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Natural numbers, real numbers, transfinite ordinals, cardinals.
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x a set.
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• x a set, ϕ(u) a formula ⇒ {u ∈ x | ϕ(u)} a set.

• x a set, ϕ(u, w) a formula defining a function ⇒

(image of x) = {w | (∃u ∈ x)ϕ(u, w)} a set.

A collection M of sets is a model of set theory if these axioms

hold “inside M”.

Can then develop much of mathematics inside M .

We write ϕM to mean that ϕ holds inside M .

Precisely, quantifiers of ϕ restricted to range over sets in M .
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V is the universe of all sets.

Stratified to transfinitely many levels as follows:

• V0 = ∅.

• Vα+1 = P(Vα).

• Vλ =
⋃

α<λ Vα for limit λ.

rank(x) is least α so that x ∈ Vα+1.

Many questions about the universe.

What is card(P(x))?

card(P(κ)) denoted 2κ. The very next cardinal above κ denoted

κ+. Are they the same?
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κ is regular if every function from α < κ into κ is bounded in κ.

Otherwise κ is singular.

Some answers:

Theorem (Cohen) For κ regular, 2κ need not equal κ+. (2κ can

be bigger.)

What about κ singular?

Suppose τ < κ→ 2τ < κ, and κ is singular. Can 2κ > κ+?

Singular Cardinal Hypothesis says no.

4



Elementary embeddings

5



Elementary embeddings

π : V →M is an elementary embedding if for all ϕ and all x1, . . . , xk,

ϕV (x1, . . . , xk)←→ ϕM(π(x1), . . . , π(xk)).

5



Elementary embeddings

π : V →M is an elementary embedding if for all ϕ and all x1, . . . , xk,

ϕV (x1, . . . , xk)←→ ϕM(π(x1), . . . , π(xk)).

(1) π is injective.

5



Elementary embeddings

π : V →M is an elementary embedding if for all ϕ and all x1, . . . , xk,

ϕV (x1, . . . , xk)←→ ϕM(π(x1), . . . , π(xk)).

(1) π is injective.

Use the formula ϕ =“x 6= y”. Get x 6= y ←→ π(x) 6= π(y).

5



Elementary embeddings

π : V →M is an elementary embedding if for all ϕ and all x1, . . . , xk,

ϕV (x1, . . . , xk)←→ ϕM(π(x1), . . . , π(xk)).

(1) π is injective.

Use the formula ϕ =“x 6= y”. Get x 6= y ←→ π(x) 6= π(y).

(2) There is an ordinal κ such that π ↾ κ = id and π(κ) > κ.

5



Elementary embeddings

π : V →M is an elementary embedding if for all ϕ and all x1, . . . , xk,

ϕV (x1, . . . , xk)←→ ϕM(π(x1), . . . , π(xk)).

(1) π is injective.

Use the formula ϕ =“x 6= y”. Get x 6= y ←→ π(x) 6= π(y).

(2) There is an ordinal κ such that π ↾ κ = id and π(κ) > κ.

Let x be of minimal rank so that π(x) 6= x. Let κ = rank(x).

5



Elementary embeddings

π : V →M is an elementary embedding if for all ϕ and all x1, . . . , xk,

ϕV (x1, . . . , xk)←→ ϕM(π(x1), . . . , π(xk)).

(1) π is injective.

Use the formula ϕ =“x 6= y”. Get x 6= y ←→ π(x) 6= π(y).

(2) There is an ordinal κ such that π ↾ κ = id and π(κ) > κ.

Let x be of minimal rank so that π(x) 6= x. Let κ = rank(x).

κ as above is called the critical point of π.

5



Elementary embeddings

π : V →M is an elementary embedding if for all ϕ and all x1, . . . , xk,

ϕV (x1, . . . , xk)←→ ϕM(π(x1), . . . , π(xk)).

(1) π is injective.

Use the formula ϕ =“x 6= y”. Get x 6= y ←→ π(x) 6= π(y).

(2) There is an ordinal κ such that π ↾ κ = id and π(κ) > κ.

Let x be of minimal rank so that π(x) 6= x. Let κ = rank(x).

κ as above is called the critical point of π.

(3) crit(π) is a regular limit cardinal.

5



Elementary embeddings

π : V →M is an elementary embedding if for all ϕ and all x1, . . . , xk,

ϕV (x1, . . . , xk)←→ ϕM(π(x1), . . . , π(xk)).

(1) π is injective.

Use the formula ϕ =“x 6= y”. Get x 6= y ←→ π(x) 6= π(y).

(2) There is an ordinal κ such that π ↾ κ = id and π(κ) > κ.

Let x be of minimal rank so that π(x) 6= x. Let κ = rank(x).

κ as above is called the critical point of π.

(3) crit(π) is a regular limit cardinal.

Regular: Suppose f : α→ κ, with α < κ. Then π(f) = f , so π(f)

is bounded in π(κ), so f is bounded in κ.
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(4) U is a filter on κ.

X, Y ∈ U → κ ∈ π(X) ∩ π(Y ) = π(X ∩ Y ).

(5) U is non-principal.

π({α}) = {π(α)} = {α} for α < κ, and κ 6∈ {α}.

(6) U is κ-complete.

(7) U is an ultrafilter.

For each X ⊂ κ, either κ ∈ π(X), or κ ∈ π(κ)−π(X) = π(κ−X).

Refer to U as the measure on κ induced by π.

κ = crit(π) is called a measurable cardinal.
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Suppose U is a κ-complete non-principal ultrafilter on P(κ).

Let M = Ult(V,U). Let π be the ultrapower embedding.

Then crit(π) = κ and the measure induced by π is equal to U.

Quick word on large cardinal axioms:

The existence of a measurable cardinal is a large cardinal axiom.

Does not follow from ZFC.

One axiom in a rich hierarchy.

7



Elementary embeddings and their properties are crucial to an-

swering many questions in set theory.

8



Elementary embeddings and their properties are crucial to an-

swering many questions in set theory.

Talk about one: the singular cardinal hypothesis.

8



Elementary embeddings and their properties are crucial to an-

swering many questions in set theory.

Talk about one: the singular cardinal hypothesis.

The hypothesis asserts that if κ is singular and (∀τ < κ)2τ < κ,

then 2κ = κ+.
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Generic filters need not exist.

Example: M = V . P = {p : n→ 2 | n < ω}. q ≤ p iff q extends p.

The sets

Dn = {p | n ∈ dom(p)}, n < ω,

Df = {p | p, f disagree}, f : ω → 2,

are dense.

If G meets all of them, then g =
⋃

G is a total function from ω

into 2, yet g 6= f for any f : ω → 2.

But the existence of generic G is consistent.

Gives an extension M [G] of M .
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Called Prikry forcing.

Suppose G ⊆ P is generic over M .

Let g =
⋃
{s | (∃A)〈s, A〉 ∈ G}.

Then g : ω → κ is unbounded in κ.
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Using second coordinates and U being an ultrafilter get:

(τ is a cardinal)M ↔ (τ is a cardinal)M [G],

(δ = 2τ)M ↔ (δ = 2τ)M [G].
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Suppose start with M so that (∀τ < κ)(2τ < κ)M and

(2κ = κ++)M . (Easy to arrange, since κ is regular in M .)

End with M [G] so that (κ singular and 2κ = κ++)M [G].

Singular cardinal hypothesis fails in M [G].
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ether an infinite sequence z = 〈a0, a1, a2, · · · · · · 〉 ∈ Nω.

If z belongs to A then player I wins.

If z does not belong to A then player II wins.

Gω(A) is determined if one of the players has a winning strategy.

(A strategy is a complete recipe that instructs the player precisely

how to play in each conceivable situation.)
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For Γ ⊆ P(Nω), det(Γ) is the statement that all sets in Γ are

determined.

Using the axiom of choice (just a wellordering of R) it is easy to

construct a non-determined set.

det(P(Nω)) is therefore false.

But determinacy for definable sets is: (1) true; and (2) useful.
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Lα(R) ∪ {A ⊂ Lα(R) | A is 1st order definable over Lα(R)}.

{projective sets} ⊂ L1(R).
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Theorem (Martin) All Borel sets are determined.

Theorem (Martin) All analytic sets are determined.

Theorem (Martin–Steel) All projective sets are determined.

Theorem (Woodin) All sets of reals in L(R) are determined.

First two theorems are in ZFC.

The others require large cardinal axioms.
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Theorem (Davis) Assume det(Γ). Let A ∈ Γ. Then either A is

countable or else it contains a perfect set.

These and other results helped establish determinacy as the right

assumption in the study of definable sets.

The axiom of determinacy (AD), stating that all sets of reals are

determined, became standard in the study of L(R).

Need ultrafilters in V to prove determinacy holds in L(R).

Determinacy in turn implies the existence of many ultrafilters.

16



Martin measure

17



Martin measure

x ≤T y if x is computable from y.

17



Martin measure

x ≤T y if x is computable from y.

x ∼T y if x ≤T y and y ≤T x.

17



Martin measure

x ≤T y if x is computable from y.

x ∼T y if x ≤T y and y ≤T x.

The Turing degree of x ∈ R is the ∼T equivalence class of x.

17



Martin measure

x ≤T y if x is computable from y.

x ∼T y if x ≤T y and y ≤T x.

The Turing degree of x ∈ R is the ∼T equivalence class of x.

Let D denote the set of Turing degrees. ≤T defined on D in the

obvious way.

17



Martin measure

x ≤T y if x is computable from y.

x ∼T y if x ≤T y and y ≤T x.

The Turing degree of x ∈ R is the ∼T equivalence class of x.

Let D denote the set of Turing degrees. ≤T defined on D in the

obvious way.

For d ∈ D define Ad = {e | e ≥T d}.

17



Martin measure

x ≤T y if x is computable from y.

x ∼T y if x ≤T y and y ≤T x.

The Turing degree of x ∈ R is the ∼T equivalence class of x.

Let D denote the set of Turing degrees. ≤T defined on D in the

obvious way.

For d ∈ D define Ad = {e | e ≥T d}.

F = {X | X ⊇ Ad for some d ∈ D} is a filter.
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II y0 y1 . . .

Player I wins if [x⊕ y] ∈ Z. Player II wins if [x⊕ y] ∈ D − Z.

If σ is a winning strategy for I, then A[σ] ⊆ Z.

If τ is a winning strategy for II, then A[τ ] ⊆ D − Z.
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Natural context: AC plus at least projective determinacy.
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appealing than others.

Can we have δ
1
n ≥ ℵ2?
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Theorem (Steel–Van Wesep–Woodin) Assume AD
L(R). Then it

is consistent (with AD
L(R) and AC) that δ

1
2 = ℵ2.
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1
2 = ℵ2.

Proved by forcing over L(R) to produce an extension L(R)[G]

which satisfies AC, and agrees with L(R) on cardinals ℵ1 and ℵ2.

Since in L(R) (where AC fails) δ
1
2 is equal to ℵ2, get that in the

extension δ
1
2 = ℵ2.
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Theorem (Neeman, Woodin) Assume AD
L(R). Then it is con-

sistent (with AD
L(R) and the axiom of choice) that δ

1
3 = ℵ2.
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L(R). Then it is con-

sistent (with AD
L(R) and the axiom of choice) that δ

1
3 = ℵ2.

Again proved by forcing over L(R).

This time produce an extension in which (ℵ1)
L(R) and (ℵω+1)

L(R)

remain cardinals, but (ℵn)L(R) for 2 ≤ n ≤ ω do not.

Since in L(R) δ
1
3 is equal to ℵω+1, get that in the extension δ

1
3

is the second uncountable cardinal (namely ℵ2).

The forcing is similar to Prikry forcing, using an ultrafilter on

the set of countable sequences of countable subsets of ℵω.

The construction of these ultrafilters is done not using games,

but using directed systems of ultrapowers of countable models

of AC.
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