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The spaces

Let (Xi ) be a family of Banach spaces and

B = {(xi ) : xi ∈ Xi , sup
i
‖xi‖ < ∞}

be the set of bounded sections. Let U be an ultrafilter and

N = {(xi ) : lim
i ,U
‖xi‖Xi

= 0} .

Then ∏
i ,U

Xi/N

equipped with the norm

‖(xi ) + N‖ = lim
i ,U

Xi

is again a Banach space.
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Xi Banach algebras, then the ultraproduct is a Banach

algebra.

...



Examples

Xi = Lp(Ω, µi ).

Then∏
i

Xi = Lp(Ω, µ)

for some large measure space Ω, µ.

Xi lattices, then the ultraproduct is also a lattice.

Xi Banach algebras, then the ultraproduct is a Banach

algebra.

...



Examples

Xi = Lp(Ω, µi ). Then∏
i

Xi = Lp(Ω, µ)

for some large measure space Ω, µ.

Xi lattices, then the ultraproduct is also a lattice.

Xi Banach algebras, then the ultraproduct is a Banach

algebra.

...



Examples

Xi = Lp(Ω, µi ). Then∏
i

Xi = Lp(Ω, µ)

for some large measure space Ω, µ.

Xi lattices, then the ultraproduct is also a lattice.

Xi Banach algebras, then the ultraproduct is a Banach

algebra.

...



Examples

Xi = Lp(Ω, µi ). Then∏
i

Xi = Lp(Ω, µ)

for some large measure space Ω, µ.

Xi lattices, then the ultraproduct is also a lattice.

Xi Banach algebras, then the ultraproduct is a Banach

algebra.

...



Examples

Xi = Lp(Ω, µi ). Then∏
i

Xi = Lp(Ω, µ)

for some large measure space Ω, µ.

Xi lattices, then the ultraproduct is also a lattice.

Xi Banach algebras, then the ultraproduct is a Banach

algebra.

...



Factorization theory and ultra products

Theorem (Kwapien) Let X be a Banach space and C > 0 a

constant such that

(
∑

i

‖
∑

j

aijxj‖2
X )1/2 ≤ C‖a‖`n

2→`n
2
(
∑

i

‖xi‖2
X )1/2 .

Then there is scalar product ( , ) such that

‖x‖ ≤ (x , x)1/2 ≤ C‖x‖ .

Hernandez: Similar results for (quotient of subspaces) of Lp

spaces, even in the vector-valued setting.

Tools: 1) Use Grothendieck’s theory of tensor norms (trace

duality) to show the result first for finite dimensional spaces.

2) Use that Hilbert spaces are stable under ultraproducts.
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More local theory

Remark: More results in this direction,

due to Maurey, Pisier,

Krivine (72-74): Let `n
p be Rn equipped with the norm

‖x‖p = (
n∑

k=1

|xk |p)
1
p .

Let X be a infinite dimensional Banach space and p ≥ 2 be the

infimum over all q such that

(
∑
k

‖xk‖q
X )

1
q ≤ C sup

εk=±1
‖

∑
k

εkxk‖X .

for some constant Cq. Then X contains copy’s of `n
p of arbitrary

dimension.
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Local properties

Let Xi = X for all i . Then Y =
∏
U X is called a ultrapower. Let

E ⊂ X be a finite dimensional subspace and ε > 0. Then there

exist a finite dimensional subspace Eε ⊂ X and a linear

isomorphism such that

‖u‖‖u−1‖ ≤ (1 + ε) .

Here ‖u‖ = supx 6=0
‖u(x)‖
‖x‖ .

Definition: If the above is satisfied for Y and X we say that Y is

finitely represented in X .

Major open problem in operator algebras: Is the predual of a

von Neumann algebra finitely represented in the predual in B(`2)?
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C∗-algebras

A C ∗-algebra is a Banach algebra with involution ∗ such that

‖x‖2 = ‖x∗x‖.
Examples:

A = C (K ), K compact.

A = C0(K ), K locally compact.

B(H), the bounded operators on Hilbert space, in particular

Mn = B(`n
2).

Finite dimensional C ∗-algebras are direct sums of matrix

algebras.

Every C ∗-algebra is contained in some B(H).

C ∗(F∞), the universal algebra of infinitely many unitaries, F∞

free group in countably many generators.
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Von Neumann algebras

A von Neumann algebra is a unital subalgebra of B(H) closed in

the weak operator topology: Tλ −→WOT T if

(h,Tλk) −→λ (h,Tk) .

Motivation: Functional calculus with measurable functions,

spectral theory of unbounded operators.

Examples:

B(H). L∞(Ω, µ), L∞(Ω, µ;B(H))) (random matrices).

X ⊂ B(H) such that X ∗ ⊂ X , then

X ′ = {T : Tx − xT = 0,∀x ∈ X} is a vNa.

Let G be a discrete group and λ(g)eh = egh. Then

VN(G ) = λ(G )
′′

is a von Neumann algebra.
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General remarks Local properties Von Neumann algebras Connes’ embedding problem Kirchberg’s theorem Ultraproduct techniques in Lp theory More

Von Neumann algebra ultraprowers

Let N be a von Neumann algebra and τ be a trace, i.e. a positive,

normal functional with τ(1) = 1 and τ(xy) = τ(yx).

Then ultraproduct NU (Nω in vNa-lit) is the quotient of `∞(I ,N)

with respect to

I = {(xi ) : lim
i ,U

τ(x∗i xi ) = 0} .

Warning/Remark: 1) I is much larger than {(xi ) : limi ‖xi‖ = 0}.
2) However, (NU )∗ is a two-sided ideal in

∏
U N∗.

3) The Chang-Keisler theorem for ultraproducts in the vNa-sense is

missing.
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Property Γ

N has property Γ if

N ′ ∩ NU 6= C .

Example:

1) Let R = ⊗n∈NM2 the infinite tensor product of 2× 2 matrices.

Then R has property Γ. Indeed, every von Neumann algebra which

is the WOT closure of finite dimensional C ∗-algebras, has this

property (hyperfinite).VN(G ) is hyperfinite iff G is amenable.

2) Let Fn be the free group in n generators. Then VN(Fn) does

not have property Γ (Murray/von Neumann). Hence, VN(Fn) is

not hyperfinite.
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More recent results

Recently (03) Christensen, Smith, Sinclair and Pop showed

that for factors with property Γ the bounded cohomology

groups vanish.

Popa showed that for Q ⊂ N, Q contains no hyperfinite

summand if and only if

Q ′ ∩ (N ∗ N)U ⊂ (N ∗ 1)U

holds for the free product. This can be used to show that for

every sub von Neumann algebra Q of VN(Fn) such that

Q ′ ∩ L(VN(Fn)) has no atoms, then Q is hyperfinite (due to

Ozawa).

Popa has very successfully studied defomration/rigidity result

in von Neumann algebras.
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General remarks Local properties Von Neumann algebras Connes’ embedding problem Kirchberg’s theorem Ultraproduct techniques in Lp theory More

Embedding in RU

Problem 1: Let be a von Neumann algebra N with a nice trace. Is

there a trace preserving embedding of N in RU?

Remark: Then the range is automatically complemented with a

conditional expectation E : RU → N, E (axb) = aE (x)b, a, b ∈ N,

x ∈ RU .

A good way to understand this is to ask wheather for a finite set

x1, ..., xm ⊂ N there are matrices y1, ..., ym ∈ Mn of n × n matrices

such that

|τ(xi1 · · · xik )−
tr

n
(yi1 · · · yik )| < ε ?
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Kirchberg’s theorem

Problem 2: Let N be a arbitrary von Neumann algebra. Is there

an isometric embedding of the predual N∗ in
∏
U B(H)∗?

Problem 3: Let N be an arbitrary von Neumann algebra. Is there

an embedding in (
∏
U B(H)∗)

∗ (or B(H)∗∗) with a normal

conditional expectation E :
∏
U B(H) → N?

Problem 4: Is there only one norm on C ∗(F∞)⊗ C ∗(F∞) which

makes the tensor product a C ∗-algebra?

Theorem

( 94) The four problems are all equivalent.
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Lp spaces

Let N be a von Neumann algebra with trace τ . The Lp spaces is

defined by

‖x‖p = [τ(|x |p)]1/p , |x | =
√

x∗x .

Theorem (J. Parcet–NC Rosenthal theorem)

Let X ⊂ L1(N) be a reflexive subspace, then X is isomorphic to

subspace of Lp(N) for some p > 1.Indeed, there exists a positive

d ∈ L1(N) and u : X → Lp such that

x = d1−1/pu(x) + u(x)d1−1/p .

Remark: Many ultra product techniques in the proof +results of

Pisier.
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Theorem (J-NC Fubini theorem)

(Ni ) and (Mj) be von Neumann algebras and

z =
∑

k xk(i)⊗ yk(j) a finite tensor.Then

lim
i ,U1

lim
j ,U2

‖
∑
k

xk
i ⊗ yk

j ‖p = lim
j ,U2

lim
i ,U1

‖
∑
k

xk
i ⊗ yk

j ‖p .

Exercise: Proof this for commutative N and M.

Warning: (Nhany-Raynaud)

lim
i ,U1

lim
j ,U2

‖xi + yj‖p 6= lim
j ,U1

lim
i ,U1

‖xi + yj‖p

in general.
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Connes used ultraproduct arguments in the classification of

factors, and later in noncommutative geometry to related

singular values and integrals on manifolds.

Matrix models and ultraproduct techniques are combined with

Speicher’s central limit approach to prove Khintchine type

inequalities (inequalities for finite dimensional matrices!).

Ultraproduct techniques are key for noncommutative

stochastic integrals.

Very recently Paulsen discovered a relation between certain

properties of ultraproducts and the longstanding open Kadison

Singer problem!
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