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Motivation

Boolean aglebras vs Powerset algebras

X a set. (P(X ),∩,∪,c , X , ∅) powerset algebra.

(B,∧,∨,′ , 0, 1) Boolean algebra.

SB := all ultrafilters on B

Endow SB with a topology having (Na)a∈B as basis, where
Na := {U ∈ SB | a ∈ U}.

CSB := clopen subsets of SB.

B ∼= CSB ≤ P(SB). (Stone)

Problem: abstract vs concrete
Weakly dicomplemeted lattices vs concept algebras
What is the equational theory of concept algebras?
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Definition and examples

Definition
A weakly dicomplemented lattice is an algebra
(L;∧,∨,△ ,▽ , 0, 1) of type (2, 2, 1, 1, 0, 0), where (L;∧,∨, 0, 1) is
a bounded lattice and the equations (1) . . . (3′) hold.

(1) x△△ ≤ x ,

(2) x ≤ y =⇒ x△ ≥ y△,

(3) (x ∧ y) ∨ (x ∧ y△) = x ,

(1’) x▽▽ ≥ x ,

(2’) x ≤ y =⇒ x▽ ≥ y▽,

(3’) (x ∨ y) ∧ (x ∨ y▽) = x .

△ is called a weak complementation , ▽ a dual weak
complementation and (△,▽ ) a weak dicomplementation .
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Definition and examples

Boolean algebra: duplicate the complementation.

(B,∧,∨,′ , 0, 1) ; (B,∧,∨,′ ,′ , 0, 1)

pseudocomplemented (∗) and dual pseudocomplemeted
(+) distributive lattices. (L,∧,∨,+ ,∗ , 0, 1).

Bounded lattice:

x 6= 1 =⇒ x△ := 1 and x 6= 0 =⇒ x▽ := 0.

L finite lattice. G ⊇ J(L) and N ⊇ M(L) where J(L) is the
set of join irreducible elements of L and M(L) its set of
meet irreducible elements. For x ∈ L. Define

x△ :=
∨

{g ∈ G | g � x} and x▽ :=
∧

{n ∈ N | n � x}
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Contexts and concepts

Formal context :=(G, M, I) with I ⊆ G × M.

G :≡ set of objects and M :≡ set of attributes .

Derivation. A ⊆ G and B ⊆ M.

A′ := {m ∈ M | ∀g ∈ A gIm}

B′ := {g ∈ G | ∀m ∈ B gIm}.

Formal concept := a pair (A, B) with A′ = B and B′ = A.

A :≡ extent of (A, B) and B :≡ intent of (A, B).

B(G, M, I) := set of all concepts of (G, M, I).

Concept hierarchy

(A, B) ≤ (C, D) : ⇐⇒ A ⊆ C ( ⇐⇒ D ⊆ B).

B(G, M, I) := (B(G, M, I),≤)
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The Basic Theorem on Concept Lattices

Theorem
B(G, M, I) is a complete lattice in which infimum and
supremum are given by:

∧

t∈T

(At , Bt) =

(

⋂

t∈T

At ,

(

⋃

t∈T

Bt

)′′)

∨

t∈T

(At , Bt) =

((

⋃

t∈T

At

)′′

,
⋂

t∈T

Bt

)

.

B(G, M, I) is called the concept lattice of the context (G, M, I).
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The Basic Theorem on Concept Lattices

Theorem
A complete lattice L is isomorphic to a concept lattice
B(G, M, I) iff there are mappings γ̃ : G → L and µ̃ : M → L
such that γ̃(G) is supremum-dense in L, µ̃(M) is infimum-dense
in L and for all g ∈ G and m ∈ M

gIm ⇐⇒ γ̃(g) ≤ µ̃(m).

In particular L ∼= B(L, L,≤).
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Some special contexts

Finite lattices L ∼= B(J(L), M(L),≤).

Powerset algebras B(X , X , 6=) ∼= PX .

Distributive lattices B(P, P, �) ∼= O(P,≤).
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Boolean Concept Logic

conjunction via meet

disjunction via join

negation ?Hmmm!

Weak Negation (A, B)△ :=
(

(G \ A)′′ , (G \ A)′
)

Weak opposition (A, B)▽ :=
(

(M \ B)′ , (M \ B)′′
)

.

x ∨ x△ = 1 but x ∧ x△ can be different of 0;

Definition

The algebra A(K) := (B(K),∧,∨,△ ,▽ , 0, 1) is called the
concept algebra of K.
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Concept algebras: some equations
1 x△ ≤ y ⇐⇒ y△ ≤ x ,
2 (x∧y)△△ ≤ x△△∧y△△,
3 x▽▽▽

= x▽
≤ x△

= x△△△.

1 x▽ ≥ y ⇐⇒ y▽ ≥ x ,
2 (x ∨ y)▽▽ ≥ x▽▽ ∨ y▽▽.
3 x△▽

≤ x△△
≤ x ≤ x▽▽

≤ x▽△.

x 7→ x△△ is an interior operator on L.
x 7→ x▽▽ is a closure operator on L.

(1) x△△ ≤ x ,

(2) x ≤ y =⇒ x△ ≥ y△,

(3) (x ∧ y) ∨ (x ∧ y△) = x ,

(1’) x▽▽ ≥ x ,

(2’) x ≤ y =⇒ x▽ ≥ y▽,

(3’) (x ∨ y) ∧ (x ∨ y▽) = x .

Axiomatization problem

Find an axiomatization of concept algebras.
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Representation problem

strong representation
Describe weakly dicomplemented lattices that are
isomorphic to the concept algebras.

equational axiomatization
Find a set of equations that generate the
equational theory of concept algebras.

concrete embedding
Given a weakly dicomplemented lattice L, is there
a context K(L) such that L can be embedded into
the concept algebra of K(L)?
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Prime Ideal Theorem

Definition
A primary filter is a proper filter F of L such that for all x ∈ L,
x ∈ F or x△ ∈ F . A primary ideal is a proper ideal I of L such
that for all x ∈ L, x ∈ F or x▽ ∈ I.

Theorem (PIT)

Let F a filter and I an ideal of L such that F ∩ I = ∅. Then there
is a primary filter G containing F such that G ∩ I = ∅.

Corollary (separation)

If x 6≤ y there is a primary filter G with x ∈ G and y /∈ G.
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Canonical context

Fpr (L) := set of primary filters of L

Ipr (L) := set of primary ideals of L

K(L) := (Fpr (L), Ipr (L), ∆) with F∆I : ⇐⇒ F ∩ I 6= ∅.

Fx := {F ∈ Fpr (L) | x ∈ F} and Ix := {I ∈ Ipr (L) | x ∈ I}.

Theorem
The mapping

ϕ : L → B(K(L))
x 7→ (Fx , Ix)

is a lattice embedding.

F′
x = Ix and I′

x = Fx .

Fx∧y = Fx ∩ Fy and Ix∨y = Ix ∩ Iy .
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Dreamlike embedding

Wdl embedding

Is ϕ a weakly dicomplemented lattice embedding?

What about the weak operations?

Ix△ ⊆ (Fpr (L) \ Fx)′

Fx▽ ⊆ (Ipr (L) \ Ix)′

Thus ϕ(x▽) ≤ ϕ(x)▽ ≤ ϕ(x)△ ≤ ϕ(x△).

Where is the problem?

Let I be a primary ideal such that I 6∋ x△. If x /∈ I but
x△ ∈ Ideal(I ∪ {x ∧ x△}), is there a primary filter F such that
x /∈ F and F ∩ I = ∅?
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Illustration

x△ = s

r

1

z = c△ = r△

t

0

a

b

t△ = c
v

u

w

y

x = s△

d

e = x ∧ x△
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Conjecture: strong separation

Let I be a primary ideal such that I 6∋ x△. Assume that I 6∋ x
and x△ ∈ Ideal(I ∪ {x ∧ x△}). Then there is a primary filter
F 6∋ x such that F ∩ I = ∅.

L is a Boolean algebra

ϕ is an embedding.

A(K
△

▽(L)) is a complete and atomic Boolean algebra.

A(K
△

▽(L)) is isomorphic to P(Fpr (L)).

i.e. New proof of: “every Boolean algebra is a field of sets”
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L is a finite and distributive lattice: solved
But the proof uses combinatorial arguments and is based on a
different approach.

L is a finite lattice: open

(primary) filters are principal and generated by (∨-primary)
elements: {a ∈ L | a ≤ x or a ≤ x△ ∀x ∈ L}.

(primary) ideals are principal and generated by (∧-primary)
elements: {a ∈ L | a ≥ x or a ≥ x▽ ∀x ∈ L}.

ϕ is a bijection.

ϕ(x) ≡ ({a ≤ x | a ∨-primary}, {b ≥ x | a ∧-primary}).

L is a distributive lattice: open
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Conclusion

From finite distributive to finite/distributive.

Impact of the properties of L on A(K(L)).

Topological representations

Duality

Thanks for your attention!
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