Sonia L'Innocente

Ultraproducts and Lie algebras: some possible interactions

Sonia L'Innocente

Department of Mathematics University of Camerino Italy Institute of Mathematics University of Mons-Hainaut Belgium

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

UltraMath 2008

Applications of Ultrafilters and Ultraproducts in Mathematics

Department of Mathematics, University of Pisa

01-07 June 2008, Pisa, Italy

-

Sonia L'Innocente

Seminar's aim

We want to illustrate the role of the ultraproducts played in two research projects which concern respectively:

 The decidability of some representations of the universal enveloping algebra, U_k, of sl₂(k) (S.L., A. Macintyre).

2 Some possible exponentiations over $U = U_{\mathbb{C}}$ (S.L., A. Macintyre, F. Point).

-

Sonia L'Innocente

Our setting

Decidability and *U*_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

Our Setting

2 Decidability and *U_k*-modules

3 Exponentiation over $U = U_{\mathbb{C}}$

4 References

э

Outline

Sonia L'Innocente

Our setting

Decidability and U_k -modules

Exponentia map over $U = U_{\mathbb{C}}$

References

Our Setting

2 Decidability and *U_k*-modules

3 Exponentiation over $U = U_{\mathbb{C}}$

4 References

Sonia L'Innocente (Camerino~Mons)

э

Outline

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

Our setting

Let *k* be an algebraically closed field of characteristic 0. Consider the simple **Lie algebra** $sl_2(k)$ of

all 2×2 trace 0 matrices over k

with the bracket operation [x, y] = xy - yx. Recall that a basis of $sl_2(k)$ is

$$x = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \quad y = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) \quad h = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

So, [x, y] = h, [h, x] = 2x, [h, y] = -2y.

Let U_k denote the universal enveloping algebra of $sl_2(k)$.

.

(日)

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

Our setting

Let k be an algebraically closed field of characteristic 0. Consider the simple Lie algebra $sl_2(k)$ of

all 2×2 trace 0 matrices over k

with the bracket operation [x, y] = xy - yx. Recall that a basis of $sl_2(k)$ is

$$x = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \quad y = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) \quad h = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

So, [x, y] = h, [h, x] = 2x, [h, y] = -2y.

Let U_k denote the universal enveloping algebra of $sl_2(k)$.

.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{C}$

References

Definition

A universal enveloping algebra of $sl_2(k)$ over k is

an associative algebra (with a unit) U_k with a (Lie algebra) homomorphism $i : sl_2(k) \rightarrow U_k$ such that A is any associative *k*-algebra with the homomorphism $f : sl_2(k) \rightarrow A$, an exists a unique homomorphism:

 $\Theta: U_k \to A$

such that the diagram

 $sl_2(k) \rightarrow U_k$

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{C}$

References

Definition

A universal enveloping algebra of $sl_2(k)$ over k is an associative algebra (with a unit) U_k with a (Lie algebra) homomorphism $i : sl_2(k) \rightarrow U_k$ such that if A is any associative k-algebra with the homomorphism $f : sl_2(k) \rightarrow A$, then exists a unique homomorphism:

 $\Theta: U_k \to A$

such that the diagram

 $sl_2(k) \rightarrow U_k$ $\downarrow \swarrow$

commutes

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

Definition

A universal enveloping algebra of $sl_2(k)$ over k is

an associative algebra (with a unit) U_k with a (Lie algebra) homomorphism $i : sl_2(k) \rightarrow U_k$ such that if *A* is any associative *k*-algebra with the homomorphism $f : sl_2(k) \rightarrow A$,

hen exists a unique homomorphism:

 $\Theta: U_k \to A$

such that the diagram

 $sl_2(k) \rightarrow U_k$ $\downarrow \swarrow$

commutes

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponentia map over $U = U_{C}$

References

Definition

A universal enveloping algebra of $sl_2(k)$ over k is

an associative algebra (with a unit) U_k with a (Lie algebra) homomorphism $i : sl_2(k) \rightarrow U_k$ such that if *A* is any associative *k*-algebra with the homomorphism $f : sl_2(k) \rightarrow A$, then exists a unique homomorphism:

$$\Theta: U_k \to A$$

such that the diagram

commutes.

Sonia L'Innocente

Our setting

Decidability and *U_k*-modules

Exponential map over $U = U_{\Gamma}$

References

We will use these algebraic properties of U_k :

U_k has a Z-graded *k*-algebra. Let *U_{κ,m}* be the subalgebra of elements of grade *m*. We have

$$U_{k} = \bigoplus_{m \in \mathbb{Z}} U_{k,m};$$

for $m > 0$, $U_{k,m} = x^{m}U_{k,0} = U_{k,0}x^{m};$
for $m < 0$, $U_{k,m} = y^{|m|}U_{k,0} = U_{k,0}y^{|m|}.$

• A key role is played by the **Casimir operator** of *U_k*:

$$c = 2xy + 2yx + h^2$$

which generates the center of U_k

• By PBW basis of *U_k*, we can see that the 0-component of *U_k*

$$U_{k0} = k[c, h]$$

Sonia L'Innocente

Our setting

Decidability and *U_k*-modules

Exponentia map over $U = U_{C}$

References

We will use these algebraic properties of U_k :

U_k has a ℤ-graded *k*-algebra. Let *U_{κ,m}* be the subalgebra of elements of grade *m*. We have

$$\begin{array}{rcl} U_k & = & \bigoplus_{m \in \mathbb{Z}} U_{k,\,m}\,; \\ & \text{for } m > 0, \ U_{k,\,m} & = & x^m U_{k,\,0} \, = \, U_{k,\,0} x^m\,; \\ & \text{for } m < 0, \ U_{k,\,m} & = & y^{|m|} U_{k,\,0} \, = \, U_{k,\,0} y^{|m|}\,. \end{array}$$

• A key role is played by the **Casimir operator** of *U_k*:

$$c = 2xy + 2yx + h^2$$

which generates the center of U_k

 By PBW basis of U_k, we can see that the 0-component of U_k

$$U_{k0} = k[c, h]$$

Sonia L'Innocente

Our setting

Decidability and *U_k*-modules

Exponentia map over $U = U_{C}$

References

Simple finite dim. representations

Let λ be a positive integer number. Any simple $(\lambda + 1)$ -dim. $sl_2(k)$ -module V_{λ} decomposes as a direct sum

$$V_{\lambda} = \bigoplus_{j=0}^{\lambda} V_{\lambda,j}$$

of eigenspaces $V_{\lambda,j} = \{v \in V_{\lambda} hv = (\lambda - 2j)v\}$ of *h*, called the *weight spaces* of V_{λ} and denoted *Ker*($h - (\lambda - 2j)$).

 $V_{\lambda,0} = \{ v \in V_{\lambda} : hv = \lambda v \text{ and } xv = 0 \}$, often denoted *Ker*(*x*) and called *highest* weight space of V_{λ}

 $V_{\lambda,\lambda} = \{ v \in V_{\lambda} : hv = -\lambda v \text{ and } yv = 0 \}$, often denoted *Ker*(*y*) and called *lowest* weight space of V_{λ} .

-

< ロ > < 同 > < 回 > < 回 > < - > <

Sonia L'Innocente

Our setting

Decidability and U_k -modules

Exponentia map over $U = U_{\mathbb{C}}$

References

Our Setting

2 Decidability and *U_k*-modules

3 Exponentiation over $U = U_{\mathbb{C}}$

4 References

э

Outline

Sonia L'Innocente

Our setting

Decidability and U_k -modules

Exponential map over $U = U_{C}$

References

On the language of left U_k -modules, we focus on suitable linear transformation of V_{λ} .

We consider

- the ring of definable scalars, U'_k, of all simple finite dimensional U_k-modules whose elements are pp-definable endomorphisms of each V_λ.
- 2 As proved by Herzog, U'_k is von Neuman regular ring.

-

Sonia L'Innocente

Our setting

Decidability and U_k -modules

Exponentia map over $U = U_{C}$

References

Pseudo-finite dim. representations

Let Th(L-fd) denote the theory of the class of finite dim. representations of U_k .

A representation M of U_k is called **pseudo-finite dimensional** (from now on **PFD**) iff

 $M \models Th(L-fd)$

i.e. *M* satisfies all sentences (of the language of U_k -modules) true in every finite dimensional representation.

・ロン ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

Sonia L'Innocente

Our setting

Decidability and U_k -modules

Exponentia map over $U = U_{\mathbb{C}}$

References

Pseudo-finite dim. representations

Let Th(L-fd) denote the theory of the class of finite dim. representations of U_k .

A representation M of U_k is called **pseudo-finite dimensional** (from now on **PFD**) iff

 $M \models Th(L-fd)$

i.e. *M* satisfies all sentences (of the language of U_k -modules) true in every finite dimensional representation.

-

Sonia L'Innocente

Our setting

Decidability and U_k -modules

Exponentia map over $U = U_{\mathbb{C}}$

References

General fact

M is PFD if and only if M is elementary equivalent to an ultraproduct of finite dimensional modules.

We discuss some aspects of ultraproducts of finite dimensional modules.

Property

For *M* PFD *U_k-*module, *Cas*(*M*) may be {0}, where

 $Cas(M) = \{\lambda : Ker(c - (\lambda^2 + 2\lambda)) \neq 0\}.$

To see this, take M equal to the ultraproduct $\prod_{\lambda\in\mathbb{N}}V_\lambda/D$, where D is nonprincipal.

Sonia L'Innocente

Our setting

Decidability and U_k -modules

Exponential map over $U = U_{\mathbb{C}}$

References

General fact

M is PFD if and only if *M* is elementary equivalent to an ultraproduct of finite dimensional modules.

We discuss some aspects of ultraproducts of finite dimensional modules.

Property

For *M* PFD *U_k-*module, *Cas*(*M*) may be {0}, where

 $Cas(M) = \{\lambda : Ker(c - (\lambda^2 + 2\lambda)) \neq 0\}$

To see this, take M equal to the ultraproduct $\prod_{\lambda\in\mathbb{N}}V_\lambda/D$, where D is nonprincipal.

Sonia L'Innocente

Our setting

Decidability and U_k -modules

Exponentia map over $U = U_{\mathbb{C}}$

References

General fact

M is PFD if and only if *M* is elementary equivalent to an ultraproduct of finite dimensional modules.

We discuss some aspects of ultraproducts of finite dimensional modules.

Property

For *M* PFD U_k -module, Cas(M) may be $\{0\}$, where

$$Cas(M) = \{\lambda : Ker(c - (\lambda^2 + 2\lambda)) \neq 0\}$$

To see this, take *M* equal to the ultraproduct $\prod_{\lambda \in \mathbb{N}} V_{\lambda}/D$, where *D* is nonprincipal.

-

Sonia L'Innocente

Our setting

Decidability and U_k -modules

Exponential map over $U = U_{\mathbb{C}}$

References

Our aim.

We want to prove the decidability of the theory of PFD-modules.

The main strategy

Since U'_k is von Neumann regular ring, we should prove that U'_k is recursive.

Main result

We construct explicitly a commutative extension of U_{k0} assuming some plausible conjectures about the decision problem for integer points on curves.

Sonia L'Innocente

Our setting

Decidability and U_k -modules

Exponential map over $U = U_{\mathbb{C}}$

References

Our aim.

We want to prove the decidability of the theory of PFD-modules.

The main strategy

Since U'_k is von Neumann regular ring, we should prove that U'_k is recursive.

Main result

We construct explicitly a commutative extension of U_{k0} assuming some plausible conjectures about the decision problem for integer points on curves.

Sonia L'Innocente

Our setting

Decidability and U_k -modules

Exponentia map over $U = U_{\mathbb{C}}$

References

Main idea for constructing U'_k

We focus on $U_{k,0}$.

The heart of the matter is the generation of idempotents, and especially those corresponding to the kernels of elements of $U_{k,0}$.

 $\forall p \in U_{k,0} \text{ and } \forall M \in FinDim, \text{ define}$ $Ker(p) = \{m \in M : p \cdot m = 0\}.$

Our first idempotents

 e_p and $1 - e_p$

are the projections respectively onto Ker(p) and Image(p) relative to M.

Sonia L'Innocente

Our setting

Decidability and U_k -modules

Exponentia map over $U = U_{C}$

References

Main idea for constructing U'_k

We focus on $U_{k,0}$.

The heart of the matter is the generation of idempotents, and especially those corresponding to the kernels of elements of $U_{k,0}$.

 $\forall p \in U_{k,0} \text{ and } \forall M \in FinDim, \text{ define } Ker(p) = \{m \in M : p \cdot m = 0\}.$

Our first idempotents

 e_p and $1 - e_p$

are the projections respectively onto Ker(p) and Image(p) relative to M.

Sonia L'Innocente

Our setting

Decidability and U_k -modules

Exponential map over $U = U_{C}$

References

To generate other idempotents, it is enough to study the solutions of the equation:

$$p(\lambda^2 + 2\lambda, \lambda - 2j) = 0.$$

We will call $p \in U_{k,0}$ standard iff there are finitely many solutions of

$$p(\lambda^2 + 2\lambda, \lambda - 2j) = 0 \quad \forall M \in FinDim,$$

p nonstandard if the are infinitely many solutions.

p as affine curve

Let $p \in U_{k,0}$, so p = p(c, h) where $p(x_1, x_2) \in k[x_1, x_2]$. Consider the affine plane curve C_p defined by $p(x_1, x_2) = 0$.

We use some methods from **diophantine geometry**.

Sonia L'Innocente (Camerino~Mons)

Sonia L'Innocente

Our setting

Decidability and U_k -modules

Exponential map over $U = U_{C}$

References

To generate other idempotents, it is enough to study the solutions of the equation:

$$p(\lambda^2 + 2\lambda, \lambda - 2j) = 0.$$

We will call $p \in U_{k,0}$ standard iff there are finitely many solutions of

$$p(\lambda^2 + 2\lambda, \lambda - 2j) = 0 \quad \forall M \in FinDim,$$

p nonstandard if the are infinitely many solutions.

p as affine curve

Let $p \in U_{k,0}$, so p = p(c, h) where $p(x_1, x_2) \in k[x_1, x_2]$. Consider the affine plane curve C_p defined by $p(x_1, x_2) = 0$.

We use some methods from diophantine geometry.

Sonia L'Innocente (Camerino~Mons)

< ロ > < 同 > < 回 > < 回 > .

Sonia L'Innocente

Our setting

Decidability and *U_k*-modules

Exponential map over $U = U_{\mathbb{C}}$

References

1 Our Setting

2 Decidability and *U_k*-modules

3 Exponentiation over $U = U_{\mathbb{C}}$

4 References

э

Outline

< ロ > < 同 > < 回 > < 回 > .

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

Exponentiation

Restrict our attention on \mathbb{C} . Let $U = U_{\mathbb{C}}$.

Our aim We define some possible exponentiations over U. First, we describe the exponential map $\mathsf{EXP}_{\lambda}: U \longrightarrow GL_{\lambda+1}(\mathbb{C})$ for each $\lambda \in \omega - \{0\}$.

-

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

Exponentiation

Restrict our attention on \mathbb{C} . Let $U = U_{\mathbb{C}}$.

Our aim We define some possible exponentiations over U.
1 First, we describe the exponential map
EXP_λ : U → GL_{λ+1}(ℂ)
for each λ ∈ ω - {0}.

2 Then, we discuss the exponential map

 $\mathsf{EXP}: U \to \prod_{\mathcal{V}} \mathit{GL}_{\lambda+1}(\mathbb{C})$

where $\mathcal V$ be a non-principal ultrafilter on ω

-

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

Our strategy

We will use:

- The matrix characterization of every simple *U*-modules V_{λ} by the map $\Theta_{\lambda} : U \to M_{\lambda+1}$ (where $M_{\lambda+1} = \text{End}(V_{\lambda})$).
- the natural matrix exponential map defined over $M_{\lambda+1}(\mathbb{C})$

$$\exp: M_{\lambda+1}(\mathbb{C}) \longrightarrow GL_{\lambda+1}(\mathbb{C})$$

such that $\forall A \in M_{\lambda+1}(\mathbb{C})$,

$$exp(A) = \sum_{n=0}^{\infty} \frac{A^n}{n!} = I_{\lambda+1} + A + \frac{A^2}{2} + \frac{A^3}{3!} + \dots)$$

where $I_{\lambda+1}$ denote the $(\lambda + 1) \times (\lambda + 1)$ identity matrix.

э

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

Definition: the map EXP $_{\lambda}$

Let $\lambda \in \omega - \{0\}$ (later λ will range in ω). We can define a **new exponential map** over *U*:

$$\mathsf{EXP}_{\lambda}: U \xrightarrow{\Theta_{\lambda}} M_{\lambda+1}(\mathbb{C}) \xrightarrow{\mathsf{exp}} GL_{\lambda+1}(\mathbb{C})$$

 $\mathsf{EXP}_{\lambda}(u) = \exp(\Theta_{\lambda}(u)), \qquad \forall u \in U.$

Proposition

We can prove that the map EXP_{λ} is surjective.

Question.

Which is the value of $\text{EXP}_{\lambda}(u)$ for every $u \in U$? What is its kernel?

< ロ > < 同 > < 回 > < 回 > < 回 > <

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

Definition: the map EXP $_{\lambda}$

Let $\lambda \in \omega - \{0\}$ (later λ will range in ω). We can define a **new exponential map** over *U*:

$$\mathsf{EXP}_{\lambda}: U \xrightarrow{\Theta_{\lambda}} M_{\lambda+1}(\mathbb{C}) \xrightarrow{\mathsf{exp}} GL_{\lambda+1}(\mathbb{C})$$

 $\mathsf{EXP}_{\lambda}(u) = \exp(\Theta_{\lambda}(u)), \qquad \forall u \in U.$

Proposition

We can prove that the map EXP_{λ} is surjective.

Question.

Which is the value of $\text{EXP}_{\lambda}(u)$ for every $u \in U$? What is its kernel?

э

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

Definition: the map EXP $_{\lambda}$

Let $\lambda \in \omega - \{0\}$ (later λ will range in ω). We can define a **new exponential map** over *U*:

$$\mathsf{EXP}_{\lambda}: U \xrightarrow{\Theta_{\lambda}} M_{\lambda+1}(\mathbb{C}) \xrightarrow{\mathsf{exp}} GL_{\lambda+1}(\mathbb{C})$$

 $\mathsf{EXP}_{\lambda}(u) = \exp(\Theta_{\lambda}(u)), \qquad \forall u \in U.$

Proposition

We can prove that the map EXP_{λ} is surjective.

Question.

Which is the value of $\text{EXP}_{\lambda}(u)$ for every $u \in U$? What is its kernel?

э

(日)

Sonia L'Innocente

Our setting Decidability and U_k -modules

Exponential map over $U = U_{\mathbb{C}}$

References

Because of the intrinsic characterization of U, we are not able to give immediately a satisfactory answer. But, we can easily calculate:

$$\begin{aligned} \mathsf{EXP}_{\lambda}(x) &= & \exp(\Theta_{\lambda}(x)) = \exp(X_{\lambda+1}) = \\ &= & \mathbf{1}_{\lambda+1} + X_{\lambda+1} + \frac{X_{\lambda+1}^2}{2} + \ldots + \frac{X_{\lambda+1}^\lambda}{\lambda!}; \end{aligned}$$

$$\begin{split} \mathsf{EXP}_{\lambda}(y) &= & \mathsf{exp}(\Theta_{\lambda}(y)) = \mathsf{exp}(Y_{\lambda+1}) = \\ &= & \mathbf{1}_{\lambda+1} + Y_{\lambda+1} + \frac{Y_{\lambda+1}^2}{2} + \ldots + \frac{Y_{\lambda+1}^{\lambda}}{\lambda!}; \end{split}$$

$$\begin{array}{lll} \mathsf{EXP}_{\lambda}(h) &=& \exp(\Theta_{\lambda}(h)) = \exp(H_{\lambda+1}) = \\ &=& \operatorname{diag}(e^{\lambda}, e^{\lambda-2}, \dots, e^{-\lambda+2}, e^{-\lambda}); \end{array}$$

$$\begin{array}{lll} \mathsf{EXP}_{\lambda}(\boldsymbol{c}) &=& \exp(\Theta_{\lambda}(\boldsymbol{c})) = \exp(\operatorname{diag}(\lambda^{2} + 2\lambda, \dots, \lambda^{2} + 2\lambda)) = \\ &=& \operatorname{diag}(\boldsymbol{e}^{\lambda^{2} + 2\lambda}, \dots, \boldsymbol{e}^{\lambda^{2} + 2\lambda}) \end{array}$$

э

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

About our question, first let us observe:

Lemma

Let $U = \bigoplus_{m \in \mathbb{Z}} U_m$. We can prove that Θ_{λ} maps:

(i) any element u_0 of $U_0 = \mathbb{C}[c, h]$ onto a diagonal matrix,

(ii) any element $u_m \in U_m$ of positive degree m, $u_m = x^m u_0$ (with $u_0 \in U_0$), onto the upper triangular matrix (with $I = (\lambda + 1) - m$ nonzero complex entries \star_I) if $m \le \lambda$:

(0 0	0 0	*1 0	0 *2	0 0
	÷	•	0		*/
	÷	÷		0	0
ĺ	0	0		0	0/

otherwise (when $m \ge \lambda + 1$) $\Theta_{\lambda}(u_m)$ is null. A similar thing involves any element of negative degree -m.

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

Remark

Any element $u_0 \in U_0$ belongs to the kernel of EXP_λ if and only if

$$igwedge _{0\leq j\leq\lambda} {m
ho}\left(\lambda^2+{f 2}\lambda,\lambda-{f 2}j
ight)\in {f 2}\pi i{\mathbb Z}$$

We can get a partial answer to our question.

Proposition

 EXP_{λ} maps any element *u* of *U* onto $SL_{\lambda+1}(\mathbb{C})$ if the following condition is satisfied

 $\operatorname{tr}(\Theta_{\lambda}(u)) \in 2\pi i\mathbb{Z}.$

In particular, if $u \in \bigoplus_{m \neq 0} U_m$, then its image by EXP_{λ} lies

always in $SL_{\lambda+1}(\mathbb{C})$.

э

イロン イボン イヨン イヨン

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

Remark

Any element $u_0 \in U_0$ belongs to the kernel of EXP_λ if and only if

$$igwedge _{0\leq j\leq\lambda} {m
ho}\left(\lambda^2+{f 2}\lambda,\lambda-{f 2}j
ight)\in {f 2}\pi i{\mathbb Z}$$

We can get a partial answer to our question.

Proposition

 EXP_{λ} maps any element *u* of *U* onto $SL_{\lambda+1}(\mathbb{C})$ if the following condition is satisfied

 $\operatorname{tr}(\Theta_{\lambda}(u)) \in 2\pi i\mathbb{Z}.$

In particular, if $u \in \bigoplus_{m \neq 0} U_m$, then its image by EXP_{λ} lies

always in $SL_{\lambda+1}(\mathbb{C})$.

э

ヘロン 人間 とくほ とくほう

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

A further aim

Let \mathcal{V} be a non-principal ultrafilter on ω and consider the ultraproducts $\prod_{\mathcal{V}} M_{\lambda+1}(\mathbb{C})$ and $\prod_{\mathcal{V}} GL_{\lambda+1}(\mathbb{C})$ as structures on the language of Lie algebras.

We will focus on the map EXP from U to $\prod_{\mathcal{V}} GL_{\lambda+1}(\mathbb{C})$ defined as follows:

$$\mathsf{EXP}:U o \prod_{\mathcal{V}} \mathit{GL}_{\lambda+1}(\mathbb{C})$$

 $\mathbf{u}
ightarrow [\mathsf{E} X \mathcal{P}_{\lambda}(\mathbf{u})]_{\mathcal{V}} \qquad orall u \in U$

by composing the injective map $[\Theta_{\lambda}] : U \to \prod_{V_{\lambda}} M_{\lambda+1}(\mathbb{C})$ with the map $[\exp]_{\mathcal{V}} : \prod_{V_{\lambda}} M_{\lambda+1}(\mathbb{C}) \to \prod_{\mathcal{V}} GL_{\lambda+1}(\mathbb{C}).$

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

A further aim

Let \mathcal{V} be a non-principal ultrafilter on ω and consider the ultraproducts $\prod_{\mathcal{V}} M_{\lambda+1}(\mathbb{C})$ and $\prod_{\mathcal{V}} GL_{\lambda+1}(\mathbb{C})$ as structures on the language of Lie algebras.

We will focus on the map EXP from U to $\prod_{\mathcal{V}} GL_{\lambda+1}(\mathbb{C})$ defined as follows:

$$\mathsf{EXP}:U o \prod_{\mathcal{V}} \mathit{GL}_{\lambda+1}(\mathbb{C})$$

 $\mathbf{u}
ightarrow [\mathsf{E} X \mathcal{P}_{\lambda}(\mathbf{u})]_{\mathcal{V}} \qquad orall u \in U$

by composing the injective map $[\Theta_{\lambda}] : U \to \prod_{V_{\lambda}} M_{\lambda+1}(\mathbb{C})$, with the map $[\exp]_{\mathcal{V}} : \prod_{V_{\lambda}} M_{\lambda+1}(\mathbb{C}) \to \prod_{\mathcal{V}} GL_{\lambda+1}(\mathbb{C})$.

-

Sonia L'Innocente

Our setting

Decidability and U_k -modules

Exponential map over $U = U_{\mathbb{C}}$

References

Note that *EXP* satisfies the properties stated for each EXP_{λ} . Moreover,

- $EXP(\oplus_{m\neq 0} U_m) \subset \prod_{\mathcal{V}} SL_{\lambda+1}(\mathbb{C});$
- $EXP(U_0) \subset \prod_{\mathcal{V}} Diag_{\lambda+1}(\mathbb{C}).$

э

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

Connection with standard and nonstandard idempotents

Let U' be the ring of definable scalars of U (described at the beginning).

 $\forall p = p(c, h) \in U_0$, let e_p denote the idempotent corresponding to the projection on Ker($\Theta_{\lambda}(u)$) on V_{λ} ($\forall \lambda \in \omega$).

By using all results obtained in this setting, we can observe:

if $p \in U_0$ is standard, then $[\Theta_{\lambda}(u_0)]$ is invertible in $\prod_{V_{\lambda}} M_{\lambda+1}(\mathbb{C})$.

2 if *p* is non-standard, so for some non-principal ultrafilter the image of e_p in the ultraproduct will be of the form $[e_p] = [(diag(0, 1, 1, ..., 1, ..., 1, 1, 0)].$

Question

Which elements of U' can we identify in $\prod_{V_{\lambda}} M_{\lambda+1}(\mathbb{C})$?

Sonia L'Innocente (Camerino~Mons)

ъ

ヘロン 人間 とくほ とくほ と

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

Connection with standard and nonstandard idempotents

Let U' be the ring of definable scalars of U (described at the beginning).

 $\forall p = p(c, h) \in U_0$, let e_p denote the idempotent corresponding to the projection on Ker $(\Theta_{\lambda}(u))$ on V_{λ} $(\forall \lambda \in \omega)$.

By using all results obtained in this setting, we can observe:

1 if $p \in U_0$ is standard, then $[\Theta_{\lambda}(u_0)]$ is invertible in $\prod_{V_{\lambda}} M_{\lambda+1}(\mathbb{C})$.

2 if *p* is non-standard, so for some non-principal ultrafilter the image of e_p in the ultraproduct will be of the form $[e_p] = [(\text{diag}(0, 1, 1, \dots, 1, \dots, 1, 1, 0)].$

Question

Which elements of U' can we identify in $\prod_{V_{\lambda}} M_{\lambda+1}(\mathbb{C})$?

ヘロン 人間 とくほ とくほう

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

We focus on the following query.

Question

What is the kernel of EXP?

Proposition

Let $p = p(c, h) \in U_0$, with $p(x_1, x_2) \in \mathbb{C}[x_1, x_2]$. Write $p(x_1, x_2)$ in the form $\frac{1}{2\pi i}q(x_1, x_2)$. Then, if $p \in ker(EXP)$, then $q(x_1, x_2) \in \mathbb{Q}[x_1, x_2]$.

Proof

Let $q[x_1, x_2] = \sum_{k=0}^{d} q_k[x_1] . x_2^k$ and assume that $q(c, h) \in ker(EXP)$. Then, the set $\{\lambda \in \omega : \bigwedge_{0 \le 2.j \le \lambda} q(\lambda^2 + \lambda, \lambda - 2j) \in 2.\pi. i.\mathbb{Z}\} \in V_{\lambda}$ (*). Note that it is enough to express hypothesis (*) for $\lambda > d$.

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

We focus on the following query.

Question

What is the kernel of EXP?

Proposition

Let $p = p(c, h) \in U_0$, with $p(x_1, x_2) \in \mathbb{C}[x_1, x_2]$. Write $p(x_1, x_2)$ in the form $\frac{1}{2\pi i}q(x_1, x_2)$. Then, if $p \in ker(\mathsf{EXP})$, then $q(x_1, x_2) \in \mathbb{Q}[x_1, x_2]$.

Proof

Let $q[x_1, x_2] = \sum_{k=0}^{d} q_k[x_1] . x_2^k$ and assume that $q(c, h) \in ker(EXP)$. Then, the set $\{\lambda \in \omega : \bigwedge_{0 \le 2, j \le \lambda} q(\lambda^2 + \lambda, \lambda - 2j) \in 2.\pi. i.\mathbb{Z}\} \in V_\lambda$ (*). Note that it is enough to express hypothesis (*) for $\lambda > d$.

-

・ロ・・(型・・目・・(目・)

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

Proposition

Let *p* be as above where $q(x_1, x_2) = \sum_{k=0}^{d} q_k(x_1)x_2^k$, with $q_k(x) \in \mathbb{Q}[x_1]$. Then, $p \in \text{Ker}(\text{EXP})$ for all non-principal ultrafilter \mathcal{V} if and only if $q(x_1, x_2) \in \mathbb{Q}[x_1, x_2]$ and for each $0 \le k \le d$, $q_k(0) \in \mathbb{Z}$.

Further questions

We would like to put a topology on U in such a way that EXP is continuous.

- **1** Does *U* embed as a closed subspace of $\prod_{V_{\lambda}} M_{\lambda+1}(C)$?
- 2 Can we put on ∏_{V_λ} GL_{λ+1}(ℂ) (respectively on EXP(U)) the structure of a Lie group, or simply of a topological group? Is EXP(U) connected?

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{\mathbb{C}}$

References

Proposition

Let *p* be as above where $q(x_1, x_2) = \sum_{k=0}^{d} q_k(x_1)x_2^k$, with $q_k(x) \in \mathbb{Q}[x_1]$. Then, $p \in \text{Ker}(\text{EXP})$ for all non-principal ultrafilter \mathcal{V} if and only if $q(x_1, x_2) \in \mathbb{Q}[x_1, x_2]$ and for each $0 \le k \le d$, $q_k(0) \in \mathbb{Z}$.

Further questions

We would like to put a topology on U in such a way that EXP is continuous.

- **1** Does *U* embed as a closed subspace of $\prod_{V_{\lambda}} M_{\lambda+1}(C)$?
- 2 Can we put on ∏_{V_λ} GL_{λ+1}(ℂ) (respectively on EXP(U)) the structure of a *Lie group*, or simply of a topological group? Is EXP(U) connected?

-

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Sonia L'Innocente

Our setting

- Decidability and U_k -modules
- Exponentia map over $U = U_{C}$

References

1 Our Setting

- **O** Decidability and *U_k*-modules
- **3** Exponentiation over $U = U_{\mathbb{C}}$

4 References

э

Outline

・ロン ・聞と ・ ヨン・ モン・

Sonia L'Innocente

Our setting

References

S. L'Innocente and A. Macintyre.

Towards Decidability of the Theory of Pseudo-Finite Dimensional Representations of $sl_2(\mathbb{C})$; I,

In: A. Ehrenfeucht, V.W. Marek, M. Srebrny, Andrzej Mostowski and Foundational Studies. IOS Press. 2008. 235-260

S. L'Innocente and A. Macintyre.

Towards Decidability of the Theory of Pseudo-Finite Dimensional Representations of $sl_2(\mathbb{C})$; II, In progress

S. L'Innocente, A. Macintyre and F. Point.

Possible exponentiations over the universal enveloping algebra of $sl_2(\mathbb{C})$. In progress.

-

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

Sonia L'Innocente

Our setting

Decidability and U_k-modules

Exponential map over $U = U_{C}$

References

J. Dixmier. Enveloping Algebras, North Holland, 1977

K. Erdmann and M. Wildon. Introduction to Lie algebras. Springer, SUMS series, 2006.

 M. Hindry and J. Silverman.
 Diophantine geometry.
 An introduction. Graduate Texts in Mathematics, 201, Springer, 2000

🍉 M. Prest.

Purity, Spectra and Localisation. In preparation.

< 同 > < 回 > < 回 > -