# Ultrafilters, Determinacy, and Large Cardinals 

Itay Neeman<br>Department of Mathematics<br>University of California Los Angeles<br>Los Angeles, CA 90095-1555

UltraMath 2008
Pisa, Italy

## Axioms of set theory

## Axioms of set theory

- $x, y$ sets $\Rightarrow\{x, y\}$ a set.


## Axioms of set theory

- $x, y$ sets $\Rightarrow\{x, y\}$ a set.
- $x$ a set $\Rightarrow U x$ a set.


## Axioms of set theory

- $x, y$ sets $\Rightarrow\{x, y\}$ a set.
- $x$ a set $\Rightarrow \cup x$ a set.


## Axioms of set theory

- $x, y$ sets $\Rightarrow\{x, y\}$ a set.
- $x$ a set $\Rightarrow U x$ a set.
- $x$ a set, $\varphi(u)$ a formula $\Rightarrow\{u \in x \mid \varphi(u)\}$ a set.


## Axioms of set theory

- $x, y$ sets $\Rightarrow\{x, y\}$ a set.
- $x$ a set $\Rightarrow \bigcup x$ a set.
- $x$ a set, $\varphi(u)$ a formula $\Rightarrow\{u \in x \mid \varphi(u)\}$ a set.
- $x$ a set, $\varphi(u, w)$ a formula defining a function $\Rightarrow$ (image of $x)=\{w \mid(\exists u \in x) \varphi(u, w)\}$ a set.


## Axioms of set theory

- $x, y$ sets $\Rightarrow\{x, y\}$ a set.
- $x$ a set $\Rightarrow \bigcup x$ a set.
- $x$ a set, $\varphi(u)$ a formula $\Rightarrow\{u \in x \mid \varphi(u)\}$ a set.
- $x$ a set, $\varphi(u, w)$ a formula defining a function $\Rightarrow$ (image of $x)=\{w \mid(\exists u \in x) \varphi(u, w)\}$ a set.

Sufficient to develop much of mathematics.

## Axioms of set theory

- $x, y$ sets $\Rightarrow\{x, y\}$ a set.
- $x$ a set $\Rightarrow \bigcup x$ a set.
- $x$ a set, $\varphi(u)$ a formula $\Rightarrow\{u \in x \mid \varphi(u)\}$ a set.
- $x$ a set, $\varphi(u, w)$ a formula defining a function $\Rightarrow$ (image of $x)=\{w \mid(\exists u \in x) \varphi(u, w)\}$ a set.

Sufficient to develop much of mathematics.
Natural numbers, real numbers, transfinite ordinals, cardinals.

- $x, y$ sets $\Rightarrow\{x, y\}$ a set.
- $x$ a set $\Rightarrow U x$ a set.
- $x$ a set, $\varphi(u)$ a formula $\Rightarrow\{u \in x \mid \varphi(u)\}$ a set.
- $x$ a set, $\varphi(u, w)$ a formula defining a function $\Rightarrow$ (image of $x)=\{w \mid(\exists u \in x) \varphi(u, w)\}$ a set.
- $x, y$ sets $\Rightarrow\{x, y\}$ a set.
- $x$ a set $\Rightarrow \bigcup x$ a set.
- ...
- $x$ a set, $\varphi(u)$ a formula $\Rightarrow\{u \in x \mid \varphi(u)\}$ a set.
- $x$ a set, $\varphi(u, w)$ a formula defining a function $\Rightarrow$ (image of $x)=\{w \mid(\exists u \in x) \varphi(u, w)\}$ a set.

A collection $M$ of sets is a model of set theory if these axioms hold "inside $M$ ".

- $x, y$ sets $\Rightarrow\{x, y\}$ a set.
- $x$ a set $\Rightarrow \bigcup x$ a set.
- ...
- $x$ a set, $\varphi(u)$ a formula $\Rightarrow\{u \in x \mid \varphi(u)\}$ a set.
- $x$ a set, $\varphi(u, w)$ a formula defining a function $\Rightarrow$ (image of $x)=\{w \mid(\exists u \in x) \varphi(u, w)\}$ a set.

A collection $M$ of sets is a model of set theory if these axioms hold "inside $M$ ".

Can then develop much of mathematics inside $M$.

- $x, y$ sets $\Rightarrow\{x, y\}$ a set.
- $x$ a set $\Rightarrow U x$ a set.
- ...
- $x$ a set, $\varphi(u)$ a formula $\Rightarrow\{u \in x \mid \varphi(u)\}$ a set.
- $x$ a set, $\varphi(u, w)$ a formula defining a function $\Rightarrow$ (image of $x)=\{w \mid(\exists u \in x) \varphi(u, w)\}$ a set.

A collection $M$ of sets is a model of set theory if these axioms hold "inside $M$ ".

Can then develop much of mathematics inside $M$.
We write $\varphi^{M}$ to mean that $\varphi$ holds inside $M$.

- $x, y$ sets $\Rightarrow\{x, y\}$ a set.
- $x$ a set $\Rightarrow \bigcup x$ a set.
- ...
- $x$ a set, $\varphi(u)$ a formula $\Rightarrow\{u \in x \mid \varphi(u)\}$ a set.
- $x$ a set, $\varphi(u, w)$ a formula defining a function $\Rightarrow$ (image of $x)=\{w \mid(\exists u \in x) \varphi(u, w)\}$ a set.

A collection $M$ of sets is a model of set theory if these axioms hold "inside $M$ ".

Can then develop much of mathematics inside $M$.
We write $\varphi^{M}$ to mean that $\varphi$ holds inside $M$.
Precisely, quantifiers of $\varphi$ restricted to range over sets in $M$.
$V$ is the universe of all sets.
$V$ is the universe of all sets.

Stratified to transfinitely many levels as follows:
$V$ is the universe of all sets.

Stratified to transfinitely many levels as follows:

- $V_{0}=\emptyset$.
$V$ is the universe of all sets.

Stratified to transfinitely many levels as follows:

- $V_{0}=\emptyset$.
- $V_{\alpha+1}=\mathcal{P}\left(V_{\alpha}\right)$.
$V$ is the universe of all sets.

Stratified to transfinitely many levels as follows:

- $V_{0}=\emptyset$.
- $V_{\alpha+1}=\mathcal{P}\left(V_{\alpha}\right)$.
- $V_{\lambda}=\bigcup_{\alpha<\lambda} V_{\alpha}$ for limit $\lambda$.
$V$ is the universe of all sets.

Stratified to transfinitely many levels as follows:

- $V_{0}=\emptyset$.
- $V_{\alpha+1}=\mathcal{P}\left(V_{\alpha}\right)$.
- $V_{\lambda}=\bigcup_{\alpha<\lambda} V_{\alpha}$ for limit $\lambda$.
$\operatorname{rank}(x)$ is least $\alpha$ so that $x \in V_{\alpha+1}$.
$V$ is the universe of all sets.

Stratified to transfinitely many levels as follows:

- $V_{0}=\emptyset$.
- $V_{\alpha+1}=\mathcal{P}\left(V_{\alpha}\right)$.
- $V_{\lambda}=\bigcup_{\alpha<\lambda} V_{\alpha}$ for limit $\lambda$.
$\operatorname{rank}(x)$ is least $\alpha$ so that $x \in V_{\alpha+1}$.

Many questions about the universe.
$V$ is the universe of all sets.

Stratified to transfinitely many levels as follows:

- $V_{0}=\emptyset$.
- $V_{\alpha+1}=\mathcal{P}\left(V_{\alpha}\right)$.
- $V_{\lambda}=\bigcup_{\alpha<\lambda} V_{\alpha}$ for limit $\lambda$.
$\operatorname{rank}(x)$ is least $\alpha$ so that $x \in V_{\alpha+1}$.

Many questions about the universe.

What is $\operatorname{card}(\mathcal{P}(x))$ ?
$V$ is the universe of all sets.

Stratified to transfinitely many levels as follows:

- $V_{0}=\emptyset$.
- $V_{\alpha+1}=\mathcal{P}\left(V_{\alpha}\right)$.
- $V_{\lambda}=\bigcup_{\alpha<\lambda} V_{\alpha}$ for limit $\lambda$.
$\operatorname{rank}(x)$ is least $\alpha$ so that $x \in V_{\alpha+1}$.

Many questions about the universe.

What is $\operatorname{card}(\mathcal{P}(x))$ ?
$\operatorname{card}(\mathcal{P}(\kappa))$ denoted $2^{\kappa}$. The very next cardinal above $\kappa$ denoted $\kappa^{+}$. Are they the same?
$\kappa$ is regular if every function from $\alpha<\kappa$ into $\kappa$ is bounded in $\kappa$.
$\kappa$ is regular if every function from $\alpha<\kappa$ into $\kappa$ is bounded in $\kappa$.

Otherwise $\kappa$ is singular.
$\kappa$ is regular if every function from $\alpha<\kappa$ into $\kappa$ is bounded in $\kappa$.

Otherwise $\kappa$ is singular.

## Some answers:

$\kappa$ is regular if every function from $\alpha<\kappa$ into $\kappa$ is bounded in $\kappa$.

Otherwise $\kappa$ is singular.

## Some answers:

Theorem (Cohen) For $\kappa$ regular, $2^{\kappa}$ need not equal $\kappa^{+}$. ( $2^{\kappa}$ can be bigger.)
$\kappa$ is regular if every function from $\alpha<\kappa$ into $\kappa$ is bounded in $\kappa$.

Otherwise $\kappa$ is singular.

## Some answers:

Theorem (Cohen) For $\kappa$ regular, $2^{\kappa}$ need not equal $\kappa^{+}$. ( $2^{\kappa}$ can be bigger.)

What about $\kappa$ singular?
$\kappa$ is regular if every function from $\alpha<\kappa$ into $\kappa$ is bounded in $\kappa$.

Otherwise $\kappa$ is singular.

## Some answers:

Theorem (Cohen) For $\kappa$ regular, $2^{\kappa}$ need not equal $\kappa^{+}$. ( $2^{\kappa}$ can be bigger.)

What about $\kappa$ singular?

Suppose $\tau<\kappa \rightarrow 2^{\tau}<\kappa$, and $\kappa$ is singular. Can $2^{\kappa}>\kappa^{+}$?
$\kappa$ is regular if every function from $\alpha<\kappa$ into $\kappa$ is bounded in $\kappa$.

Otherwise $\kappa$ is singular.

## Some answers:

Theorem (Cohen) For $\kappa$ regular, $2^{\kappa}$ need not equal $\kappa^{+}$. ( $2^{\kappa}$ can be bigger.)

What about $\kappa$ singular?

Suppose $\tau<\kappa \rightarrow 2^{\tau}<\kappa$, and $\kappa$ is singular. Can $2^{\kappa}>\kappa^{+}$?

Singular Cardinal Hypothesis says no.

## Elementary embeddings

## Elementary embeddings

$\pi: V \rightarrow M$ is an elementary embedding if for all $\varphi$ and all $x_{1}, \ldots, x_{k}$,

$$
\varphi^{V}\left(x_{1}, \ldots, x_{k}\right) \longleftrightarrow \varphi^{M}\left(\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)\right) .
$$

## Elementary embeddings

$\pi: V \rightarrow M$ is an elementary embedding if for all $\varphi$ and all $x_{1}, \ldots, x_{k}$,

$$
\varphi^{V}\left(x_{1}, \ldots, x_{k}\right) \longleftrightarrow \varphi^{M}\left(\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)\right)
$$

(1) $\pi$ is injective.

## Elementary embeddings

$\pi: V \rightarrow M$ is an elementary embedding if for all $\varphi$ and all $x_{1}, \ldots, x_{k}$,

$$
\varphi^{V}\left(x_{1}, \ldots, x_{k}\right) \longleftrightarrow \varphi^{M}\left(\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)\right)
$$

(1) $\pi$ is injective.

Use the formula $\varphi=" x \neq y "$. Get $x \neq y \longleftrightarrow \pi(x) \neq \pi(y)$.

## Elementary embeddings

$\pi: V \rightarrow M$ is an elementary embedding if for all $\varphi$ and all $x_{1}, \ldots, x_{k}$,

$$
\varphi^{V}\left(x_{1}, \ldots, x_{k}\right) \longleftrightarrow \varphi^{M}\left(\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)\right) .
$$

(1) $\pi$ is injective.

Use the formula $\varphi=" x \neq y$ ". Get $x \neq y \longleftrightarrow \pi(x) \neq \pi(y)$.
(2) There is an ordinal $\kappa$ such that $\pi \upharpoonright \kappa=$ id and $\pi(\kappa)>\kappa$.

## Elementary embeddings

$\pi: V \rightarrow M$ is an elementary embedding if for all $\varphi$ and all $x_{1}, \ldots, x_{k}$,

$$
\varphi^{V}\left(x_{1}, \ldots, x_{k}\right) \longleftrightarrow \varphi^{M}\left(\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)\right) .
$$

(1) $\pi$ is injective.

Use the formula $\varphi=" x \neq y$ ". Get $x \neq y \longleftrightarrow \pi(x) \neq \pi(y)$.
(2) There is an ordinal $\kappa$ such that $\pi \upharpoonright \kappa=$ id and $\pi(\kappa)>\kappa$. Let $x$ be of minimal rank so that $\pi(x) \neq x$. Let $\kappa=\operatorname{rank}(x)$.

## Elementary embeddings

$\pi: V \rightarrow M$ is an elementary embedding if for all $\varphi$ and all $x_{1}, \ldots, x_{k}$,

$$
\varphi^{V}\left(x_{1}, \ldots, x_{k}\right) \longleftrightarrow \varphi^{M}\left(\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)\right) .
$$

(1) $\pi$ is injective.

Use the formula $\varphi=" x \neq y$ ". Get $x \neq y \longleftrightarrow \pi(x) \neq \pi(y)$.
(2) There is an ordinal $\kappa$ such that $\pi \upharpoonright \kappa=$ id and $\pi(\kappa)>\kappa$. Let $x$ be of minimal rank so that $\pi(x) \neq x$. Let $\kappa=\operatorname{rank}(x)$.
$\kappa$ as above is called the critical point of $\pi$.

## Elementary embeddings

$\pi: V \rightarrow M$ is an elementary embedding if for all $\varphi$ and all $x_{1}, \ldots, x_{k}$,

$$
\varphi^{V}\left(x_{1}, \ldots, x_{k}\right) \longleftrightarrow \varphi^{M}\left(\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)\right) .
$$

(1) $\pi$ is injective.

Use the formula $\varphi=$ " $x \neq y$ ". Get $x \neq y \longleftrightarrow \pi(x) \neq \pi(y)$.
(2) There is an ordinal $\kappa$ such that $\pi \upharpoonright \kappa=$ id and $\pi(\kappa)>\kappa$. Let $x$ be of minimal rank so that $\pi(x) \neq x$. Let $\kappa=\operatorname{rank}(x)$.
$\kappa$ as above is called the critical point of $\pi$.
(3) $\operatorname{crit}(\pi)$ is a regular limit cardinal.

## Elementary embeddings

$\pi: V \rightarrow M$ is an elementary embedding if for all $\varphi$ and all $x_{1}, \ldots, x_{k}$,

$$
\varphi^{V}\left(x_{1}, \ldots, x_{k}\right) \longleftrightarrow \varphi^{M}\left(\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)\right) .
$$

(1) $\pi$ is injective.

Use the formula $\varphi=" x \neq y$ ". Get $x \neq y \longleftrightarrow \pi(x) \neq \pi(y)$.
(2) There is an ordinal $\kappa$ such that $\pi \upharpoonright \kappa=$ id and $\pi(\kappa)>\kappa$. Let $x$ be of minimal rank so that $\pi(x) \neq x$. Let $\kappa=\operatorname{rank}(x)$.
$\kappa$ as above is called the critical point of $\pi$.
(3) $\operatorname{crit}(\pi)$ is a regular limit cardinal.

Regular: Suppose $f: \alpha \rightarrow \kappa$, with $\alpha<\kappa$. Then $\pi(f)=f$, so $\pi(f)$ is bounded in $\pi(\kappa)$, so $f$ is bounded in $\kappa$.

Define $\mathcal{U} \subseteq \mathcal{P}(\kappa)$ by $\quad X \in \mathcal{U} \longleftrightarrow \kappa \in \pi(X)$.

Define $\mathcal{U} \subseteq \mathcal{P}(\kappa)$ by $\quad X \in \mathcal{U} \longleftrightarrow \kappa \in \pi(X)$.
(4) $\mathcal{U}$ is a filter on $\kappa$.

Define $\mathcal{U} \subseteq \mathcal{P}(\kappa)$ by $\quad X \in \mathcal{U} \longleftrightarrow \kappa \in \pi(X)$.
(4) $\mathcal{U}$ is a filter on $\kappa$.
$X, Y \in \mathcal{U} \rightarrow \kappa \in \pi(X) \cap \pi(Y)=\pi(X \cap Y)$.

Define $\mathcal{U} \subseteq \mathcal{P}(\kappa)$ by $\quad X \in \mathcal{U} \longleftrightarrow \kappa \in \pi(X)$.
(4) $\mathcal{U}$ is a filter on $\kappa$.
$X, Y \in \mathcal{U} \rightarrow \kappa \in \pi(X) \cap \pi(Y)=\pi(X \cap Y)$.
(5) $\mathcal{U}$ is non-principal.

Define $\mathcal{U} \subseteq \mathcal{P}(\kappa)$ by $\quad X \in \mathcal{U} \longleftrightarrow \kappa \in \pi(X)$.
(4) $\mathcal{U}$ is a filter on $\kappa$.
$X, Y \in \mathcal{U} \rightarrow \kappa \in \pi(X) \cap \pi(Y)=\pi(X \cap Y)$.
(5) $\mathcal{U}$ is non-principal.
$\pi(\{\alpha\})=\{\pi(\alpha)\}=\{\alpha\}$ for $\alpha<\kappa$, and $\kappa \notin\{\alpha\}$.

Define $\mathcal{U} \subseteq \mathcal{P}(\kappa)$ by $\quad X \in \mathcal{U} \longleftrightarrow \kappa \in \pi(X)$.
(4) $\mathcal{U}$ is a filter on $\kappa$.
$X, Y \in \mathcal{U} \rightarrow \kappa \in \pi(X) \cap \pi(Y)=\pi(X \cap Y)$.
(5) $\mathcal{U}$ is non-principal.
$\pi(\{\alpha\})=\{\pi(\alpha)\}=\{\alpha\}$ for $\alpha<\kappa$, and $\kappa \notin\{\alpha\}$.
(6) $\mathcal{U}$ is $\kappa$-complete.

Define $\mathcal{U} \subseteq \mathcal{P}(\kappa)$ by $\quad X \in \mathcal{U} \longleftrightarrow \kappa \in \pi(X)$.
(4) $\mathcal{U}$ is a filter on $\kappa$.
$X, Y \in \mathcal{U} \rightarrow \kappa \in \pi(X) \cap \pi(Y)=\pi(X \cap Y)$.
(5) $\mathcal{U}$ is non-principal.
$\pi(\{\alpha\})=\{\pi(\alpha)\}=\{\alpha\}$ for $\alpha<\kappa$, and $\kappa \notin\{\alpha\}$.
(6) $\mathcal{U}$ is $\kappa$-complete.
(7) $\mathcal{U}$ is an ultrafilter.

Define $\mathcal{U} \subseteq \mathcal{P}(\kappa)$ by $\quad X \in \mathcal{U} \longleftrightarrow \kappa \in \pi(X)$.
(4) $\mathcal{U}$ is a filter on $\kappa$.
$X, Y \in \mathcal{U} \rightarrow \kappa \in \pi(X) \cap \pi(Y)=\pi(X \cap Y)$.
(5) $\mathcal{U}$ is non-principal.
$\pi(\{\alpha\})=\{\pi(\alpha)\}=\{\alpha\}$ for $\alpha<\kappa$, and $\kappa \notin\{\alpha\}$.
(6) $\mathcal{U}$ is $\kappa$-complete.
(7) $\mathcal{U}$ is an ultrafilter.

For each $X \subset \kappa$, either $\kappa \in \pi(X)$, or $\kappa \in \pi(\kappa)-\pi(X)$

Define $\mathcal{U} \subseteq \mathcal{P}(\kappa)$ by $\quad X \in \mathcal{U} \longleftrightarrow \kappa \in \pi(X)$.
(4) $\mathcal{U}$ is a filter on $\kappa$.
$X, Y \in \mathcal{U} \rightarrow \kappa \in \pi(X) \cap \pi(Y)=\pi(X \cap Y)$.
(5) $\mathcal{U}$ is non-principal.
$\pi(\{\alpha\})=\{\pi(\alpha)\}=\{\alpha\}$ for $\alpha<\kappa$, and $\kappa \notin\{\alpha\}$.
(6) $\mathcal{U}$ is $\kappa$-complete.
(7) $\mathcal{U}$ is an ultrafilter.

For each $X \subset \kappa$, either $\kappa \in \pi(X)$, or $\kappa \in \pi(\kappa)-\pi(X)=\pi(\kappa-X)$.

Define $\mathcal{U} \subseteq \mathcal{P}(\kappa)$ by $\quad X \in \mathcal{U} \longleftrightarrow \kappa \in \pi(X)$.
(4) $\mathcal{U}$ is a filter on $\kappa$.
$X, Y \in \mathcal{U} \rightarrow \kappa \in \pi(X) \cap \pi(Y)=\pi(X \cap Y)$.
(5) $\mathcal{U}$ is non-principal.
$\pi(\{\alpha\})=\{\pi(\alpha)\}=\{\alpha\}$ for $\alpha<\kappa$, and $\kappa \notin\{\alpha\}$.
(6) $\mathcal{U}$ is $\kappa$-complete.
(7) $\mathcal{U}$ is an ultrafilter.

For each $X \subset \kappa$, either $\kappa \in \pi(X)$, or $\kappa \in \pi(\kappa)-\pi(X)=\pi(\kappa-X)$.

Refer to $\mathcal{U}$ as the measure on $\kappa$ induced by $\pi$.

Define $\mathcal{U} \subseteq \mathcal{P}(\kappa)$ by $\quad X \in \mathcal{U} \longleftrightarrow \kappa \in \pi(X)$.
(4) $\mathcal{U}$ is a filter on $\kappa$.
$X, Y \in \mathcal{U} \rightarrow \kappa \in \pi(X) \cap \pi(Y)=\pi(X \cap Y)$.
(5) $\mathcal{U}$ is non-principal.
$\pi(\{\alpha\})=\{\pi(\alpha)\}=\{\alpha\}$ for $\alpha<\kappa$, and $\kappa \notin\{\alpha\}$.
(6) $\mathcal{U}$ is $\kappa$-complete.
(7) $\mathcal{U}$ is an ultrafilter.

For each $X \subset \kappa$, either $\kappa \in \pi(X)$, or $\kappa \in \pi(\kappa)-\pi(X)=\pi(\kappa-X)$.
Refer to $\mathcal{U}$ as the measure on $\kappa$ induced by $\pi$.
$\kappa=\operatorname{crit}(\pi)$ is called a measurable cardinal.

Quick word on converse:

Quick word on converse:

Suppose $\mathcal{U}$ is a $\kappa$-complete non-principal ultrafilter on $\mathcal{P}(\kappa)$.

Quick word on converse:

Suppose $\mathcal{U}$ is a $\kappa$-complete non-principal ultrafilter on $\mathcal{P}(\kappa)$.

Let $M=\operatorname{Ult}(V, \mathcal{U})$. Let $\pi$ be the ultrapower embedding.

Quick word on converse:

Suppose $\mathcal{U}$ is a $\kappa$-complete non-principal ultrafilter on $\mathcal{P}(\kappa)$.

Let $M=\operatorname{Ult}(V, \mathcal{U})$. Let $\pi$ be the ultrapower embedding.

Then $\operatorname{crit}(\pi)=\kappa$ and the measure induced by $\pi$ is equal to $\mathcal{U}$.

Quick word on converse:

Suppose $\mathcal{U}$ is a $\kappa$-complete non-principal ultrafilter on $\mathcal{P}(\kappa)$.

Let $M=\operatorname{Ult}(V, \mathcal{U})$. Let $\pi$ be the ultrapower embedding.

Then $\operatorname{crit}(\pi)=\kappa$ and the measure induced by $\pi$ is equal to $\mathcal{U}$.

Quick word on large cardinal axioms:

Quick word on converse:

Suppose $\mathcal{U}$ is a $\kappa$-complete non-principal ultrafilter on $\mathcal{P}(\kappa)$.

Let $M=\operatorname{Ult}(V, \mathcal{U})$. Let $\pi$ be the ultrapower embedding.

Then $\operatorname{crit}(\pi)=\kappa$ and the measure induced by $\pi$ is equal to $\mathcal{U}$.

Quick word on large cardinal axioms:

The existence of a measurable cardinal is a large cardinal axiom.

Quick word on converse:

Suppose $\mathcal{U}$ is a $\kappa$-complete non-principal ultrafilter on $\mathcal{P}(\kappa)$.

Let $M=\operatorname{Ult}(V, \mathcal{U})$. Let $\pi$ be the ultrapower embedding.

Then $\operatorname{crit}(\pi)=\kappa$ and the measure induced by $\pi$ is equal to $\mathcal{U}$.

Quick word on large cardinal axioms:

The existence of a measurable cardinal is a large cardinal axiom.

Does not follow from ZFC.

Quick word on converse:

Suppose $\mathcal{U}$ is a $\kappa$-complete non-principal ultrafilter on $\mathcal{P}(\kappa)$.

Let $M=\operatorname{Ult}(V, \mathcal{U})$. Let $\pi$ be the ultrapower embedding.

Then $\operatorname{crit}(\pi)=\kappa$ and the measure induced by $\pi$ is equal to $\mathcal{U}$.

Quick word on large cardinal axioms:

The existence of a measurable cardinal is a large cardinal axiom.

Does not follow from ZFC.

One axiom in a rich hierarchy.

Elementary embeddings and their properties are crucial to answering many questions in set theory.

Elementary embeddings and their properties are crucial to answering many questions in set theory.

Talk about one: the singular cardinal hypothesis.

Elementary embeddings and their properties are crucial to answering many questions in set theory.

Talk about one: the singular cardinal hypothesis.

The hypothesis asserts that if $\kappa$ is singular and $(\forall \tau<\kappa) 2^{\tau}<\kappa$, then $2^{\kappa}=\kappa^{+}$.

## Forcing

## Forcing

Let $M$ be a model of set theory.

## Forcing

Let $M$ be a model of set theory.

Let $(\mathbb{P}, \leq)$ be a poset in $M$.

## Forcing

Let $M$ be a model of set theory.

Let $(\mathbb{P}, \leq)$ be a poset in $M$.

A filter $G \subseteq \mathbb{P}$ is generic over $M$ if $G \cap D \neq \emptyset$ for all dense $D \subseteq \mathbb{P}$ which belong to $M$.

Generic filters need not exist.

Generic filters need not exist.

Example: $M=V . \mathbb{P}=\{p: n \rightarrow 2 \mid n<\omega\} . q \leq p$ iff $q$ extends $p$.

Generic filters need not exist.

Example: $M=V . \mathbb{P}=\{p: n \rightarrow 2 \mid n<\omega\} . q \leq p$ iff $q$ extends $p$.

The sets

$$
\begin{gathered}
D_{n}=\{p \mid n \in \operatorname{dom}(p)\}, n<\omega \\
D_{f}=\{p \mid p, f \text { disagree }\}, f: \omega \rightarrow 2
\end{gathered}
$$

are dense.

Generic filters need not exist.

Example: $M=V . \mathbb{P}=\{p: n \rightarrow 2 \mid n<\omega\} . q \leq p$ iff $q$ extends $p$.

The sets

$$
\begin{gathered}
D_{n}=\{p \mid n \in \operatorname{dom}(p)\}, n<\omega \\
D_{f}=\{p \mid p, f \text { disagree }\}, f: \omega \rightarrow 2
\end{gathered}
$$

are dense.

If $G$ meets all of them, then $g=\bigcup G$ is a total function from $\omega$ into 2 , yet $g \neq f$ for any $f: \omega \rightarrow 2$.

Generic filters need not exist.

Example: $M=V . \mathbb{P}=\{p: n \rightarrow 2 \mid n<\omega\} . q \leq p$ iff $q$ extends $p$.

The sets

$$
\begin{gathered}
D_{n}=\{p \mid n \in \operatorname{dom}(p)\}, n<\omega \\
D_{f}=\{p \mid p, f \text { disagree }\}, f: \omega \rightarrow 2
\end{gathered}
$$

are dense.

If $G$ meets all of them, then $g=\bigcup G$ is a total function from $\omega$ into 2 , yet $g \neq f$ for any $f: \omega \rightarrow 2$.

But the existence of generic $G$ is consistent.

Generic filters need not exist.

Example: $M=V . \mathbb{P}=\{p: n \rightarrow 2 \mid n<\omega\} . q \leq p$ iff $q$ extends $p$.

The sets

$$
\begin{gathered}
D_{n}=\{p \mid n \in \operatorname{dom}(p)\}, n<\omega \\
D_{f}=\{p \mid p, f \text { disagree }\}, f: \omega \rightarrow 2
\end{gathered}
$$

are dense.

If $G$ meets all of them, then $g=\bigcup G$ is a total function from $\omega$ into 2 , yet $g \neq f$ for any $f: \omega \rightarrow 2$.

But the existence of generic $G$ is consistent.
Gives an extension $M[G]$ of $M$.

Suppose $\kappa$ is measurable in $M$.

Suppose $\kappa$ is measurable in $M$.

Fix $\mathcal{U} \in M$ so that $(\mathcal{U} \text { is a } \kappa \text {-complete ultrafilter on } \mathcal{P}(\kappa))^{M}$.

Suppose $\kappa$ is measurable in $M$.

Fix $\mathcal{U} \in M$ so that $(\mathcal{U} \text { is a } \kappa \text {-complete ultrafilter on } \mathcal{P}(\kappa))^{M}$.

Define $\mathbb{P}=\{\langle s, A\rangle \mid s: n \rightarrow \kappa(n<\omega)$ increasing, $A \subseteq \kappa, A \in \mathcal{U}\}$.

Suppose $\kappa$ is measurable in $M$.

Fix $\mathcal{U} \in M$ so that $(\mathcal{U} \text { is a } \kappa \text {-complete ultrafilter on } \mathcal{P}(\kappa))^{M}$.

Define $\mathbb{P}=\{\langle s, A\rangle \mid s: n \rightarrow \kappa(n<\omega)$ increasing, $A \subseteq \kappa, A \in \mathcal{U}\}$.
$\langle t, B\rangle \leq\langle s, A\rangle$ iff $t$ extends $s, B \subseteq A$, and $t-s$ takes values in $A$.

Suppose $\kappa$ is measurable in $M$.

Fix $\mathcal{U} \in M$ so that $(\mathcal{U} \text { is a } \kappa \text {-complete ultrafilter on } \mathcal{P}(\kappa))^{M}$.

Define $\mathbb{P}=\{\langle s, A\rangle \mid s: n \rightarrow \kappa(n<\omega)$ increasing, $A \subseteq \kappa, A \in \mathcal{U}\}$.
$\langle t, B\rangle \leq\langle s, A\rangle$ iff $t$ extends $s, B \subseteq A$, and $t-s$ takes values in $A$.

Called Prikry forcing.

Suppose $\kappa$ is measurable in $M$.

Fix $\mathcal{U} \in M$ so that $(\mathcal{U} \text { is a } \kappa \text {-complete ultrafilter on } \mathcal{P}(\kappa))^{M}$.

Define $\mathbb{P}=\{\langle s, A\rangle \mid s: n \rightarrow \kappa(n<\omega)$ increasing, $A \subseteq \kappa, A \in \mathcal{U}\}$.
$\langle t, B\rangle \leq\langle s, A\rangle$ iff $t$ extends $s, B \subseteq A$, and $t-s$ takes values in $A$.

Called Prikry forcing.

Suppose $G \subseteq \mathbb{P}$ is generic over $M$.

Suppose $\kappa$ is measurable in $M$.

Fix $\mathcal{U} \in M$ so that $(\mathcal{U} \text { is a } \kappa \text {-complete ultrafilter on } \mathcal{P}(\kappa))^{M}$.

Define $\mathbb{P}=\{\langle s, A\rangle \mid s: n \rightarrow \kappa(n<\omega)$ increasing, $A \subseteq \kappa, A \in \mathcal{U}\}$.
$\langle t, B\rangle \leq\langle s, A\rangle$ iff $t$ extends $s, B \subseteq A$, and $t-s$ takes values in $A$.

Called Prikry forcing.

Suppose $G \subseteq \mathbb{P}$ is generic over $M$.

Let $g=\bigcup\{s \mid(\exists A)\langle s, A\rangle \in G\}$.

Suppose $\kappa$ is measurable in $M$.

Fix $\mathcal{U} \in M$ so that $(\mathcal{U} \text { is a } \kappa \text {-complete ultrafilter on } \mathcal{P}(\kappa))^{M}$.

Define $\mathbb{P}=\{\langle s, A\rangle \mid s: n \rightarrow \kappa(n<\omega)$ increasing, $A \subseteq \kappa, A \in \mathcal{U}\}$.
$\langle t, B\rangle \leq\langle s, A\rangle$ iff $t$ extends $s, B \subseteq A$, and $t-s$ takes values in $A$.

Called Prikry forcing.

Suppose $G \subseteq \mathbb{P}$ is generic over $M$.

Let $g=\bigcup\{s \mid(\exists A)\langle s, A\rangle \in G\}$.

Then $g: \omega \rightarrow \kappa$ is unbounded in $\kappa$.
$\mathbb{P}=\{\langle s, A\rangle \mid s: n \rightarrow \kappa(n<\omega)$ increasing, $A \subseteq \kappa, A \in \mathcal{U}\}$.
$\langle t, B\rangle \leq\langle s, A\rangle$ iff $t$ extends $s, B \subseteq A$, and $t-s$ takes values in $A$.
$\mathbb{P}=\{\langle s, A\rangle \mid s: n \rightarrow \kappa(n<\omega)$ increasing, $A \subseteq \kappa, A \in \mathcal{U}\}$.
$\langle t, B\rangle \leq\langle s, A\rangle$ iff $t$ extends $s, B \subseteq A$, and $t-s$ takes values in $A$.

In $M[G], \kappa$ is singular, of cofinality $\omega$.
$\mathbb{P}=\{\langle s, A\rangle \mid s: n \rightarrow \kappa(n<\omega)$ increasing, $A \subseteq \kappa, A \in \mathcal{U}\}$.
$\langle t, B\rangle \leq\langle s, A\rangle$ iff $t$ extends $s, B \subseteq A$, and $t-s$ takes values in $A$.

In $M[G], \kappa$ is singular, of cofinality $\omega$.
Using second coordinates and $\mathcal{U}$ being an ultrafilter get:
$(\tau \text { is a cardinal })^{M} \leftrightarrow(\tau \text { is a cardinal })^{M[G]}$, $\left(\delta=2^{\tau}\right)^{M} \leftrightarrow\left(\delta=2^{\tau}\right)^{M[G]}$.
$\mathbb{P}=\{\langle s, A\rangle \mid s: n \rightarrow \kappa(n<\omega)$ increasing, $A \subseteq \kappa, A \in \mathcal{U}\}$.
$\langle t, B\rangle \leq\langle s, A\rangle$ iff $t$ extends $s, B \subseteq A$, and $t-s$ takes values in $A$.

In $M[G], \kappa$ is singular, of cofinality $\omega$.
Using second coordinates and $\mathcal{U}$ being an ultrafilter get:

$$
\begin{aligned}
(\tau \text { is a cardinal })^{M} & \leftrightarrow(\tau \text { is a cardinal })^{M[G]}, \\
\left(\delta=2^{\tau}\right)^{M} & \leftrightarrow\left(\delta=2^{\tau}\right)^{M[G]} .
\end{aligned}
$$

The forcing singularizes $\kappa$, changes nothing other than that.
$\mathbb{P}=\{\langle s, A\rangle \mid s: n \rightarrow \kappa(n<\omega)$ increasing, $A \subseteq \kappa, A \in \mathcal{U}\}$.
$\langle t, B\rangle \leq\langle s, A\rangle$ iff $t$ extends $s, B \subseteq A$, and $t-s$ takes values in $A$.

In $M[G], \kappa$ is singular, of cofinality $\omega$.
Using second coordinates and $\mathcal{U}$ being an ultrafilter get:

$$
\begin{aligned}
(\tau \text { is a cardinal })^{M} & \leftrightarrow(\tau \text { is a cardinal })^{M[G]}, \\
\left(\delta=2^{\tau}\right)^{M} & \leftrightarrow\left(\delta=2^{\tau}\right)^{M[G]} .
\end{aligned}
$$

The forcing singularizes $\kappa$, changes nothing other than that.
Suppose start with $M$ so that $(\forall \tau<\kappa)\left(2^{\tau}<\kappa\right)^{M}$ and $\left(2^{\kappa}=\kappa^{++}\right)^{M}$. (Easy to arrange, since $\kappa$ is regular in M.)

$$
\mathbb{P}=\{\langle s, A\rangle \mid s: n \rightarrow \kappa(n<\omega) \text { increasing, } A \subseteq \kappa, A \in \mathcal{U}\} .
$$

$\langle t, B\rangle \leq\langle s, A\rangle$ iff $t$ extends $s, B \subseteq A$, and $t-s$ takes values in $A$.

In $M[G], \kappa$ is singular, of cofinality $\omega$.
Using second coordinates and $\mathcal{U}$ being an ultrafilter get:

$$
\begin{aligned}
(\tau \text { is a cardinal })^{M} & \leftrightarrow(\tau \text { is a cardinal })^{M[G]}, \\
\left(\delta=2^{\tau}\right)^{M} & \leftrightarrow\left(\delta=2^{\tau}\right)^{M[G]} .
\end{aligned}
$$

The forcing singularizes $\kappa$, changes nothing other than that.
Suppose start with $M$ so that $(\forall \tau<\kappa)\left(2^{\tau}<\kappa\right)^{M}$ and $\left(2^{\kappa}=\kappa^{++}\right)^{M}$. (Easy to arrange, since $\kappa$ is regular in M.)

End with $M[G]$ so that ( $\kappa$ singular and $\left.2^{\kappa}=\kappa^{++}\right)^{M[G]}$.

$$
\mathbb{P}=\{\langle s, A\rangle \mid s: n \rightarrow \kappa(n<\omega) \text { increasing, } A \subseteq \kappa, A \in \mathcal{U}\} .
$$

$\langle t, B\rangle \leq\langle s, A\rangle$ iff $t$ extends $s, B \subseteq A$, and $t-s$ takes values in $A$.

In $M[G], \kappa$ is singular, of cofinality $\omega$.
Using second coordinates and $\mathcal{U}$ being an ultrafilter get:

$$
\begin{aligned}
(\tau \text { is a cardinal })^{M} & \leftrightarrow(\tau \text { is a cardinal })^{M[G]}, \\
\left(\delta=2^{\tau}\right)^{M} & \leftrightarrow\left(\delta=2^{\tau}\right)^{M[G]} .
\end{aligned}
$$

The forcing singularizes $\kappa$, changes nothing other than that.
Suppose start with $M$ so that $(\forall \tau<\kappa)\left(2^{\tau}<\kappa\right)^{M}$ and $\left(2^{\kappa}=\kappa^{++}\right)^{M}$. (Easy to arrange, since $\kappa$ is regular in M.)

End with $M[G]$ so that ( $\kappa$ singular and $\left.2^{\kappa}=\kappa^{++}\right)^{M[G]}$.
Singular cardinal hypothesis fails in $M[G]$.

## Determinacy

## Determinacy

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers.

## Determinacy

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers.
Let $A \subseteq \mathbb{N}^{\omega}$.

## Determinacy

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers.
Let $A \subseteq \mathbb{N}^{\omega}$. Define $G_{\omega}(A)$ to be the following game:

## Determinacy:

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers.
Let $A \subseteq \mathbb{N}^{\omega}$. Define $G_{\omega}(A)$ to be the following game:

| $I$ |  |
| :---: | :--- |
| $I I$ |  |

## Determinacy:

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers.
Let $A \subseteq \mathbb{N}^{\omega}$. Define $G_{\omega}(A)$ to be the following game:

| $I$ |  |
| :---: | :--- |
| $I I$ |  |

Players $I$ and $I I$ alternate playing numbers $a_{n} \in \mathbb{N}$,

## Determinacy:

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers.
Let $A \subseteq \mathbb{N}^{\omega}$. Define $G_{\omega}(A)$ to be the following game:

| $I$ | $a_{0}$ |
| :---: | :---: |
| $I I$ |  |

Players $I$ and $I I$ alternate playing numbers $a_{n} \in \mathbb{N}$,

## Determinacy:

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers.
Let $A \subseteq \mathbb{N}^{\omega}$. Define $G_{\omega}(A)$ to be the following game:

| $I$ | $a_{0}$ |  |
| :---: | :---: | :---: |
| $I I$ |  | $a_{1}$ |

Players $I$ and $I I$ alternate playing numbers $a_{n} \in \mathbb{N}$,

## Determinacy:

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers.
Let $A \subseteq \mathbb{N}^{\omega}$. Define $G_{\omega}(A)$ to be the following game:

| $I$ | $a_{0}$ |  | $a_{2}$ |
| :---: | :---: | :---: | :---: |
| $I I$ | $a_{1}$ |  |  |

Players $I$ and $I I$ alternate playing numbers $a_{n} \in \mathbb{N}$,

## Determinacy:

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers.
Let $A \subseteq \mathbb{N}^{\omega}$. Define $G_{\omega}(A)$ to be the following game:

| $I$ | $a_{0}$ | $a_{2}$ |  |  |
| :--- | :--- | :--- | :--- | :--- |
| $I I$ |  | $a_{1}$ | $a_{3}$ |  |

Players $I$ and $I I$ alternate playing numbers $a_{n} \in \mathbb{N}$,

## Determinacy:

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers.
Let $A \subseteq \mathbb{N}^{\omega}$. Define $G_{\omega}(A)$ to be the following game:

| $I$ | $a_{0}$ |  | $a_{2}$ |  | $a_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $I I$ |  | $a_{1}$ | $a_{3}$ |  |  |

Players $I$ and $I I$ alternate playing numbers $a_{n} \in \mathbb{N}$,

## Determinacy:

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers.
Let $A \subseteq \mathbb{N}^{\omega}$. Define $G_{\omega}(A)$ to be the following game:

| $I$ | $a_{0}$ |  | $a_{2}$ | $a_{4}$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $I I$ |  | $a_{1}$ | $a_{3}$ | $a_{5}$ |  |

Players $I$ and $I I$ alternate playing numbers $a_{n} \in \mathbb{N}$,

## Determinacy:

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers.
Let $A \subseteq \mathbb{N}^{\omega}$. Define $G_{\omega}(A)$ to be the following game:

| $I$ | $a_{0}$ |  | $a_{2}$ |  | $a_{4}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $I I$ |  | $a_{1}$ |  | $a_{3}$ | $a_{5}$ |  |

Players $I$ and $I I$ alternate playing numbers $a_{n} \in \mathbb{N}$,

## Determinacy:

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers.
Let $A \subseteq \mathbb{N}^{\omega}$. Define $G_{\omega}(A)$ to be the following game:

| $I$ | $a_{0}$ |  | $a_{2}$ |  | $a_{4}$ | $a_{6}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $I I$ |  | $a_{1}$ |  | $a_{3}$ |  | $a_{5}$ |  |

Players $I$ and $I I$ alternate playing numbers $a_{n} \in \mathbb{N}$,

## Determinacy:

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers.
Let $A \subseteq \mathbb{N}^{\omega}$. Define $G_{\omega}(A)$ to be the following game:

| $I$ | $a_{0}$ |  | $a_{2}$ |  | $a_{4}$ |  | $a_{6}$ | $a_{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $I I$ |  | $a_{1}$ |  | $a_{3}$ |  | $a_{5}$ |  | $a_{7}$ |

Players $I$ and $I I$ alternate playing numbers $a_{n} \in \mathbb{N}$,

## Determinacy:

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers.
Let $A \subseteq \mathbb{N}^{\omega}$. Define $G_{\omega}(A)$ to be the following game:

| $I$ | $a_{0}$ |  | $a_{2}$ |  | $a_{4}$ |  | $a_{6}$ | $a_{8}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $I I$ |  | $a_{1}$ |  | $a_{3}$ |  | $a_{5}$ |  | $a_{7}$ |  |

Players $I$ and $I I$ alternate playing numbers $a_{n} \in \mathbb{N}$,

## Determinacy:

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers.
Let $A \subseteq \mathbb{N}^{\omega}$. Define $G_{\omega}(A)$ to be the following game:

| $I$ | $a_{0}$ |  | $a_{2}$ |  | $a_{4}$ |  | $a_{6}$ |  | $a_{8}$ |  | $\cdots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $I I$ |  | $a_{1}$ |  | $a_{3}$ |  | $a_{5}$ |  | $a_{7}$ |  | $a_{9}$ |  |
|  |  | $\cdots$ |  |  |  |  |  |  |  |  |  |

Players $I$ and $I I$ alternate playing numbers $a_{n} \in \mathbb{N}$,

## Determinacy:

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers. Let $A \subseteq \mathbb{N}^{\omega}$. Define $G_{\omega}(A)$ to be the following game:

| $I$ | $a_{0}$ |  | $a_{2}$ |  | $a_{4}$ |  | $a_{6}$ |  | $a_{8}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| $I I$ |  | $a_{1}$ |  | $a_{3}$ |  | $a_{5}$ |  | $a_{7}$ |  | $a_{9}$ |
|  |  |  | $\cdots$ |  |  |  |  |  |  |  |

Players $I$ and $I I$ alternate playing numbers $a_{n} \in \mathbb{N}$, forming together an infinite sequence $z=\left\langle a_{0}, a_{1}, a_{2}, \cdots \cdots\right\rangle \in \mathbb{N}^{\omega}$.

## Determinacy:

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers. Let $A \subseteq \mathbb{N}^{\omega}$. Define $G_{\omega}(A)$ to be the following game:

| $I$ | $a_{0}$ |  | $a_{2}$ |  | $a_{4}$ |  | $a_{6}$ |  | $a_{8}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| $I I$ |  | $a_{1}$ |  | $a_{3}$ |  | $a_{5}$ |  | $a_{7}$ |  | $a_{9}$ |
|  |  |  | $\cdots$ |  |  |  |  |  |  |  |

Players $I$ and $I I$ alternate playing numbers $a_{n} \in \mathbb{N}$, forming together an infinite sequence $z=\left\langle a_{0}, a_{1}, a_{2}, \cdots \cdots\right\rangle \in \mathbb{N}^{\omega}$.

If $z$ belongs to $A$ then player $I$ wins.

## Determinacy:

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers. Let $A \subseteq \mathbb{N}^{\omega}$. Define $G_{\omega}(A)$ to be the following game:

| $I$ | $a_{0}$ |  | $a_{2}$ |  | $a_{4}$ |  | $a_{6}$ |  | $a_{8}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| $I I$ |  | $a_{1}$ |  | $a_{3}$ |  | $a_{5}$ |  | $a_{7}$ |  | $a_{9}$ |
|  |  |  | $\cdots$ |  |  |  |  |  |  |  |

Players $I$ and $I I$ alternate playing numbers $a_{n} \in \mathbb{N}$, forming together an infinite sequence $z=\left\langle a_{0}, a_{1}, a_{2}, \cdots \cdots\right\rangle \in \mathbb{N}^{\omega}$.

If $z$ belongs to $A$ then player $I$ wins.
If $z$ does not belong to $A$ then player $I I$ wins.

## Determinacy:

$\mathbb{N}^{\omega}$ is the set of infinite sequences of natural numbers. Let $A \subseteq \mathbb{N}^{\omega}$. Define $G_{\omega}(A)$ to be the following game:

| $I$ | $a_{0}$ |  | $a_{2}$ |  | $a_{4}$ |  | $a_{6}$ |  | $a_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $I I$ |  | $a_{1}$ |  | $a_{3}$ |  | $a_{5}$ |  | $a_{7}$ | $a_{9}$ |

Players $I$ and $I I$ alternate playing numbers $a_{n} \in \mathbb{N}$, forming together an infinite sequence $z=\left\langle a_{0}, a_{1}, a_{2}, \cdots \cdots\right\rangle \in \mathbb{N}^{\omega}$.

If $z$ belongs to $A$ then player $I$ wins.
If $z$ does not belong to $A$ then player $I I$ wins.
$G_{\omega}(A)$ is determined if one of the players has a winning strategy.
(A strategy is a complete recipe that instructs the player precisely how to play in each conceivable situation.)

For $\Gamma \subseteq \mathcal{P}\left(\mathbb{N}^{\omega}\right), \operatorname{det}(\Gamma)$ is the statement that all sets in $\Gamma$ are determined.

For $\Gamma \subseteq \mathcal{P}\left(\mathbb{N}^{\omega}\right)$, $\operatorname{det}(\Gamma)$ is the statement that all sets in $\Gamma$ are determined.

Using the axiom of choice (just a wellordering of $\mathbb{R}$ ) it is easy to construct a non-determined set.

For $\Gamma \subseteq \mathcal{P}\left(\mathbb{N}^{\omega}\right), \operatorname{det}(\Gamma)$ is the statement that all sets in $\Gamma$ are determined.

Using the axiom of choice (just a wellordering of $\mathbb{R}$ ) it is easy to construct a non-determined set.
$\operatorname{det}\left(\mathcal{P}\left(\mathbb{N}^{\omega}\right)\right)$ is therefore false.

For $\Gamma \subseteq \mathcal{P}\left(\mathbb{N}^{\omega}\right), \operatorname{det}(\Gamma)$ is the statement that all sets in $\Gamma$ are determined.

Using the axiom of choice (just a wellordering of $\mathbb{R}$ ) it is easy to construct a non-determined set.
$\operatorname{det}\left(\mathcal{P}\left(\mathbb{N}^{\omega}\right)\right)$ is therefore false.

But determinacy for definable sets is:

For $\Gamma \subseteq \mathcal{P}\left(\mathbb{N}^{\omega}\right), \operatorname{det}(\Gamma)$ is the statement that all sets in $\Gamma$ are determined.

Using the axiom of choice (just a wellordering of $\mathbb{R}$ ) it is easy to construct a non-determined set.
$\operatorname{det}\left(\mathcal{P}\left(\mathbb{N}^{\omega}\right)\right)$ is therefore false.

But determinacy for definable sets is: (1) true;

For $\Gamma \subseteq \mathcal{P}\left(\mathbb{N}^{\omega}\right), \operatorname{det}(\Gamma)$ is the statement that all sets in $\Gamma$ are determined.

Using the axiom of choice (just a wellordering of $\mathbb{R}$ ) it is easy to construct a non-determined set.
$\operatorname{det}\left(\mathcal{P}\left(\mathbb{N}^{\omega}\right)\right)$ is therefore false.

But determinacy for definable sets is: (1) true; and

For $\Gamma \subseteq \mathcal{P}\left(\mathbb{N}^{\omega}\right), \operatorname{det}(\Gamma)$ is the statement that all sets in $\Gamma$ are determined.

Using the axiom of choice (just a wellordering of $\mathbb{R}$ ) it is easy to construct a non-determined set.
$\operatorname{det}\left(\mathcal{P}\left(\mathbb{N}^{\omega}\right)\right)$ is therefore false.

But determinacy for definable sets is: (1) true; and (2) useful.

Theorem (Gale-Stewart) All open sets are determined.

Theorem (Gale-Stewart) All open sets are determined.

Theorem (Martin) All Borel sets are determined.

Theorem (Gale-Stewart) All open sets are determined.

Theorem (Martin) All Borel sets are determined.

Theorem (Martin) All analytic sets are determined.

Theorem (Gale-Stewart) All open sets are determined.

Theorem (Martin) All Borel sets are determined.

Theorem (Martin) All analytic sets are determined.

Theorem (Martin-Steel) All projective sets are determined.

Theorem (Gale-Stewart) All open sets are determined.

Theorem (Martin) All Borel sets are determined.

Theorem (Martin) All analytic sets are determined.

Theorem (Martin-Steel) All projective sets are determined.
$\mathrm{L}(\mathbb{R})$ is the smallest model of set theory which contains all the reals and all the ordinals.

Theorem (Gale-Stewart) All open sets are determined.

Theorem (Martin) All Borel sets are determined.

Theorem (Martin) All analytic sets are determined.

Theorem (Martin-Steel) All projective sets are determined.
$L(\mathbb{R})$ is the smallest model of set theory which contains all the reals and all the ordinals. It is obtained as the union $\cup_{\alpha \in O N} L_{\alpha}(\mathbb{R})$ where:

Theorem (Gale-Stewart) All open sets are determined.

Theorem (Martin) All Borel sets are determined.

Theorem (Martin) All analytic sets are determined.

Theorem (Martin-Steel) All projective sets are determined.
$\mathrm{L}(\mathbb{R})$ is the smallest model of set theory which contains all the reals and all the ordinals. It is obtained as the union $\bigcup_{\alpha \in O N} L_{\alpha}(\mathbb{R})$ where: $\mathrm{L}_{0}(\mathbb{R})=\mathbb{R}$,

Theorem (Gale-Stewart) All open sets are determined.

Theorem (Martin) All Borel sets are determined.

Theorem (Martin) All analytic sets are determined.

Theorem (Martin-Steel) All projective sets are determined.
$\mathrm{L}(\mathbb{R})$ is the smallest model of set theory which contains all the reals and all the ordinals. It is obtained as the union $\bigcup_{\alpha \in O N} L_{\alpha}(\mathbb{R})$ where: $\mathrm{L}_{0}(\mathbb{R})=\mathbb{R}, \mathrm{L}_{\lambda}(\mathbb{R})=\bigcup_{\alpha<\lambda} \mathrm{L}_{\alpha}(\mathbb{R})$ for limit $\lambda$,

Theorem (Gale-Stewart) All open sets are determined.

Theorem (Martin) All Borel sets are determined.

Theorem (Martin) All analytic sets are determined.

Theorem (Martin-Steel) All projective sets are determined.
$L(\mathbb{R})$ is the smallest model of set theory which contains all the reals and all the ordinals. It is obtained as the union $\cup_{\alpha \in O N} L_{\alpha}(\mathbb{R})$ where: $\mathrm{L}_{0}(\mathbb{R})=\mathbb{R}, \mathrm{L}_{\lambda}(\mathbb{R})=\cup_{\alpha<\lambda} \mathrm{L}_{\alpha}(\mathbb{R})$ for limit $\lambda, \mathrm{L}_{\alpha+1}(\mathbb{R})=$ $\mathrm{L}_{\alpha}(\mathbb{R}) \cup\left\{A \subset \mathrm{~L}_{\alpha}(\mathbb{R}) \mid A\right.$ is 1 st order definable over $\left.\mathrm{L}_{\alpha}(\mathbb{R})\right\}$.

Theorem (Gale-Stewart) All open sets are determined.

Theorem (Martin) All Borel sets are determined.

Theorem (Martin) All analytic sets are determined.

Theorem (Martin-Steel) All projective sets are determined.
$L(\mathbb{R})$ is the smallest model of set theory which contains all the reals and all the ordinals. It is obtained as the union $\cup_{\alpha \in O N} L_{\alpha}(\mathbb{R})$ where: $\mathrm{L}_{0}(\mathbb{R})=\mathbb{R}, \mathrm{L}_{\lambda}(\mathbb{R})=\cup_{\alpha<\lambda} \mathrm{L}_{\alpha}(\mathbb{R})$ for limit $\lambda, \mathrm{L}_{\alpha+1}(\mathbb{R})=$ $\mathrm{L}_{\alpha}(\mathbb{R}) \cup\left\{A \subset \mathrm{~L}_{\alpha}(\mathbb{R}) \mid A\right.$ is 1 st order definable over $\left.\mathrm{L}_{\alpha}(\mathbb{R})\right\}$.
\{projective sets\} $\subset L_{1}(\mathbb{R})$.

Theorem (Gale-Stewart) All open sets are determined.

Theorem (Martin) All Borel sets are determined.

Theorem (Martin) All analytic sets are determined.

Theorem (Martin-Steel) All projective sets are determined.

Theorem (Gale-Stewart) All open sets are determined.

Theorem (Martin) All Borel sets are determined.

Theorem (Martin) All analytic sets are determined.

Theorem (Martin-Steel) All projective sets are determined.

Theorem (Woodin) All sets of reals in $L(\mathbb{R})$ are determined.

Theorem (Gale-Stewart) All open sets are determined.

Theorem (Martin) All Borel sets are determined.

Theorem (Martin) All analytic sets are determined.

Theorem (Martin-Steel) All projective sets are determined.

Theorem (Woodin) All sets of reals in $L(\mathbb{R})$ are determined.

First two theorems are in ZFC.

Theorem (Gale-Stewart) All open sets are determined.

Theorem (Martin) All Borel sets are determined.

Theorem (Martin) All analytic sets are determined.

Theorem (Martin-Steel) All projective sets are determined.

Theorem (Woodin) All sets of reals in $L(\mathbb{R})$ are determined.

First two theorems are in ZFC.
The others require large cardinal axioms.

Theorem (Banach, Oxtoby) Assume det( $\ulcorner$ ). Then all sets in $\Gamma$ have the Baire property.

Theorem (Banach, Oxtoby) Assume $\operatorname{det}(\Gamma)$. Then all sets in $\Gamma$ have the Baire property.

Theorem (Mycielski-Swierczkowski) Assume $\operatorname{det}(\Gamma)$. Then all sets in 「 are Lebesgue measurable.

Theorem (Banach, Oxtoby) Assume $\operatorname{det}(\Gamma)$. Then all sets in $\Gamma$ have the Baire property.

Theorem (Mycielski-Swierczkowski) Assume $\operatorname{det}(\Gamma)$. Then all sets in $\Gamma$ are Lebesgue measurable.

Theorem (Davis) Assume $\operatorname{det}(\Gamma)$. Let $A \in \Gamma$. Then either $A$ is countable or else it contains a perfect set.

Theorem (Banach, Oxtoby) Assume $\operatorname{det}(\Gamma)$. Then all sets in $\Gamma$ have the Baire property.

Theorem (Mycielski-Swierczkowski) Assume $\operatorname{det}(\Gamma)$. Then all sets in $\Gamma$ are Lebesgue measurable.

Theorem (Davis) Assume $\operatorname{det}(\Gamma)$. Let $A \in \Gamma$. Then either $A$ is countable or else it contains a perfect set.

These and other results helped establish determinacy as the right assumption in the study of definable sets.

Theorem (Banach, Oxtoby) Assume $\operatorname{det}(\Gamma)$. Then all sets in $\Gamma$ have the Baire property.

Theorem (Mycielski-Swierczkowski) Assume $\operatorname{det}(\Gamma)$. Then all sets in 「 are Lebesgue measurable.

Theorem (Davis) Assume $\operatorname{det}(\Gamma)$. Let $A \in \Gamma$. Then either $A$ is countable or else it contains a perfect set.

These and other results helped establish determinacy as the right assumption in the study of definable sets.

The axiom of determinacy (AD), stating that all sets of reals are determined, became standard in the study of $L(\mathbb{R})$.

Theorem (Banach, Oxtoby) Assume $\operatorname{det}(\Gamma)$. Then all sets in $\Gamma$ have the Baire property.

Theorem (Mycielski-Swierczkowski) Assume $\operatorname{det}(\Gamma)$. Then all sets in 「 are Lebesgue measurable.

Theorem (Davis) Assume $\operatorname{det}(\Gamma)$. Let $A \in \Gamma$. Then either $A$ is countable or else it contains a perfect set.

These and other results helped establish determinacy as the right assumption in the study of definable sets.

The axiom of determinacy (AD), stating that all sets of reals are determined, became standard in the study of $L(\mathbb{R})$.

Need ultrafilters in $V$ to prove determinacy holds in $\mathrm{L}(\mathbb{R})$.

Theorem (Banach, Oxtoby) Assume $\operatorname{det}(\Gamma)$. Then all sets in $\Gamma$ have the Baire property.

Theorem (Mycielski-Swierczkowski) Assume $\operatorname{det}()$. Then all sets in $\Gamma$ are Lebesgue measurable.

Theorem (Davis) Assume $\operatorname{det}(\Gamma)$. Let $A \in \Gamma$. Then either $A$ is countable or else it contains a perfect set.

These and other results helped establish determinacy as the right assumption in the study of definable sets.

The axiom of determinacy (AD), stating that all sets of reals are determined, became standard in the study of $L(\mathbb{R})$.

Need ultrafilters in $V$ to prove determinacy holds in $\mathrm{L}(\mathbb{R})$.
Determinacy in turn implies the existence of many ultrafilters.

## Martin measure

## Martin measure

$x \leq_{T} y$ if $x$ is computable from $y$.

## Martin measure

$x \leq_{T} y$ if $x$ is computable from $y$.
$x \sim_{T} y$ if $x \leq_{T} y$ and $y \leq_{T} x$.

## Martin measure

$x \leq_{T} y$ if $x$ is computable from $y$.
$x \sim_{T} y$ if $x \leq_{T} y$ and $y \leq_{T} x$.
The Turing degree of $x \in \mathbb{R}$ is the $\sim_{T}$ equivalence class of $x$.

## Martin measure

$x \leq_{T} y$ if $x$ is computable from $y$.
$x \sim_{T} y$ if $x \leq_{T} y$ and $y \leq_{T} x$.

The Turing degree of $x \in \mathbb{R}$ is the $\sim_{T}$ equivalence class of $x$.

Let $\mathcal{D}$ denote the set of Turing degrees. $\leq_{T}$ defined on $\mathcal{D}$ in the obvious way.

## Martin measure

$x \leq_{T} y$ if $x$ is computable from $y$.
$x \sim_{T} y$ if $x \leq_{T} y$ and $y \leq_{T} x$.

The Turing degree of $x \in \mathbb{R}$ is the $\sim_{T}$ equivalence class of $x$.

Let $\mathcal{D}$ denote the set of Turing degrees. $\leq_{T}$ defined on $\mathcal{D}$ in the obvious way.

For $d \in \mathcal{D}$ define $A_{d}=\left\{e \mid e \geq_{T} d\right\}$.

## Martin measure

$x \leq_{T} y$ if $x$ is computable from $y$.
$x \sim_{T} y$ if $x \leq_{T} y$ and $y \leq_{T} x$.

The Turing degree of $x \in \mathbb{R}$ is the $\sim_{T}$ equivalence class of $x$.

Let $\mathcal{D}$ denote the set of Turing degrees. $\leq_{T}$ defined on $\mathcal{D}$ in the obvious way.

For $d \in \mathcal{D}$ define $A_{d}=\left\{e \mid e \geq_{T} d\right\}$.
$\mathcal{F}=\left\{X \mid X \supseteq A_{d}\right.$ for some $\left.d \in \mathcal{D}\right\}$ is a filter.

Theorem (Martin) Under AD, $\mathcal{F}$ is an ultrafilter.

Theorem (Martin) Under AD, $\mathcal{F}$ is an ultrafilter.

Proof:

Theorem (Martin) Under AD, $\mathcal{F}$ is an ultrafilter.

Proof: Let $Z \subseteq \mathcal{D}$.

Theorem (Martin) Under AD, $\mathcal{F}$ is an ultrafilter.

Proof: Let $Z \subseteq \mathcal{D}$. Consider the following game.

Theorem (Martin) Under AD, $\mathcal{F}$ is an ultrafilter.

Proof: Let $Z \subseteq \mathcal{D}$. Consider the following game.

| $I$ | $x_{0}$ |  | $x_{1}$ |  | $\cdots$ |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $I I$ |  | $y_{0}$ |  | $y_{1}$ |  | $\cdots$ |

Theorem (Martin) Under AD, $\mathcal{F}$ is an ultrafilter.

Proof: Let $Z \subseteq \mathcal{D}$. Consider the following game.

| $I$ | $x_{0}$ |  | $x_{1}$ |  | $\ldots$ |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $I I$ |  | $y_{0}$ |  | $y_{1}$ |  | $\cdots$ |

Player I wins if $[x \oplus y] \in Z$. Player II wins if $[x \oplus y] \in \mathcal{D}-Z$.

Theorem (Martin) Under AD, $\mathcal{F}$ is an ultrafilter.

Proof: Let $Z \subseteq \mathcal{D}$. Consider the following game.

| $I$ | $x_{0}$ |  | $x_{1}$ |  | $\cdots$ |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $I I$ |  | $y_{0}$ |  | $y_{1}$ |  | $\cdots$ |

Player I wins if $[x \oplus y] \in Z$. Player II wins if $[x \oplus y] \in \mathcal{D}-Z$.
If $\sigma$ is a winning strategy for I , then $A_{[\sigma]} \subseteq Z$.

Theorem (Martin) Under AD, $\mathcal{F}$ is an ultrafilter.

Proof: Let $Z \subseteq \mathcal{D}$. Consider the following game.

| $I$ | $x_{0}$ |  | $x_{1}$ |  | $\cdots$ |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $I I$ |  | $y_{0}$ |  | $y_{1}$ |  | $\cdots$ |

Player I wins if $[x \oplus y] \in Z$. Player II wins if $[x \oplus y] \in \mathcal{D}-Z$.

If $\sigma$ is a winning strategy for I , then $A_{[\sigma]} \subseteq Z$.
If $\tau$ is a winning strategy for II, then $A_{[\tau]} \subseteq \mathcal{D}-Z$.

Club filters

## Club filters

$A \subseteq \aleph_{1}$ is club if it is closed in $\aleph_{1}$ and unbounded in $\aleph_{1}$.

## Club filters

$A \subseteq \aleph_{1}$ is club if it is closed in $\aleph_{1}$ and unbounded in $\aleph_{1}$.
$\mathcal{F}=\left\{A \subseteq \aleph_{1} \mid A \supseteq\right.$ club $\}$ is a filter.

## Club filters

$A \subseteq \aleph_{1}$ is club if it is closed in $\aleph_{1}$ and unbounded in $\aleph_{1}$.
$\mathcal{F}=\left\{A \subseteq \aleph_{1} \mid A \supseteq\right.$ club $\}$ is a filter.

Theorem (Solovay) Under $A D, \mathcal{F}$ is an ultrafilter.

## Club filters

$A \subseteq \aleph_{1}$ is club if it is closed in $\aleph_{1}$ and unbounded in $\aleph_{1}$.
$\mathcal{F}=\left\{A \subseteq \aleph_{1} \mid A \supseteq\right.$ club $\}$ is a filter.

Theorem (Solovay) Under $\mathrm{AD}, \mathcal{F}$ is an ultrafilter.

For a cardinal $\delta, A \subseteq \mathcal{P}_{c t b l}(\delta)$ is club if there is $f: \delta^{<\omega} \rightarrow \delta$ so that

$$
A=\left\{x \in \mathcal{P}_{c t b l}(\delta) \mid f^{\prime \prime} x \subseteq x\right\}
$$

## Club filters

$A \subseteq \aleph_{1}$ is club if it is closed in $\aleph_{1}$ and unbounded in $\aleph_{1}$.
$\mathcal{F}=\left\{A \subseteq \aleph_{1} \mid A \supseteq\right.$ club $\}$ is a filter.

Theorem (Solovay) Under $\mathrm{AD}, \mathcal{F}$ is an ultrafilter.

For a cardinal $\delta, A \subseteq \mathcal{P}_{c t b l}(\delta)$ is club if there is $f: \delta^{<\omega} \rightarrow \delta$ so that

$$
A=\left\{x \in \mathcal{P}_{c t b l}(\delta) \mid f^{\prime \prime} x \subseteq x\right\}
$$

$\mathcal{F}=\left\{A \subseteq \mathcal{P}_{c t b l}(\delta) \mid A \supseteq\right.$ club $\}$ is a filter.

## Club filters

$A \subseteq \aleph_{1}$ is club if it is closed in $\aleph_{1}$ and unbounded in $\aleph_{1}$.
$\mathcal{F}=\left\{A \subseteq \aleph_{1} \mid A \supseteq\right.$ club $\}$ is a filter.
Theorem (Solovay) Under $A D, \mathcal{F}$ is an ultrafilter.

For a cardinal $\delta, A \subseteq \mathcal{P}_{c t b l}(\delta)$ is club if there is $f: \delta^{<\omega} \rightarrow \delta$ so that

$$
A=\left\{x \in \mathcal{P}_{c t b l}(\delta) \mid f^{\prime \prime} x \subseteq x\right\}
$$

$\mathcal{F}=\left\{A \subseteq \mathcal{P}_{c t b l}(\delta) \mid A \supseteq\right.$ club $\}$ is a filter.
Theorem (Solovay) Under AD, $\mathcal{F}$ is an ultrafilter.

Digression, projective ordinals

## Digression, projective ordinals

$\Sigma_{1}^{1}$, analytic sets. $\quad \Pi_{1}^{1}, \operatorname{co}-\Sigma_{1}^{1}$.

Digression, projective ordinals
$\Sigma_{1}^{1}$, analytic sets. $\quad \Pi_{1}^{1}, \operatorname{co}-\Sigma_{1}^{1}$.
$\Sigma_{2}^{1}$, projections of $\Pi_{1}^{1}$. $\quad \Pi_{2}^{1}$, co- $\Sigma_{2}^{1}$.

Digression, projective ordinals
$\Sigma_{1}^{1}$, analytic sets. $\quad \Pi_{1}^{1}, \operatorname{co}-\Sigma_{1}^{1}$.
$\Sigma_{2}^{1}$, projections of $\Pi_{1}^{1}$. $\quad \Pi_{2}^{1}$, co- $\Sigma_{2}^{1}$.

Digression, projective ordinals

$$
\begin{aligned}
& \Sigma_{1}^{1} \text {, analytic sets. } \quad \Pi_{1}^{1}, \operatorname{co}-\Sigma_{1}^{1} . \\
& \Sigma_{2}^{1}, \text { projections of } \Pi_{1}^{1} . \quad \Pi_{2}^{1}, \operatorname{co}-\Sigma_{2}^{1} .
\end{aligned}
$$

Gives all projective sets.

Digression, projective ordinals

$$
\begin{aligned}
& \Sigma_{1}^{1} \text {, analytic sets. } \quad \Pi_{1}^{1}, \operatorname{co}-\Sigma_{1}^{1} . \\
& \Sigma_{2}^{1}, \text { projections of } \Pi_{1}^{1} . \quad \Pi_{2}^{1}, \operatorname{co}-\Sigma_{2}^{1} .
\end{aligned}
$$

Gives all projective sets.

$$
\Delta_{n}^{1}=\Sigma_{n}^{1} \cap \Pi_{n}^{1}
$$

Digression, projective ordinals
$\Sigma_{1}^{1}$, analytic sets. $\quad \Pi_{1}^{1}, \operatorname{co}-\Sigma_{1}^{1}$.
$\Sigma_{2}^{1}$, projections of $\Pi_{1}^{1}$. $\quad \Pi_{2}^{1}$, co- $\Sigma_{2}^{1}$.

Gives all projective sets.
$\Delta_{n}^{1}=\Sigma_{n}^{1} \cap \Pi_{n}^{1}$.
$\delta_{n}^{1}$, the supremum of the ordertypes of $\Delta_{n}^{1}$ prewellorders on $\mathbb{R}$.

Digression, projective ordinals
$\Sigma_{1}^{1}$, analytic sets. $\quad \Pi_{1}^{1}, \operatorname{co}-\Sigma_{1}^{1}$.
$\Sigma_{2}^{1}$, projections of $\Pi_{1}^{1}$. $\quad \Pi_{2}^{1}$, co- $\Sigma_{2}^{1}$.

Gives all projective sets.
$\Delta_{n}^{1}=\Sigma_{n}^{1} \cap \Pi_{n}^{1}$.
$\delta_{n}^{1}$, the supremum of the ordertypes of $\Delta_{n}^{1}$ prewellorders on $\mathbb{R}$.
A definable proxy for the size of the continuum.
$\delta_{n}^{1}$, the supremum of the ordertypes of $\Delta_{n}^{1}$ prewellorders on $\mathbb{R}$.
$\delta_{n}^{1}$, the supremum of the ordertypes of $\Delta_{n}^{1}$ prewellorders on $\mathbb{R}$.

$$
\delta_{n}^{1}<\left(2^{\aleph_{0}}\right)^{+} .
$$

$\delta_{n}^{1}$, the supremum of the ordertypes of $\Delta_{n}^{1}$ prewellorders on $\mathbb{R}$.

$$
\left.\boldsymbol{\delta}_{n}^{1}<\left(2^{\aleph_{0}}\right)^{+} . \text {(Under CH, } \boldsymbol{\delta}_{n}^{1}<\aleph_{2} .\right)
$$

$\delta_{n}^{1}$, the supremum of the ordertypes of $\Delta_{n}^{1}$ prewellorders on $\mathbb{R}$.
$\boldsymbol{\delta}_{n}^{1}<\left(2^{\aleph_{0}}\right)^{+}$. (Under $\left.\mathrm{CH}, \boldsymbol{\delta}_{n}^{1}<\aleph_{2}.\right)$

By Cohen, $2^{\aleph_{0}}$ can have different values in different models. Cannot find reasons to prefer one model over the others.
$\delta_{n}^{1}$, the supremum of the ordertypes of $\Delta_{n}^{1}$ prewellorders on $\mathbb{R}$.
$\boldsymbol{\delta}_{n}^{1}<\left(2^{\aleph_{0}}\right)^{+}$. (Under $\left.\mathrm{CH}, \boldsymbol{\delta}_{n}^{1}<\aleph_{2}.\right)$

By Cohen, $2^{\aleph_{0}}$ can have different values in different models. Cannot find reasons to prefer one model over the others.

For $\delta_{n}^{1}$ things may be different.
$\delta_{n}^{1}$, the supremum of the ordertypes of $\Delta_{n}^{1}$ prewellorders on $\mathbb{R}$.
$\delta_{n}^{1}<\left(2^{\aleph_{0}}\right)^{+}$. (Under $\left.\mathrm{CH}, \boldsymbol{\delta}_{n}^{1}<\aleph_{2}.\right)$

By Cohen, $2^{\aleph_{0}}$ can have different values in different models. Cannot find reasons to prefer one model over the others.

For $\delta_{n}^{1}$ things may be different.

Natural context: AC plus at least projective determinacy.
$\delta_{n}^{1}$, the supremum of the ordertypes of $\Delta_{n}^{1}$ prewellorders on $\mathbb{R}$.
$\delta_{n}^{1}<\left(2^{\aleph_{0}}\right)^{+}$. (Under $\left.\mathrm{CH}, \delta_{n}^{1}<\aleph_{2}.\right)$

By Cohen, $2^{\aleph_{0}}$ can have different values in different models. Cannot find reasons to prefer one model over the others.

For $\delta_{n}^{1}$ things may be different.

Natural context: AC plus at least projective determinacy.

Natural models: related to $L(\mathbb{R})$. May find that some are more appealing than others.
$\delta_{n}^{1}$, the supremum of the ordertypes of $\Delta_{n}^{1}$ prewellorders on $\mathbb{R}$.
$\delta_{n}^{1}<\left(2^{\aleph_{0}}\right)^{+}$. (Under $\left.\mathrm{CH}, \delta_{n}^{1}<\aleph_{2}.\right)$
By Cohen, $2^{\aleph_{0}}$ can have different values in different models. Cannot find reasons to prefer one model over the others.

For $\delta_{n}^{1}$ things may be different.

Natural context: AC plus at least projective determinacy.

Natural models: related to $L(\mathbb{R})$. May find that some are more appealing than others.

Can we have $\delta_{n}^{1} \geq \aleph_{2}$ ?

Theorem (Steel-Van Wesep-Woodin) Assume $A D^{L(\mathbb{R})}$. Then it is consistent (with $A D^{L(\mathbb{R})}$ and $A C$ ) that $\delta_{2}^{1}=\aleph_{2}$.

Theorem (Steel-Van Wesep-Woodin) Assume $A D^{L(\mathbb{R})}$. Then it is consistent (with $A D^{\mathrm{L}(\mathbb{R})}$ and $A C$ ) that $\delta_{2}^{1}=\aleph_{2}$.

Proved by forcing over $\mathrm{L}(\mathbb{R})$ to produce an extension $\mathrm{L}(\mathbb{R})[G]$ which satisfies $A C$, and agrees with $L(\mathbb{R})$ on cardinals $\aleph_{1}$ and $\aleph_{2}$.

Theorem (Steel-Van Wesep-Woodin) Assume $A D^{L(\mathbb{R})}$. Then it is consistent (with $A D^{L(\mathbb{R})}$ and $A C$ ) that $\delta_{2}^{1}=\aleph_{2}$.

Proved by forcing over $\mathrm{L}(\mathbb{R})$ to produce an extension $\mathrm{L}(\mathbb{R})[G]$ which satisfies $A C$, and agrees with $L(\mathbb{R})$ on cardinals $\aleph_{1}$ and $\aleph_{2}$.

Since in $L(\mathbb{R})$ (where $A C$ fails) $\delta_{2}^{1}$ is equal to $\aleph_{2}$, get that in the extension $\delta_{2}^{1}=\aleph_{2}$.

Theorem (Neeman, Woodin) Assume $A D^{L(\mathbb{R})}$. Then it is consistent (with $A D^{L(\mathbb{R})}$ and the axiom of choice) that $\delta_{3}^{1}=\aleph_{2}$.

Theorem (Neeman, Woodin) Assume $A D^{L(\mathbb{R})}$. Then it is consistent (with $A D^{L(\mathbb{R})}$ and the axiom of choice) that $\delta_{3}^{1}=\aleph_{2}$.

Again proved by forcing over $L(\mathbb{R})$.

Theorem (Neeman, Woodin) Assume $A D^{L(\mathbb{R})}$. Then it is consistent (with $A D^{L(\mathbb{R})}$ and the axiom of choice) that $\delta_{3}^{1}=\aleph_{2}$.

Again proved by forcing over $L(\mathbb{R})$.
This time produce an extension in which $\left(\aleph_{1}\right)^{\mathrm{L}(\mathbb{R})}$ and $\left(\aleph_{\omega+1}\right)^{\mathrm{L}(\mathbb{R})}$ remain cardinals, but $\left(\aleph_{n}\right)^{\mathrm{L}(\mathbb{R})}$ for $2 \leq n \leq \omega$ do not.

Theorem (Neeman, Woodin) Assume $A D^{L(\mathbb{R})}$. Then it is consistent (with $A D^{L(\mathbb{R})}$ and the axiom of choice) that $\delta_{3}^{1}=\aleph_{2}$.

Again proved by forcing over $L(\mathbb{R})$.
This time produce an extension in which $\left(\aleph_{1}\right)^{\mathrm{L}(\mathbb{R})}$ and $\left(\aleph_{\omega+1}\right)^{\mathrm{L}(\mathbb{R})}$ remain cardinals, but $\left(\aleph_{n}\right)^{\mathrm{L}(\mathbb{R})}$ for $2 \leq n \leq \omega$ do not.

Since in $L(\mathbb{R}) \delta_{3}^{1}$ is equal to $\aleph_{\omega+1}$, get that in the extension $\delta_{3}^{1}$ is the second uncountable cardinal (namely $\aleph_{2}$ ).

Theorem (Neeman, Woodin) Assume $A D^{L(\mathbb{R})}$. Then it is consistent (with $A D^{L(\mathbb{R})}$ and the axiom of choice) that $\delta_{3}^{1}=\aleph_{2}$.

Again proved by forcing over $L(\mathbb{R})$.
This time produce an extension in which $\left(\aleph_{1}\right)^{\mathrm{L}(\mathbb{R})}$ and $\left(\aleph_{\omega+1}\right)^{\mathrm{L}(\mathbb{R})}$ remain cardinals, but $\left(\aleph_{n}\right)^{\mathrm{L}(\mathbb{R})}$ for $2 \leq n \leq \omega$ do not.

Since in $L(\mathbb{R}) \delta_{3}^{1}$ is equal to $\aleph_{\omega+1}$, get that in the extension $\delta_{3}^{1}$ is the second uncountable cardinal (namely $\aleph_{2}$ ).

The forcing is similar to Prikry forcing, using an ultrafilter on the set of countable sequences of countable subsets of $\aleph_{\omega}$.

Theorem (Neeman, Woodin) Assume $A D^{L(\mathbb{R})}$. Then it is consistent (with $A D^{L(\mathbb{R})}$ and the axiom of choice) that $\delta_{3}^{1}=\aleph_{2}$.

Again proved by forcing over $L(\mathbb{R})$.
This time produce an extension in which $\left(\aleph_{1}\right)^{\mathrm{L}(\mathbb{R})}$ and $\left(\aleph_{\omega+1}\right)^{L(\mathbb{R})}$ remain cardinals, but $\left(\aleph_{n}\right)^{\mathrm{L}(\mathbb{R})}$ for $2 \leq n \leq \omega$ do not.

Since in $L(\mathbb{R}) \delta_{3}^{1}$ is equal to $\aleph_{\omega+1}$, get that in the extension $\delta_{3}^{1}$ is the second uncountable cardinal (namely $\mathbb{\aleph}_{2}$ ).

The forcing is similar to Prikry forcing, using an ultrafilter on the set of countable sequences of countable subsets of $\aleph_{\omega}$.

The construction of these ultrafilters is done not using games, but using directed systems of ultrapowers of countable models of $A C$.

