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Seminar’s aim

We want to illustrate the role of the ultraproducts played in
two research projects which concern respectively:

1 The decidability of some representations of the
universal enveloping algebra, Uk , of sl2(k)
(S.L., A. Macintyre).

2 Some possible exponentiations over U = UC
(S.L., A. Macintyre, F. Point).
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Our setting
Let k be an algebraically closed field of characteristic 0.
Consider the simple Lie algebra sl2(k) of

all 2× 2 trace 0 matrices over k

with the bracket operation [x , y ] = xy − yx .
Recall that a basis of sl2(k) is

x =

(
0 1
0 0

)
y =

(
0 0
1 0

)
h =

(
1 0
0 −1

)
.

So, [x , y ] = h, [h, x ] = 2x , [h, y ] = −2y .

Let Uk denote the universal enveloping algebra of sl2(k).
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Definition
A universal enveloping algebra of sl2(k) over k is

an associative algebra (with a unit) Uk with
a (Lie algebra) homomorphism i : sl2(k) → Uk such that

if A is any associative k -algebra with the homomorphism
f : sl2(k) → A,

then exists a unique homomorphism:

Θ : Uk → A

such that the diagram

sl2(k) → Uk

↓ ↙
A

commutes.
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We will use these algebraic properties of Uk :
• Uk has a Z-graded k -algebra. Let Uκ,m be the

subalgebra of elements of grade m. We have

Uk =
⊕
m∈Z

Uk , m ;

for m > 0, Uk , m = xmUk , 0 = Uk , 0xm ;

for m < 0, Uk , m = y |m|Uk , 0 = Uk , 0y |m| .

• A key role is played by the Casimir operator of Uk :

c = 2xy + 2yx + h2

which generates the center of Uk

• By PBW basis of Uk , we can see that the 0-component
of Uk

Uk 0 = k [c, h]
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Simple finite dim. representations
Let λ be a positive integer number.
Any simple (λ + 1)-dim. sl2(k)-module Vλ decomposes as a
direct sum

Vλ =
λ⊕

j=0

Vλ, j

of eigenspaces Vλ, j = {v ∈ Vλ hv = (λ− 2j)v} of h,
called the weight spaces of Vλ and denoted
Ker(h − (λ− 2j)).

Vλ, 0 = {v ∈ Vλ : hv = λv and xv = 0}, often denoted
Ker(x) and called highest weight space of Vλ

Vλ, λ = {v ∈ Vλ : hv = −λv and yv = 0}, often denoted
Ker(y) and called lowest weight space of Vλ.
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On the language of left Uk -modules, we focus on suitable
linear transformation of Vλ.

We consider
1 the ring of definable scalars, U ′

k , of all simple finite
dimensional Uk -modules whose elements are
pp-definable endomorphisms of each Vλ.

2 As proved by Herzog, U ′
k is von Neuman regular ring.
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Pseudo-finite dim. representations
Let Th(L-fd) denote the theory of the class of finite dim.
representations of Uk .

A representation M of Uk is called pseudo-finite
dimensional (from now on PFD) iff

M |= Th(L-fd)

i.e. M satisfies all sentences (of the language of
Uk -modules) true in every finite dimensional representation.
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General fact
M is PFD if and only if M is elementary equivalent to an
ultraproduct of finite dimensional modules.

We discuss some aspects of ultraproducts of finite
dimensional modules.

Property
For M PFD Uk -module, Cas(M) may be {0}, where

Cas(M) = {λ : Ker(c − (λ2 + 2λ)) 6= 0} .

To see this, take M equal to the ultraproduct
∏

λ∈N Vλ/D,
where D is nonprincipal.
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Our aim.

We want to prove the decidability of the theory of
PFD-modules.

The main strategy

Since U ′
k is von Neumann regular ring, we should prove that

U ′
k is recursive.

Main result
We construct explicitly a commutative extension of Uk 0
assuming some plausible conjectures about the decision
problem for integer points on curves.
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Main idea for constructing U ′
k

We focus on Uk , 0.

The heart of the matter is the generation of idempotents,
and especially those corresponding to the kernels of
elements of Uk , 0.

∀p ∈ Uk ,0 and ∀M ∈ FinDim, define
Ker(p) = {m ∈ M : p ·m = 0} .

Our first idempotents

ep and 1− ep

are the projections respectively onto Ker(p) and Image(p)

relative to M.
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To generate other idempotents, it is enough to study the
solutions of the equation:

p (λ2 + 2λ, λ− 2j) = 0.

We will call p ∈ Uk , 0 standard iff there are finitely many
solutions of

p (λ2 + 2λ, λ− 2j) = 0 ∀M ∈ FinDim,

p nonstandard if the are infinitely many solutions.

p as affine curve
Let p ∈ Uk , 0, so p = p(c, h) where p (x1, x2) ∈ k [x1, x2].
Consider the affine plane curve Cp defined by p (x1, x2) = 0.

We use some methods from diophantine geometry.
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Exponentiation
Restrict our attention on C. Let U = UC.

Our aim We define some possible exponentiations over U.
1 First, we describe the exponential map

EXPλ : U −→ GLλ+1(C)

for each λ ∈ ω − {0}.
2 Then, we discuss the exponential map

EXP : U →
∏
V

GLλ+1(C)

where V be a non-principal ultrafilter on ω
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Our strategy
We will use:
• The matrix characterization of every simple U-modules

Vλ by the map Θλ : U → Mλ+1 (where
Mλ+1 = End(Vλ)).

• the natural matrix exponential map defined over
Mλ+1(C)

exp : Mλ+1(C) −→ GLλ+1(C)

such that ∀A ∈ Mλ+1(C),

exp(A) =
∞∑

n=0

An

n!
= Iλ+1 + A +

A2

2
+

A3

3!
+ . . .)

where Iλ+1 denote the (λ + 1)× (λ + 1) identity matrix.
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Definition: the map EXPλ

Let λ ∈ ω − {0} (later λ will range in ω).
We can define a new exponential map over U:

EXPλ : U Θλ−→ Mλ+1(C)
exp
−→ GLλ+1(C)

EXPλ(u) = exp(Θλ(u)), ∀u ∈ U.

Proposition
We can prove that the map EXPλ is surjective.

Question.
Which is the value of EXPλ(u) for every u ∈ U? What is its
kernel?
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Because of the intrinsic characterization of U, we are not
able to give immediately a satisfactory answer.
But, we can easily calculate:

EXPλ(x) = exp(Θλ(x)) = exp(Xλ+1) =

= 1λ+1 + Xλ+1 +
X 2

λ+1

2
+ . . . +

Xλ
λ+1

λ!
;

EXPλ(y) = exp(Θλ(y)) = exp(Yλ+1) =

= 1λ+1 + Yλ+1 +
Y 2

λ+1

2
+ . . . +

Y λ
λ+1

λ!
;

EXPλ(h) = exp(Θλ(h)) = exp(Hλ+1) =

= diag(eλ, eλ−2, . . . , e−λ+2, e−λ);

EXPλ(c) = exp(Θλ(c)) = exp(diag(λ2 + 2λ, . . . , λ2 + 2λ)) =

= diag(eλ2+2λ, . . . , eλ2+2λ)
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About our question, first let us observe:

Lemma
Let U = ⊕m∈ZUm. We can prove that Θλ maps:

(i) any element u0 of U0 = C[c, h] onto a diagonal matrix,
(ii) any element um ∈ Um of positive degree m, um = xmu0

(with u0 ∈ U0), onto the upper triangular matrix (with
l = (λ + 1)−m nonzero complex entries ?l ) if m ≤ λ:

0 0 ?1 0 . . . 0
0 0 0 ?2 . . . 0
...

... 0 ?l
...

... 0 0
0 0 . . . 0 0


otherwise (when m ≥ λ + 1) Θλ(um) is null.
A similar thing involves any element of negative degree
−m.
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Remark
Any element u0 ∈ U0 belongs to the kernel of EXPλ if and
only if ∧

0≤j≤λ

p
(
λ2 + 2λ, λ− 2j

)
∈ 2πiZ

We can get a partial answer to our question.

Proposition
EXPλ maps any element u of U onto SLλ+1(C) if the
following condition is satisfied

tr(Θλ(u)) ∈ 2πiZ.

In particular, if u ∈ ⊕m 6=0Um, then its image by EXPλ lies

always in SLλ+1(C).
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A further aim
Let V be a non-principal ultrafilter on ω and consider the
ultraproducts

∏
V Mλ+1(C) and

∏
V GLλ+1(C) as structures

on the language of Lie algebras.

We will focus on the map EXP from U to
∏
V GLλ+1(C)

defined as follows:

EXP : U →
∏
V

GLλ+1(C)

u → [EXPλ(u)]V ∀u ∈ U

by composing the injective map [Θλ] : U →
∏

Vλ
Mλ+1(C),

with the map [exp]V :
∏

Vλ
Mλ+1(C) →

∏
V GLλ+1(C).
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Note that EXP satisfies the properties stated for each EXPλ.
Moreover,
• EXP(⊕m 6=0Um) ⊂

∏
V SLλ+1(C);

• EXP(U0) ⊂
∏
V Diagλ+1(C).
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Connection with standard and nonstandard
idempotents

Let U ′ be the ring of definable scalars of U (described at the
beginning).
∀p = p(c, h) ∈ U0, let ep denote the idempotent
corresponding to the projection on Ker(Θλ(u)) on Vλ

(∀λ ∈ ω).
By using all results obtained in this setting, we can observe:

1 if p ∈ U0 is standard, then [Θλ(u0)] is invertible in∏
Vλ

Mλ+1(C).
2 if p is non-standard, so for some non-principal ultrafilter

the image of ep in the ultraproduct will be of the form
[ep] = [(diag(0, 1, 1, . . . 1, . . . 1, 1, 0)].

Question
Which elements of U ′ can we identify in

∏
Vλ

Mλ+1(C)?
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We focus on the following query.

Question
What is the kernel of EXP?

Proposition
Let p = p(c, h) ∈ U0, with p(x1, x2) ∈ C[x1, x2]. Write
p(x1, x2) in the form 1

2πi q(x1, x2). Then, if p ∈ ker(EXP),
then q(x1, x2) ∈ Q[x1, x2].

Proof

Let q[x1, x2] =
∑d

k=0 qk [x1].xk
2 and assume that

q(c, h) ∈ ker(EXP). Then, the set
{λ ∈ ω :

∧
0≤2.j≤λ q(λ2 + λ, λ− 2j) ∈ 2.π.i .Z} ∈ Vλ (?).

Note that it is enough to express hypothesis (?) for λ > d .
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Proposition

Let p be as above where q(x1, x2) =
∑d

k=0 qk (x1)xk
2 , with

qk (x) ∈ Q[x1]. Then, p ∈ Ker(EXP) for all non-principal
ultrafilter V if and only if q(x1, x2) ∈ Q[x1, x2] and for each
0 ≤ k ≤ d , qk (0) ∈ Z.

Further questions
We would like to put a topology on U in such a way that
EXP is continuous.

1 Does U embed as a closed subspace of
∏

Vλ
Mλ+1(C)?

2 Can we put on
∏

Vλ
GLλ+1(C) (respectively on

EXP(U)) the structure of a Lie group, or simply of a
topological group? Is EXP(U) connected?
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