PIT for Weakly Dicomplemented Lattices

Léonard Kwuida

Institut für Algebra, TU Dresden D-01062 Dresden kwuida@gmail.com http://kwuida.googlepages.com

Pisa, June 1-7, 2008

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Weakly dicomplemented lattices

Prime Ideal Theorem

Weakly dicomplemented lattices

Weakly dicomplemented lattices

Weakly dicomplemented lattices

Motivation

Boolean aglebras vs Powerset algebras

- X a set. $(\mathcal{P}(X), \cap, \cup, c, X, \emptyset)$ powerset algebra.
- $(B, \land, \lor, ', 0, 1)$ Boolean algebra.
- SB := all ultrafilters on B
- Endow *SB* with a topology having $(N_a)_{a \in B}$ as basis, where $N_a := \{U \in SB \mid a \in U\}.$
- CSB := clopen subsets of SB.
- $B \cong CSB \leq \mathcal{P}(SB)$. (Stone)

Problem: abstract vs concrete

Weakly dicomplemeted lattices vs concept algebras What is the equational theory of concept algebras?

Motivation

Boolean aglebras vs Powerset algebras

- X a set. $(\mathcal{P}(X), \cap, \cup, c, X, \emptyset)$ powerset algebra.
- $(B, \land, \lor, ', 0, 1)$ Boolean algebra.
- SB := all ultrafilters on B
- Endow SB with a topology having (N_a)_{a∈B} as basis, where N_a := {U ∈ SB | a ∈ U}.
- CSB := clopen subsets of SB.
- $B \cong CSB \leq \mathcal{P}(SB)$. (Stone)

Problem: abstract vs concrete

Weakly dicomplemeted lattices vs concept algebras What is the equational theory of concept algebras?

Motivation

Boolean aglebras vs Powerset algebras

- X a set. $(\mathcal{P}(X), \cap, \cup, c, X, \emptyset)$ powerset algebra.
- $(B, \land, \lor, ', 0, 1)$ Boolean algebra.
- SB := all ultrafilters on B
- Endow SB with a topology having (N_a)_{a∈B} as basis, where N_a := {U ∈ SB | a ∈ U}.
- CSB := clopen subsets of SB.
- $B \cong CSB \leq \mathcal{P}(SB)$. (Stone)

Problem: abstract vs concrete

Weakly dicomplemeted lattices vs concept algebras What is the equational theory of concept algebras?

Definition and examples

Definition

A weakly dicomplemented lattice is an algebra $(L; \land, \lor, \stackrel{\triangle}{\rightarrow}, \bigtriangledown, 0, 1)$ of type (2, 2, 1, 1, 0, 0), where $(L; \land, \lor, 0, 1)$ is a bounded lattice and the equations $(1) \dots (3')$ hold.

(1) $x^{\triangle \triangle} \leq x$, (1') $x^{\nabla \bigtriangledown} \geq x$, (2) $x \leq y \implies x^{\triangle} \geq y^{\triangle}$, (2') $x \leq y \implies x^{\bigtriangledown} \geq y^{\bigtriangledown}$, (3) $(x \wedge y) \lor (x \wedge y^{\triangle}) = x$, (3') $(x \lor y) \land (x \lor y^{\bigtriangledown}) = x$.

 $^{\triangle}$ is called a weak complementation, $^{\bigtriangledown}$ a dual weak complementation and ($^{\triangle}, ^{\bigtriangledown}$) a weak dicomplementation.

(日) (日) (日) (日) (日) (日) (日)

Definition and examples

- Boolean algebra: duplicate the complementation.
 (B, ∧, ∨, ′, 0, 1) → (B, ∧, ∨, ′, ′, 0, 1)
- pseudocomplemented (*) and dual pseudocomplemeted (+) distributive lattices. (*L*, ∧, ∨, +, *, 0, 1).
- Bounded lattice:

 $x \neq 1 \implies x^{\bigtriangleup} := 1$ and $x \neq 0 \implies x^{\bigtriangledown} := 0$.

$$x^{\bigtriangleup} := \bigvee \{g \in G \mid g \nleq x\} \text{ and } x^{\bigtriangledown} := \bigwedge \{n \in N \mid n \ngeq x\}$$

Wdl

Definition and examples

• Boolean algebra: duplicate the complementation.

 $(B, \land, \lor, ', 0, 1) \rightsquigarrow (B, \land, \lor, ', ', 0, 1)$

- pseudocomplemented (*) and dual pseudocomplemeted (⁺) distributive lattices. (*L*, ∧, ∨,⁺, *, 0, 1).
- Bounded lattice:

 $x \neq 1 \implies x^{\bigtriangleup} := 1$ and $x \neq 0 \implies x^{\bigtriangledown} := 0$.

$$x^{\bigtriangleup} := \bigvee \{g \in G \mid g \nleq x\} \text{ and } x^{\bigtriangledown} := \bigwedge \{n \in N \mid n \ngeq x\}$$

Wdl

Definition and examples

• Boolean algebra: duplicate the complementation.

 $(B, \land, \lor, ', 0, 1) \rightsquigarrow (B, \land, \lor, ', ', 0, 1)$

- pseudocomplemented (*) and dual pseudocomplemeted (⁺) distributive lattices. (*L*, ∧, ∨, ⁺, ^{*}, 0, 1).
- Bounded lattice:

 $x \neq 1 \implies x^{\bigtriangleup} := 1 \quad \text{and} \quad x \neq 0 \implies x^{\bigtriangledown} := 0.$

$$x^{\bigtriangleup} := \bigvee \{g \in G \mid g \nleq x\} \text{ and } x^{\bigtriangledown} := \bigwedge \{n \in N \mid n \ngeq x\}$$

Wdl

Definition and examples

• Boolean algebra: duplicate the complementation.

 $(B, \land, \lor, ', 0, 1) \rightsquigarrow (B, \land, \lor, ', ', 0, 1)$

- pseudocomplemented (*) and dual pseudocomplemeted (⁺) distributive lattices. (*L*, ∧, ∨, ⁺, ^{*}, 0, 1).
- Bounded lattice:

 $x \neq 1 \implies x^{\bigtriangleup} := 1$ and $x \neq 0 \implies x^{\bigtriangledown} := 0$.

$$x^{ riangle} := igvee \{ g \in G \mid g
eq x \}$$
 and $x^{ riangle} := igwee \{ n \in N \mid n
eq x \}$

Contexts and concepts

• Formal context :=(G, M, I) with $I \subseteq G \times M$.

G := set of **objects** and M := set of **attributes**.

• Derivation. $A \subseteq G$ and $B \subseteq M$.

 $A' := \{m \in M \mid \forall g \in A \ glm\}$

 $B' := \{g \in G \mid \forall m \in B \ glm\}.$

• Formal concept := a pair (A, B) with A' = B and B' = A.

 $A :\equiv$ extent of (A, B) and $B :\equiv$ intent of (A, B).

 $\mathfrak{B}(G, M, I) :=$ set of all concepts of (G, M, I).

Concept hierarchy

 $(A,B) \leq (C,D): \iff A \subseteq C \quad (\iff D \subseteq B).$

• $\underline{\mathfrak{B}}(G, M, I) := (\mathfrak{B}(G, M, I), \leq)$

Conclusion

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The Basic Theorem on Concept Lattices

Theorem

 $\underline{\mathfrak{B}}(G, M, I)$ is a complete lattice in which infimum and supremum are given by:

$$\bigwedge_{t\in T} (A_t, B_t) = \left(\bigcap_{t\in T} A_t, \left(\bigcup_{t\in T} B_t \right)'' \right)$$
$$\bigvee_{t\in T} (A_t, B_t) = \left(\left(\bigcup_{t\in T} A_t \right)'', \bigcap_{t\in T} B_t \right).$$

 $\mathfrak{B}(G, M, I)$ is called the **concept lattice** of the context (G, M, I).

Conclusion

(日) (日) (日) (日) (日) (日) (日)

The Basic Theorem on Concept Lattices

Theorem

A complete lattice L is isomorphic to a concept lattice $\mathfrak{B}(G, M, I)$ iff there are mappings $\tilde{\gamma} : G \to L$ and $\tilde{\mu} : M \to L$ such that $\tilde{\gamma}(G)$ is supremum-dense in L, $\tilde{\mu}(M)$ is infimum-dense in L and for all $g \in G$ and $m \in M$

$$glm \iff \tilde{\gamma}(g) \leq \tilde{\mu}(m).$$

In particular $L \cong \underline{\mathfrak{B}}(L, L, \leq)$.

Some special contexts

Finite lattices $L \cong \underline{\mathfrak{B}}(J(L), M(L), \leq)$.

Powerset algebras $\underline{\mathfrak{B}}(X, X, \neq) \cong \mathcal{P}X$.

Distributive lattices $\underline{\mathfrak{B}}(P, P, \not\geq) \cong \mathcal{O}(P, \leq)$.

◆□ → ◆□ → ◆三 → ◆三 → ●● ◆○ ◆

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Boolean Concept Logic

conjunction via meet disjunction via join negation ?Hmmm!

Weak Negation $(A, B)^{\bigtriangleup} := ((G \setminus A)'', (G \setminus A)')$ Weak opposition $(A, B)^{\bigtriangledown} := ((M \setminus B)', (M \setminus B)'').$

 $x \lor x^{\triangle} = 1$ but $x \land x^{\triangle}$ can be different of 0;

Definition

The algebra $\mathfrak{A}(\mathbb{K}) := (\mathfrak{B}(\mathbb{K}), \wedge, \vee, \overset{\triangle}{}, \nabla, 0, 1)$ is called the **concept algebra** of \mathbb{K} .

Boolean Concept Logic

conjunction via meet disjunction via join negation ?Hmmm!

Weak Negation $(A, B)^{\bigtriangleup} := ((G \setminus A)'', (G \setminus A)')$ Weak opposition $(A, B)^{\bigtriangledown} := ((M \setminus B)', (M \setminus B)'').$

 $x \lor x^{\triangle} = 1$ but $x \land x^{\triangle}$ can be different of 0;

Definition

The algebra $\underline{\mathfrak{A}}(\mathbb{K}) := (\mathfrak{B}(\mathbb{K}), \wedge, \vee, \overset{\bigtriangleup}{}, \nabla, 0, 1)$ is called the **concept algebra** of \mathbb{K} .

Concept algebras: some equations

$$\begin{array}{l} \mathbf{y} \stackrel{\wedge}{=} \mathbf{y} \iff \mathbf{y}^{\triangle} \leq \mathbf{x}, \qquad \mathbf{1} \quad \mathbf{x}^{\bigtriangledown} \geq \mathbf{y} \iff \mathbf{y}^{\bigtriangledown} \geq \mathbf{x}, \\ \mathbf{2} \quad (\mathbf{x} \wedge \mathbf{y})^{\triangle \triangle} \leq \mathbf{x}^{\triangle \triangle} \wedge \mathbf{y}^{\triangle \triangle}, \qquad \mathbf{2} \quad (\mathbf{x} \vee \mathbf{y})^{\bigtriangledown \bigtriangledown} \geq \mathbf{x}^{\bigtriangledown \bigtriangledown} \vee \mathbf{y}^{\bigtriangledown \bigtriangledown}. \\ \mathbf{3} \quad \mathbf{x}^{\bigtriangledown \bigtriangledown \bigtriangledown} = \mathbf{x}^{\bigtriangledown} \leq \mathbf{x}^{\triangle} = \mathbf{x}^{\triangle \triangle \triangle}. \qquad \mathbf{3} \quad \mathbf{x}^{\triangle \bigtriangledown} \leq \mathbf{x}^{\triangle \triangle} \leq \mathbf{x} \leq \mathbf{x}^{\bigtriangledown \lor} \leq \mathbf{x}^{\bigtriangledown \triangle}. \end{array}$$

- $x \mapsto x^{\triangle \triangle}$ is an interior operator on *L*.
- $x \mapsto x^{\nabla \nabla}$ is a closure operator on *L*.

(1)
$$x^{\triangle \triangle} \leq x$$
, (1') $x^{\nabla \bigtriangledown} \geq x$,
(2) $x \leq y \implies x^{\triangle} \geq y^{\triangle}$, (2') $x \leq y \implies x^{\bigtriangledown} \geq y^{\bigtriangledown}$,
(3) $(x \land y) \lor (x \land y^{\triangle}) = x$, (3') $(x \lor y) \land (x \lor y^{\bigtriangledown}) = x$.

Axiomatization problem

Find an axiomatization of concept algebras.

Concept algebras: some equations

- $x \mapsto x^{\triangle \triangle}$ is an interior operator on *L*.
- $x \mapsto x^{\bigtriangledown \bigtriangledown}$ is a closure operator on *L*.

(1)
$$x^{\triangle \triangle} \le x$$
,
(2) $x \le y \implies x^{\triangle} \ge y^{\triangle}$,
(3) $(x \land y) \lor (x \land y^{\triangle}) = x$,
(1') $x^{\nabla \nabla} \ge x$,
(2') $x \le y \implies x^{\nabla} \ge y^{\nabla}$,
(3') $(x \lor y) \land (x \lor y^{\nabla}) = x$.

Axiomatization problem

Find an axiomatization of concept algebras.

Representation problem

strong representation

Describe weakly dicomplemented lattices that are isomorphic to the concept algebras.

equational axiomatization

Find a set of equations that generate the equational theory of concept algebras.

concrete embedding

Given a weakly dicomplemented lattice *L*, is there a context $\mathbb{K}(L)$ such that *L* can be embedded into the concept algebra of $\mathbb{K}(L)$?

Representation problem

strong representation

Describe weakly dicomplemented lattices that are isomorphic to the concept algebras.

equational axiomatization

Find a set of equations that generate the equational theory of concept algebras.

concrete embedding

Given a weakly dicomplemented lattice *L*, is there a context $\mathbb{K}(L)$ such that *L* can be embedded into the concept algebra of $\mathbb{K}(L)$?

Representation problem

strong representation

Describe weakly dicomplemented lattices that are isomorphic to the concept algebras.

equational axiomatization

Find a set of equations that generate the equational theory of concept algebras.

concrete embedding

Given a weakly dicomplemented lattice *L*, is there a context $\mathbb{K}(L)$ such that *L* can be embedded into the concept algebra of $\mathbb{K}(L)$?

Prime Ideal Theorem

Definition

A primary filter is a proper filter *F* of *L* such that for all $x \in L$, $x \in F$ or $x^{\triangle} \in F$. A primary ideal is a proper ideal *I* of *L* such that for all $x \in L$, $x \in F$ or $x^{\bigtriangledown} \in I$.

Theorem (PIT)

Let F a filter and I an ideal of L such that $F \cap I = \emptyset$. Then there is a primary filter G containing F such that $G \cap I = \emptyset$.

Corollary (separation)

If $x \not\leq y$ there is a primary filter G with $x \in G$ and $y \notin G$.

Prime Ideal Theorem

Definition

A primary filter is a proper filter *F* of *L* such that for all $x \in L$, $x \in F$ or $x^{\triangle} \in F$. A primary ideal is a proper ideal *I* of *L* such that for all $x \in L$, $x \in F$ or $x^{\bigtriangledown} \in I$.

Theorem (PIT)

Let F a filter and I an ideal of L such that $F \cap I = \emptyset$. Then there is a primary filter G containing F such that $G \cap I = \emptyset$.

Corollary (separation)

If $x \not\leq y$ there is a primary filter G with $x \in G$ and $y \notin G$.

Prime Ideal Theorem

Definition

A primary filter is a proper filter *F* of *L* such that for all $x \in L$, $x \in F$ or $x^{\triangle} \in F$. A primary ideal is a proper ideal *I* of *L* such that for all $x \in L$, $x \in F$ or $x^{\bigtriangledown} \in I$.

Theorem (PIT)

Let F a filter and I an ideal of L such that $F \cap I = \emptyset$. Then there is a primary filter G containing F such that $G \cap I = \emptyset$.

Corollary (separation)

If $x \not\leq y$ there is a primary filter G with $x \in G$ and $y \notin G$.

Canonical context

- $\mathfrak{F}_{pr}(L) :=$ set of primary filters of L
- $\Im_{pr}(L) :=$ set of primary ideals of L
- $\mathbb{K}(L) := (\mathfrak{F}_{pr}(L), \mathfrak{I}_{pr}(L), \Delta)$ with $F\Delta I : \iff F \cap I \neq \emptyset$.
- $\mathfrak{F}_x := \{ F \in \mathfrak{F}_{pr}(L) \mid x \in F \}$ and $\mathfrak{I}_x := \{ I \in \mathfrak{I}_{pr}(L) \mid x \in I \}.$

Theorem

The mapping

$$egin{array}{rcl} arphi & \colon & L & o & \underline{\mathfrak{B}}(\mathbb{K}(L)) \ & \mathbf{X} & \mapsto & (\mathfrak{F}_{\mathbf{X}},\mathfrak{I}_{\mathbf{X}}) \end{array}$$

is a lattice embedding.

▲口 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Dreamlike embedding

Wdl embedding

Is φ a weakly dicomplemented lattice embedding?

What about the weak operations?

•
$$\mathfrak{I}_{X^{\bigtriangleup}} \subseteq (\mathfrak{F}_{pr}(L) \setminus \mathfrak{F}_X)'$$

• $\mathfrak{F}_{X^{\bigtriangledown}} \subseteq (\mathfrak{I}_{pr}(L) \setminus \mathfrak{I}_X)'$

Thus $\varphi(x^{\bigtriangledown}) \leq \varphi(x)^{\bigtriangledown} \leq \varphi(x)^{\bigtriangleup} \leq \varphi(x^{\bigtriangleup}).$

Where is the problem?

Let *I* be a primary ideal such that $I \not\ni x^{\triangle}$. If $x \notin I$ but $x^{\triangle} \in Ideal(I \cup \{x \land x^{\triangle}\})$, is there a primary filter *F* such that $x \notin F$ and $F \cap I = \emptyset$?

Dreamlike embedding

Wdl embedding

Is φ a weakly dicomplemented lattice embedding?

What about the weak operations?

•
$$\mathfrak{I}_{\mathbf{X}^{ riangle}} \subseteq (\mathfrak{F}_{pr}(L) \setminus \mathfrak{F}_{\mathbf{X}})^{r}$$

•
$$\mathfrak{F}_{\boldsymbol{X}^{\bigtriangledown}} \subseteq (\mathfrak{I}_{pr}(L) \setminus \mathfrak{I}_{\boldsymbol{X}})'$$

Thus $\varphi(\mathbf{x}^{\bigtriangledown}) \leq \varphi(\mathbf{x})^{\bigtriangledown} \leq \varphi(\mathbf{x})^{\bigtriangleup} \leq \varphi(\mathbf{x}^{\bigtriangleup}).$

Where is the problem?

Let *I* be a primary ideal such that $I \not\ni x^{\triangle}$. If $x \notin I$ but $x^{\triangle} \in Ideal(I \cup \{x \land x^{\triangle}\})$, is there a primary filter *F* such that $x \notin F$ and $F \cap I = \emptyset$?

Dreamlike embedding

Wdl embedding

Is φ a weakly dicomplemented lattice embedding?

What about the weak operations?

•
$$\mathfrak{I}_{x^{ riangle}} \subseteq (\mathfrak{F}_{pr}(L) \setminus \mathfrak{F}_x)^{r}$$

•
$$\mathfrak{F}_{\boldsymbol{X}^{\bigtriangledown}} \subseteq (\mathfrak{I}_{pr}(L) \setminus \mathfrak{I}_{\boldsymbol{X}})'$$

Thus
$$\varphi(\boldsymbol{x}^{\bigtriangledown}) \leq \varphi(\boldsymbol{x})^{\bigtriangledown} \leq \varphi(\boldsymbol{x})^{\bigtriangleup} \leq \varphi(\boldsymbol{x}^{\bigtriangleup}).$$

Where is the problem?

Let *I* be a primary ideal such that $I \not\supseteq x^{\triangle}$. If $x \notin I$ but $x^{\triangle} \in Ideal(I \cup \{x \land x^{\triangle}\})$, is there a primary filter *F* such that $x \notin F$ and $F \cap I = \emptyset$?

Illustration

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Conjecture: strong separation

Let *I* be a primary ideal such that $I \not\supseteq x^{\triangle}$. Assume that $I \not\supseteq x$ and $x^{\triangle} \in Ideal(I \cup \{x \land x^{\triangle}\})$. Then there is a primary filter $F \not\supseteq x$ such that $F \cap I = \emptyset$.

L is a Boolean algebra

- φ is an embedding.
- $\mathfrak{A}(\mathbb{K}^{\vartriangle}_{\nabla}(L))$ is a complete and atomic Boolean algebra.
- $\mathfrak{A}(\mathbb{K}^{\triangle}_{\bigtriangledown}(L))$ is isomorphic to $\mathcal{P}(\mathfrak{F}_{pr}(L))$.
- i.e. New proof of: "every Boolean algebra is a field of sets"

Conjecture: strong separation

Let *I* be a primary ideal such that $I \not\supseteq x^{\triangle}$. Assume that $I \not\supseteq x$ and $x^{\triangle} \in Ideal(I \cup \{x \land x^{\triangle}\})$. Then there is a primary filter $F \not\supseteq x$ such that $F \cap I = \emptyset$.

L is a Boolean algebra

- φ is an embedding.
- $\mathfrak{A}(\mathbb{K}^{\triangle}_{\nabla}(L))$ is a complete and atomic Boolean algebra.
- $\mathfrak{A}(\mathbb{K}^{\triangle}_{\bigtriangledown}(L))$ is isomorphic to $\mathcal{P}(\mathfrak{F}_{pr}(L))$.
- i.e. New proof of: "every Boolean algebra is a field of sets"

But the proof uses combinatorial arguments and is based on a different approach.

L is a finite lattice: open

(primary) filters are principal and generated by (∨-primary) elements: {*a* ∈ *L* | *a* ≤ *x* or *a* ≤ *x*[△] ∀*x* ∈ *L*}.

(primary) ideals are principal and generated by (\land -primary) elements: { $a \in L \mid a \ge x \text{ or } a \ge x \bigtriangledown \forall x \in L$ }.

• φ is a bijection.

 $\varphi(x) \equiv (\{a \le x \mid a \lor \text{-primary}\}, \{b \ge x \mid a \land \text{-primary}\}).$

L is a distributive lattice: open

But the proof uses combinatorial arguments and is based on a different approach.

L is a finite lattice: open

(primary) filters are principal and generated by (∨-primary) elements: {*a* ∈ *L* | *a* ≤ *x* or *a* ≤ *x*^Δ ∀*x* ∈ *L*}.

(primary) ideals are principal and generated by (\land -primary) elements: { $a \in L \mid a \geq x \text{ or } a \geq x \bigtriangledown \forall x \in L$ }.

• φ is a bijection.

 $\varphi(x) \equiv (\{a \le x \mid a \lor \text{-primary}\}, \{b \ge x \mid a \land \text{-primary}\}).$

L is a distributive lattice: open

But the proof uses combinatorial arguments and is based on a different approach.

L is a finite lattice: open

(primary) filters are principal and generated by (∨-primary) elements: {a ∈ L | a ≤ x or a ≤ x[△] ∀x ∈ L}.

(primary) ideals are principal and generated by (\land -primary) elements: { $a \in L \mid a \ge x$ or $a \ge x \bigtriangledown \forall x \in L$ }.

• φ is a bijection.

 $\varphi(\mathbf{x}) \equiv (\{\mathbf{a} \leq \mathbf{x} \mid \mathbf{a} \lor \text{-primary}\}, \{\mathbf{b} \geq \mathbf{x} \mid \mathbf{a} \land \text{-primary}\}).$

L is a distributive lattice: open

But the proof uses combinatorial arguments and is based on a different approach.

L is a finite lattice: open

(primary) filters are principal and generated by (∨-primary) elements: {a ∈ L | a ≤ x or a ≤ x[△] ∀x ∈ L}.

(primary) ideals are principal and generated by (\land -primary) elements: { $a \in L \mid a \ge x$ or $a \ge x \bigtriangledown \forall x \in L$ }.

• φ is a bijection.

 $\varphi(\mathbf{x}) \equiv (\{\mathbf{a} \leq \mathbf{x} \mid \mathbf{a} \lor \text{-primary}\}, \{\mathbf{b} \geq \mathbf{x} \mid \mathbf{a} \land \text{-primary}\}).$

L is a distributive lattice: open

000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Conclusion

- From finite distributive to finite/distributive.
- Impact of the properties of *L* on $\mathfrak{A}(\mathbb{K}(L))$.
- Topological representations
- Duality

Thanks for your attention!

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Conclusion

- From finite distributive to finite/distributive.
- Impact of the properties of *L* on $\mathfrak{A}(\mathbb{K}(L))$.
- Topological representations
- Duality

Thanks for your attention!