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Abstract

By using nonstandard analysis, we define new generalized
functions as discrete functions, and their derivatives are defined
as difference quotients.

For Gevrey’s ultradistributions, including Schwartz’
distributions, we prove that difference quotients are indeed
good replacements of generalized derivatives.

Relations of our new generalized functions with Sobolev
theory are presented. It is expected that this theory will be
useful for nonlinear partial differential equations with
distributional data, via difference method.
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Why

Theory of distributions of Schwartz and Sobolev led to
revolutionary progress in linear partial differential equations,
whereas there are essential difficulties in using it in nonlinear
problems.

The aims of new generalized function theories of Columbeau
and others, e.g. H.A.Biagioni and M.Oberguggenberger in the
framework of standard analysis;

Todorov, we in the framework of nonstandard analysis are all
towards nonlinear problems.
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Why

Schwartz defined distributions as linear continuous
functionals on spaces of test functions. While his distributions
can be represented by ordinary functions in the framework of
nonstandard analysis.

There are lots of nonstandard representations for a
distribution, and it was shown by Li,Banghe in the study of
moiré problem that different nonstandard representations of a
given distribution themselves have independent physical
meanings.

Thus our essential point of view is to regard nonstandard
functions as new generalized functions. This makes distribution
theory more precise and includes more content.
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Why

For a continuously differentiable function, its derivative can be
represented by difference quotient with infinitesimal increments.
And it is well-known that the finite difference method is at least
one of the most commonly used method in solving problems of
linear or nonlinear partial differential equations.
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To represent new generalized functions by discrete function,
we should use difference quotient to replace derivatives.

We will prove that even for Gevrey’s ultradistributions which
are much wider than Schwartz’ distributions, this replacement
is reasonable.

Relations of our new generalized functions defined by
nonstandard discrete functions with ordinary functions, e.g. Lp

functions, will be given. Some embedding theorems of Sobolev
type will be proved.
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Related Work

There were related works of Kessler and Kinoshita. They
proved that distributions can be represented by nonstandard
discrete functions. Here we prove that it is also true for
ultradistributions, by using complete different method.

Kessler proved that a distribution in dimension one with a
representative which is invariant under infinitesimal
transformations must be a Radon measure. This interesting
result is generalized to any dimension here. Kinoshita has also
studied the representation of Lp functions.
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Mention

Also that the idea of nonstandard discrete functional analysis
has already been widely used by S. Albeverio and his
collaborators in quantum mechanics and quantum field theory.
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Mention

For applications of nonstandard analysis in stochastic
processes, it is usually to take the time discrete.

This method has been fruitful (cf. Cutland). If we consider the
generalized stochastic processes, i.e. their sample paths are
Schwartz’s distributions, or more general, Gevrey’s
ultradistributions. e.g. in the case of white noise processes,
generalized derivative by difference quotients. Hence the
results of this paper are expected to be useful in this situation.
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Symbols

Ω open set in Rm. Ns(Ω) the set of near -standard points in
∗Ω.

N the set of nonnegative integers, and Z the set of integers.

Fix positive infinitesimals h1, h2, · · · , hm.

Take Ji ∈ ∗N such that Jihi is infinite. Let

J̃i = {ji / ji ∈ ∗Z,−Ji ≤ ji ≤ Ji }

J = J̃1 × · · · × J̃m
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Definition of Gh(Ω)–NGF on Ω of type h

Two internal functions

u, v : J → ∗C = ∗R +
√
−1∗R

are Ω−equivalent with respect to h = (h1, h2, · · · , hm),

if for any j = (j1, j2, · · · , jm) ∈ J with
(j1h1, · · · , jmhm) ∈ Ns(Ω),

u(j) = v(j)

An equivalent class [u] is a new generalized function (i.e.
u ∈ Gh(Ω)).
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Definition: δαu the difference quotient of u with index α

For u ∈ G(Ω), we may regard u as an internal function on J
which represents it.

(∆iu)(j1, · · · , jm) = u(j1, · · · , ji−1, ji+1, ji+1, · · · , jm)−u(j1, · · · , jm)

then ∆iu is well defined on an internal subset of J containing
Ns(Ω).

Thus ∆iu as an element in G(Ω) is well-defined.

For α = (α1, α2, · · · , αm) ∈ Nm, let

∆α = ∆α1
1 · · ·∆αm

m , hα = hα1
1 · · ·hαm

m ,

δαu =
∆αu
hα
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Proposition 1

G(Ω) is an algebra over ∗C with difference
quotient operators of any index α ∈ Nm.
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If f is a standard continuous function on Ω, then ∗f |Ns(Ω) is
finite. For any positive infinity H, there is an internal function
u : J → ∗C, such that

|u(j)| < H for any j ∈ J and

u(j) = f ∗(jh), if jh ∈ Ns(Ω)

jh = (j1h1, · · · , jmhm).
H any positive infinity.
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G∞
H (Ω) H-limited NGF

Gn
H(Ω): H a positive infinity and n ∈ N, say u ∈ G(Ω) is

H−limited NGF of order n,
if for any α ∈ Nm with |α| = α1 + · · ·+ αm ≤ n,

|δαu| < H

Gn
H(Ω) not an algebra.

G∞
H (Ω) =

⋂
n∈N

Gn
H(Ω)

an algebra over the field ∗C.
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Theorem 1.

For any positive infinity H, and
U ∈ D (s)′(Ω),

there is a u ∈ G∞
H (Ω)

such that

u is a nice representative of U.
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Schwartzs space D(Ω)

D(Ω) = lim
−→

K⊂⊂Ω

DK

is the strict inductive limit of DK .

DK =
⋂

n∈N Dn
K is a Frechet space with countable norms

{||φ||n / n ∈ N}.

Dn
K : space of all complex-valued functions on Rm with

support in a compact set K and continuous derivatives up to
order n ∈ N.

Dn
K is a Banach spaces with norm

||φ||n = max
|α|≤n

max
x∈K

{|Dαφ(x)|}

Dα = (
∂

∂x1
)α1 · · · ( ∂

∂xm
)αm .
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Gevrey space D (s)(Ω), 1 < s < ∞, s ∈ R

D (s)(Ω) = lim
−→

K⊂⊂Ω

D
(s)
K strict inductive limit.

D
(s)
K =

⋂
n∈N D

(s),n
K

D
(s),n
K the space of all φ ∈ DK such that

sup
x
|Dαφ(x)| / n−|α||α|!s → 0 as |α| → ∞

D
(s),n
K is a Banach space with norm

||φ||(s),n = sup
x ,α

{ |Dαφ(x)| / n−|α||α|!s}
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Dual space D∆′
(Ω)

D(Ω) and D (s)(Ω) are Montel spaces. Hence their dual space
D ′(Ω) and D (s)′(Ω) with strong topology share the following
nice properties: let ∆ = (s) or empty, then a sequence fn → 0
in D∆′(Ω) iff for any φ ∈ D∆(Ω), < fn, φ >→ 0, and a
sequence φn → 0 in D∆(Ω) iff there is a K ⊂⊂ Ω such that all
φn ∈ D∆

K (Ω) and φn → 0 in D∆
K (Ω).

∆ = the empty, D ′(Ω) distributions,

∆ = (s), D (s)′(Ω) ultradistributions.

Notice that

D0′(Ω) ⊂ D1′(Ω) ⊂ · · ·D ′(Ω) ⊂ D (s)′(Ω)
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Harmonic representation

For any f ∈ D (s)′(Ω), there is a harmonic function F (x , t),
x ∈ Rm, t > 0 such that

lim
t→0

∫
Rm

F (x , t)φ(x) dx =< f , φ >, φ ∈ D (s)(Ω)

If F̃ (x , t) is another such harmonic function, then

lim
t→0

(F̃ (x , t)− F (x , t)) = 0, uniformly for x ∈ K and K ⊂⊂ Ω
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µ∆
K : monad of ∗D∆

K (Ω) at 0.

µK = { φ ∈ ∗
K / ∗||φ||n ' 0 for all standard n}

µn
K = { φ ∈ ∗Dn

K / ∗||φ||n ' 0 }

µ
(s)
K = { φ ∈ ∗D

(s)
K / ∗||φ||(s),n ' 0 for all standard n}

Notice that φ ∈ µK iff Dαφ ' 0 for all standard α, while for
φ ∈ µ

(s)
K , a necessary condition is that

Dαφ ' 0 for all α ∈ ∗Nm
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Define the pairing of u with φ ∈ ∗D∆
K

Two ways:

< u, φ >d=
∑
j∈J

u(j) φ(jh)h1 · · ·hm, jh = (j1h1, · · · , jmhm)

< u, φ >c=

∫
∗Rm

u(x)φ(x) dx =
∑
j∈J

u(j)
∫

Qj

φ(x) dx

where j ∈ J,

Qj = {x = (x1, · · · , xm) ∈ ∗Rm / jihi ≤ xi < (ji+1)hi , i = 1, 2, · · · , m}

u ∈ G(Ω) as a function defined on
⋃

j∈J Qj such that

u(x) = u(j) for x ∈ Qj
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Pairing

< u, φ >d : was commonly adopted by the earlier literature
C.Kessler, Nonstandard methods in the theory of random

fields, Doctoral dissertation, Ruhr-University, Bochum, 1984.
M.Kinoshita, Nonstandard representations of distributions I,

Osaka J. of Math., 25 (1988) 805-824. II, Osaka J. of Math., 27
(1990) 843-861.

< u, φ >c coincides with the hypercontinuous representation
of distributions as in

Bang-He Li, On the moiré problem from distributional point of
view, J. Sys. Sci. & Math. Scis., 6, (1986) 4, 263-268.

Bang-He Li & Ya-Qing Li, New generalized functions in
nonstandard framework, Acta Math. Scientia, 12 (1992) 3,
260-269.

Bang-He Li& Ya-Qing Li, Nonstandard analysis and
multiplication of distribution in any dimension, Scientia Sinica,
28, (1985) 9, 923-937.
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D∆′
(Ω)−♦− near standard ♦ = c or d

♦− Near Standard Definition : if for any K ⊂⊂ Ω and
φ ∈ µ∆

K ,
< u, φ >♦' 0

If u is D∆′
(Ω)−♦-near standard, then it is easy to prove

that for any φ ∈ D∆(Ω), < u, φ >♦ is finite, and

< U, φ >= st < u, φ >♦

define a D∆(Ω)−distribution U ∈ D∆′(Ω). We call such

u ∈ G(Ω) a nice ♦-representative of U.
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δαu and DαU

If u ∈ G(Ω) is a nice ♦-representative of U ∈ D∆′(Ω),

then δαu is a nice ♦-representative of DαU∈ D∆′(Ω),

when α ∈ Nm, and DαU is the generalized derivative of U of
index α.
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Lemma 1

If H is positive infinity satisfying

H ·max{h1, · · · , hm} ' 0

and u ∈ G(Ω) satisfying |u(j)| < H for j ∈ J,

then D∆′(Ω)− c− near standardness is equvalent to
D∆′(Ω)− d− near standardness, and

< u, φ >c'< u, φ >d for φ ∈ D∆(Ω)

where ∆ = the empty, (s) or n ∈ N.
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Proof of Lemma 1(not for ∆ = 0)

First assume that ∆ 6= 0. For φ ∈ µ∆
K or D∆

K (Ω), let
J ′ = {j ∈ J / Qj ∩ Suppφ 6= ∅}, then the compactness of K
implies

∑
j∈J′

∫
Qj

dx being finite
By the integral mean value theorem∫

Qj
φ(x) dx = φ(xj)h1 · · ·hm for some xj ∈ Qj . Since

∆ 6= 0, φ ∈ ∗D1
K . So

φ(xj)− φ(jh) =
∑m

i=1
∂φ
∂xi

(jh)(xj,i − jihi) + ε
∑m

i=1 |xj,i − jihi |
where ε is an infinitesimal.

∂φ

∂xi
(jh) are finite, so

|φ(xj)− φ(jh)| ≤ a finite number ·max{h1 · · ·hm} Thus

| < u, φ >c − < u, φ >d | = |
∑

j∈J u(j)(
∫

Qj
φ(x)dx − φ(jh)h1 · · ·hm)|

≤ a finite number ·max{h1 · · ·hm} · H ·
∑

j∈J′
∫

Qj
dx

' 0
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Proof of Theorem 1

First to find u, by harmonic representation. Take a harmonic
function ũ(x , t), x ∈ Rm, t > 0 such that for any φ ∈ D (s)(Ω),

lim
t→0

∫
Ω

ũ(x , t)φ(x) dx =< U, φ >

Second prove (1): |ũ(x , ρ)| < H, for x ∈ Ns(Ω).

Now let u : J → ∗C be given by u(j) = ũ(jh, ρ),
then |u(j)| < H for jh ∈ Ns(Ω).

Third prove (2): |δαu(j)| < H if jh ∈ Ns(Ω).

Thus we have u ∈ G∞
H (Ω).

Last prove (3): u is a nice representative of U ∈ D (s)′(Ω).
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Prove (1)

By Theorem 2.13 in (H.Komatsu, Microlocal analysis in
Gevrey classes in complex domain), for any compact set K in
Ω, there are C and a,
supx∈K |ũ(x , t)| ≤ C exp((at)−

1
s−1 ), 0 < t < 1

Let ρ = (log H)b, b = −(log log H)−
1
2 .

Since log ρ = b log log H = −(log log H)
1
2 ,

thus ρ is a positive infinitesimal.
For any standard positive numbers C, a and s with s > 1,

1
a(log H

C )1−s < a log
√

H)1−s = a(1
2)1−s(log H)1−s

< (log H)
s−1

2 (log H)1−s = (log H)
1−s

2 ≤ ρ

Hence C exp((aρ)−
1

s−1 ) < H i.e. |ũ(x , ρ)| < H, for x ∈ ∗K

Since for any x ∈ Ns(Ω), there is such an K with x ∈ ∗K , thus
(1) hold.
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Prove (2)

For simplicity, we assume that α1, · · · , αk > 0 and αi = 0 for
k < i ≤ m.

Qα
j = {t = (t1,1, · · · , t1,α1, · · · , tk ,1, · · · , tk ,αk ) ∈ ∗R|α| /

jihi ≤ ti,1 ≤ (ji + 1)hi , 0 ≤ ti,r ≤ hi for 2 ≤ r ≤ αi ,
i = 1, 2, · · · , k}

we can prove that δαu(j) = 1
hα

∫
Qα

j
Dα

x ũ(t1,1 + · · ·+
t1,α1, · · · , tk ,1 + · · ·+ tk ,αk , jk+1hk+1, · · · , jmhm, ρ)dt .

If jh ∈ Ns(Ω), then Qα
j ⊂ Ns(Ω). Since Dα

x ũ(x , ρ) represents

DαU ∈ D (s)′(Ω), we have

|Dα
x ũ(x , ρ)| < H for x ∈ Qα

j

Hence

|δαu(j)| < H if jh ∈ Ns(Ω)

(2) holds.
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Prove (3)

We may assume that H ·max{h1 · · ·hm} ' 0. By Lemma 1,
D∆′(Ω)− c− near standardness is equvalent to D∆′(Ω)− d−
near standardness, so we only to prove (4), (5).

(4) : < U, φ >'< u, φ >c for φ ∈ D (s)(Ω)

(5) : < u, φ >c' 0 for φ ∈ µ
(s)
K , K ⊂⊂ Ω

u is D (s)′ −♦-near standardness, a nice representative of U.

Li, Yaqing New Generalized Functions



Prove (4)

For φ ∈ D (s)(Ω), we have
< u, φ >c=

∑
j∈J ũ(jh, ρ)

∫
Qj

φ(x) dx ,
limt→0

∫
ũ(x , ρ)φ(x) dx =< U, φ > implies

< U, φ >'
∫
Ω ũ(x , ρ)φ(x) dx =

∑
j∈J

∫
Qj

ũ(x , ρ)φ(x)dx .
So < U, φ > − < u, φ >c'

∑
j∈J

∫
Qj

(ũ(x , ρ)− ũ(jh, ρ))φ(x)dx .
Now
ũ(x , ρ)− ũ(jh, ρ) =

∫ 1
0

d
dt

ũ(jh + t(x − jh), ρ)dt

=
∑m

i=1(xi − jihi)
∫ 1

0
∂ũ
∂xi

(jh + t(x − jh), ρ)dt

Let Qj ∩ Suppφ 6= ∅, then Qj ⊂ Ns(Ω), and x ∈ Qj together
with 0 ≤ t ≤ 1 imply
|xi − jihi | < hi and | ∂ũ

∂xi
(jh + t(x − jh), ρ)| < H.

Hence |ũ(x , ρ)− ũ(jh, ρ)| ≤ H
∑m

i=1 hi ' 0,
|
∑

j∈J
∫

Qj
(ũ(x , ρ)− ũ(jh, ρ))φ(x)dx | ≤ H

∑m
i=1 hi

∫
Ω |φ(x)|dx

' 0.
(4) holds.
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Prove (5)

Consider ũ(·, t), 0 < t < 1 as a family of continuous
functionals on D

(s)
K , defined by < ũ(·, t), φ >=

∫
K ũ(x , t)φ(x)dx

then it is bounded for any φ. D
(s)
K is a barrelled space, so it is

equi-continuous, i.e. there is a neighborhood V of 0 ∈ D
(s)
K ,

such that | < ũ(·, t), φ > | < 1 for φ ∈ V and 0 < t < 1
D

(s)
K =

⋂
D

(s),n
K is a space topologized by countable norms

||φ||(s),1 ≤ ||φ||(s),2 ≤ · · · , so there is an n ∈ N and a standard

positive number ε such that {φ ∈ D
(s)
K /||φ||(s),n ≤ ε} ⊂ V Thus

for any φ ∈ D
(s)
K (and hence for φ ∈ ∗D

(s)
K )

| < ũ(·, t), φ > | ≤ 1
ε
||φ||(s),n, 0 < t < 1

Since φ ∈ µ
(s)
K implies ||φ||(s),n ' 0, we have

< ũ(·, ρ), φ >' 0 for φ ∈ µ
(s)
K . A similar proof as for

φ ∈ D (s)(Ω) yields < ũ(·, ρ), φ >'< u, φ >c for φ ∈ µ
(s)
K
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Theorem 2

u ∈ G(Ω) is locally absolutely summable

if and only if

u is D∆′ −♦-near standard and

invariant for any possible ∆ and ♦.
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Locally absolute summability, i.e. L1
sloc(Ω)

u ∈ G(Ω) is said to be locally absolutely summable , if for
any compact K ⊂ Ω,

∑
jh∈∗K |u(j)|h1 · · ·hm is finite.

An internal bijection B of J is called an
Ω−infinitesimal transformation , if

jh ∈ Ns(Ω) implies B(jh) ' jh

Let u be D∆′(Ω)−♦-near standard, we say that u is
invariant if for any Ω−infinitesimal transformation B,

< u ◦ B, φ >♦'< u, φ >♦, for any φ ∈ D∆(Ω)
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For u ∈ G(Ω), the following are equivalent

1) u is locally absolutely summable.

2) u is D0′(Ω)− d−near standard.

3) u is D0′(Ω)− c−near standard.

4) for any internal set A in the monad of any x0 ∈ Ω,∑
jh∈A

|u(j)|h1 · · ·hm is finite.
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Property in monad

If u ∈ G(Ω) is real and D∆′ −♦-near standard, and for some
x0 ∈ Ω, there is an internal A in the monad of x0 such that
u(j) > 0 if jh ∈ A, and

∑
jh∈A u(j)h1 · · ·hm is infinite, then there

is an internal A′ in the monad of x0 such that u(j) < 0 if jh ∈ A′,
and ∑

jh∈A′ u(j)h1 · · ·hm is infinite.
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LP
sloc(Ω) : u ∈ G(Ω) is locally Lp − summable,

p ≥ 1 be a standard real number.

If for any compactK ⊂ Ω,
∑

jh∈∗K

|u(j)|ph1 · · ·hm is finite.

L∞sloc(Ω) : u ∈ G(Ω) for any compact K ⊂ Ω,

there is a standard real number C(K ) such that
jh ∈ ∗K implies |u(j)| ≤ C(K ).
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l1sloc(Ω) : for any internal set A of J, if j ∈ A

implies jh ∈ ∗K for some compact K ⊂ Ω,

and (#A)h1 · · ·hm ' 0, then
∑
j∈A

|u(j)|h1 · · ·hm ' 0.

Kinoshita’s definition of the set E(Ω) of locally S−integrable
u ∈ G(Ω) in the case of dimension 1 can be stated in any
dimension as u ∈ E(Ω) iff for any compact K ⊂ Ω and any
positive infinity ω, ∑

j∈A(u,K ,ω)

|u(j)|h1 · · ·hm ' 0

where
A(u, K , ω) = { j / jh ∈ ∗K , |u(j)| ≥ ω}

l1sloc(Ω) = E(Ω)
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Correspondence between l1sloc(Ω) and L1
loc(Ω)

Lp
loc(Ω)- the set of standard locally Lp−functions on Ω.

When p = 1, we have the following:

Theorem 3.
1) u ∈ l1sloc(Ω) is a nice representative of a

ũ ∈ L1
loc(Ω).

2) For any ũ ∈ L1
loc(Ω), there is a nice

representative u ∈ l1sloc(Ω) of ũ.

Remark: L1
sloc(Ω) is the nonstandard

representation of Radon measure on Ω,
l1sloc(Ω) strictly ⊂ L1

sloc(Ω).
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Correspondence between Lp
sloc(Ω) and Lp

loc(Ω)

Theorem 4.
Assume p > 1.

1). u ∈ Lp
sloc(Ω) is a nice representative of a

function ũ ∈ Lp
loc(Ω).

2). For ũ ∈ Lp
loc(Ω) , there is u ∈ Lp

sloc(Ω)
representing ũ.
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W p,n
sloc(Ω) :the S−local Sobolev space consisting of u ∈ G(Ω)

and for any index α = (α1, · · · , αm) with 0 ≤ |α| ≤ n

δαu ∈ Lp
sloc(Ω)

Sobolev imbedding theorem:
If p > 1, and u ∈ W p,n

sloc(Ω), then for σ ∈ N with σ < n − m
p ,

u represents ũ ∈ Cσ(Ω) ∩W p,n
loc (Ω)

where W p,n
loc (Ω) is the standard local Sobolev space.
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Theorem 5. If m = 1 and u ∈ W p,n
sloc(Ω), where n ≥ 1 and

1 < p ≤ ∞, then u is a nice representative of ũ ∈ Cn−1(Ω) such
that ũ(n−1) is locally Hölder continuous with exponent 1− 1

p (for
p = ∞, ũ(n−1) is locally Lipschitz continuous).

Remark: For p = 1, Theorem 5 not true.

u(j) =

{
0 j ≤ 0
1 j > 0

δu(j) =

{ 1
h j = 0
0 j 6= 0

then u ∈ W 1,1
sloc(R), but u is a representative of Heaviside

function which not continuous.

Li, Yaqing New Generalized Functions



Various algebras of NGF

Dedekind completion #R+ of ∗R+ = {t ∈ ∗R|t ≥ 0}.
Wattenberg and Banghe Li and Jijiang Zhang have studied.
Li,Zhang proved there are lots of elements U in #R+

⋃
(∞)

with
U + U = U, U · U = U

⇐⇒
1). a ∈ U and a > b ∈ ∗R+ imply b ∈ U ( i.e. U is ∗R+ or a

Dedekind cut of ∗R+, hence an element of #R+ ∪ {∞}).
2). a ∈ U and b ∈ U imply ab ∈ U ( i.e. U · U = U)
3). 2 ∈ U
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Let U = {U|U + U = U, U · U = U, U ⊂ #R+ ∪ {∞}}
U has a minimal element

U0 = {t ∈ ∗R+ / t is finite}

a maximal element ∗R+.
For any U ∈ U ,
C′U = {z ∈ ∗C||z| ∈ U} is algebra over C.

C′∗R+
= ∗C

C′U0
= {z ∈ ∗C||z| is finite}

For any infinite H ∈ ∗R+

UH = {U ∈ U|U < H}
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Various algebras of NGF

For any U ∈ U and n ∈ N, we call
u ∈ G(Ω) a U−GNF of order n , if

δαu(j) ∈ C′U , for all j with jh ∈ Ns(Ω), and all α ∈ Nm with |α| ≤ n

Gn
U(Ω) is an algebra over C.

U-GNF:
G∞

U (Ω) =
⋂
n∈N

Gn
U(Ω)

G∞
∗R+

(Ω) = G(Ω)
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Quotient algebra of NGF

For U ∈ U ,

U−1 = {x ∈ ∗R+ | x = 0 or x−1 > a for any a ∈ U}

C′U−1 = {z ∈ ∗C | |z| ∈ U−1}

Then CU = C′U/C′U−1 is a field.

C∗R+ = ∗C, CU0 = C.

G̃n
U(Ω) = Gn

U(Ω)
/

Gn
U−1(Ω) algebra over CU .

G̃n
U(Ω) share most properties of Gn

U(Ω);

G̃n
U(Ω) similar to Colombeau’s NGF.
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Thanks!
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