaces is
axiomatisable.

For 1 < p < ∞ it relies on the fact that the unit
ball of any closed linear subspace of an Lp space is
compact in the “weak topology”.
If YU = X = Lp-space then Y ⊂ X (by the “diagonal
embedding” and one can define a linear bounded
surjection :

P : X → Y, [xi]U �→ Px = weaklim
i,U

xi

P is a linear norm one projection, and a celebrated
theorem by Douglas and Ando states that its range
has to be linearly isometric to some Lp-space.
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Acharacterization of Lp-Banach spaces (which can
be transcripted to HI’s language) is the following :

X is a Lp-space iff it is a Lp,1+-space, that is :

∀ε > 0, ∀F ∈ F(X), ∃G ∈ F(X) with F ⊂ G and
G is (1 + ε)-isomorphic to some finite �d

p space (the
dimensiondof which is controlled by dimF and ε).

Examples (new)

Nakano Banach lattices

Theorem. [Poitevin 2006] Let D ∈ [1,∞). The
class of Nakano Banach lattices Lp(·) with p̄ ≤ D
is axiomatizable. More generally given a compact
set K ⊂ [1,∞) in the classes N⊂K and N=K are
axiomatizable.

Characterization of N⊂K :

Definition. Let F be a class of Banach lattices.

We say that a Banach lattice X is a script (1+,F)-
lattice if for every ε > 0 and every finite system
(x1, ..., xn) of positive disjoint elements there exists
a finite-dimensional sublattice F of X which is 1+ε-
isomorphic to a member of F , and dist (xj , F ) < ε,
for j = 1, . . . n.
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Observe that a d-dimensional Nakano space is the
space IRd equipped with a modular

Θp(x) =
d∑

j=1

|xj |pj if x = (x1, . . . , xd)

Its essential range is Kp = {p1, . . . , pd}.
Theorem. [L. Poitevin, Y. R.] Members of N⊂K

are exactly the script (1+,N⊂K)-Banach lattices.

Class BLpLq of closed order ideals in Lp(Lq)-
Banach lattices

Theorem. [Henson, Y.R. 2007] For 1 ≤ p, q <
∞ the class BLpLq is axiomatizable. Members of
BLpLq are exactly the script (1+,BLpLq)-Banach
lattice.

Observe that a finite dimensional Banach lattice is
simply a finite p-direct sum of finite dimensional �q

spaces.
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