Ultrapower of \mathbb{N} and Density Problems

for UltraMath2008, Pisa, Italy

Renling Jin
College of Charleston

Outline

- Construct nonstandard model of number system by ultrapower construction
- Characterize asymptotic densities in nonstandard model
- Survey the results about asymptotic densities obtained with the help of nonstandard model

Standard Model: (V, \in)

$$
\begin{aligned}
& V_{0}=\mathbb{R} \\
& V_{n+1}=V_{n} \cup \mathcal{P}\left(V_{n}\right) \\
& V=\bigcup_{n=0}^{N} V_{n}
\end{aligned}
$$

where $\mathcal{P}\left(V_{n}\right)$ is the collection of all subsets of V_{n} and N is a fixed sufficiently large positive (standard) integer.

Standard model contains all number theoretic objects currently under consideration and all number theoretic arguments can be interpreted in the standard model with only membership relation ϵ.

For example, \leqslant on \mathbb{R} can be viewed as a set of some ordered pairs of real numbers (a, b). A pair of real numbers (a, b) can be viewed as the set $\{\{a\},\{a, b\}\} \in V_{2}$. Hence $\leqslant \subseteq V_{2}$, which means $\leqslant \in V_{3}$. Now the expression " $a \leqslant b$ " can be interpreted as " $\{\{a\},\{a, b\}\} \in \leqslant$ ".

Nonstandard Model: ($\left.{ }^{*} V,{ }^{*} \in\right)$

Let $V^{\mathbb{N}}$ be the set of all sequences $\left\langle a_{n}\right\rangle$ in $V . V^{\mathbb{N}}$ can be viewed as a (not very useful) extension of V if one identifies each $A \in V$ with a constant sequence $\langle A\rangle$ in $V^{\mathbb{N}}$.

Fix a non-principal ultrafilter \mathcal{F} on \mathbb{N}. Given $\left\langle a_{n}\right\rangle,\left\langle b_{n}\right\rangle \in V^{\mathbb{N}}$, let $\left\langle a_{n}\right\rangle \sim\left\langle b_{n}\right\rangle$ iff $\left\{n: a_{n}=\right.$ $\left.b_{n}\right\} \in \mathcal{F} .(\sim$ is an equivalence relation. $)$

$$
\begin{aligned}
& {\left[\left\langle a_{n}\right\rangle\right]=\left\{\left\langle b_{n}\right\rangle \in V^{\mathbb{N}}:\left\langle a_{n}\right\rangle \sim\left\langle b_{n}\right\rangle\right\} .} \\
& * V=V^{\mathbb{N}} / \mathcal{F}=\left\{\left[\left\langle a_{n}\right\rangle\right]:\left\langle a_{n}\right\rangle \in V^{\mathbb{N}}\right\} . \\
& {\left[\left\langle a_{n}\right\rangle\right]^{*} \in\left[\left\langle b_{n}\right\rangle\right] \text { iff }\left\{n: a_{n} \in b_{n}\right\} \in \mathcal{F} .}
\end{aligned}
$$

The map $*: V \mapsto{ }^{*} V$ defined by ${ }^{*} a=[\langle a\rangle]$ is an embedding satisfying $a=b$ iff ${ }^{*} a={ }^{*} b$ and $a \in b$ iff * ${ }^{*} \in{ }^{*} b$.

Note that \mathbb{N} is the ultrapower of \mathbb{N} modulo \mathcal{F}. For each $k \in \mathbb{N}$ we have $* k=[\langle k\rangle] \in{ }^{*} \mathbb{N}$. If $\left\langle a_{n}\right\rangle$ is an increasing sequence in \mathbb{N}, we also have $\left[\left\langle a_{n}\right\rangle\right] \in \mathbb{N}$.

We call (${ }^{*} V,{ }^{*} \in$) a nonstandard model. ${ }^{*} V$ can be considered as an extension of V. For convenience we often drop the symbol $*$ in some occasions when no confusion will be resulted. For example we often write \in for ${ }^{*} \in, \leqslant$ for ${ }^{*} \leqslant$, a for ${ }^{*} a$ when $a \in V_{0}$, etc.

Note that $*: V \mapsto{ }^{*} V$ is not a surjection. Let $a_{n}=n$. Then $H=\left[\left\langle a_{n}\right\rangle\right] \in \mathbb{N}$ and for every $k \in \mathbb{N}, H>k$.

Transfer Principle

For every first-order formula $\varphi(\bar{x})$ and $\bar{a} \in$ $V, \varphi(\bar{a})$ is true in V iff $\varphi\left({ }^{*} \bar{a}\right)$ is true in V.

For example, ${ }^{*} \leqslant$ is a dense linear order on ${ }^{*} \mathbb{R}$. In fact, $\left({ }^{*} \mathbb{R} ;+, \cdot, \leqslant, 0,1\right)$ is a real closed ordered field with infinitely large numbers such as [$\langle n\rangle$] and infinitesimally small positive numbers such as $\left[\left\langle\frac{1}{n}\right\rangle\right]$.
A is standard if $A=[\langle a\rangle]$ for some $a \in V$.
A is internal if $A=\left[\left\langle a_{n}\right\rangle\right]$ for some $a_{n} \in V$ with $n=0,1, \ldots$
A is external if it is not internal.
An integer H in $\mathbb{N} \backslash \mathbb{N}$ is called a hyperfinite integer. If H is a hyperfinite integer, then $\left[\left\langle a_{n}\right\rangle\right]=H$ implies that the sequence a_{n} must be unbounded in \mathbb{N}.

For any $a, b \in \mathbb{N}$, the term $[a, b]$ will exclusively represent an interval of integers.

Example Let $A=[a, b] \subseteq \mathbb{N}$. Then $[\langle A\rangle]$ can be viewed as the same interval as $[a, b]$. If $A_{n}=[1, n]$, then $\left[\left\langle A_{n}\right\rangle\right]=[1, H]$ is a hyperfinite interval, where $H=[\langle n\rangle]$. Note that every bounded internal subset $\left[\left\langle A_{n}\right\rangle\right]$ of \mathbb{N} has a maximal element $\left[\left\langle\max A_{n}\right\rangle\right]$. Hence \mathbb{N} is an external subset of \mathbb{N}.

Standard Part Map

Note that we view \mathbb{R} as an (external) subset of ${ }^{*} \mathbb{R}$. Let $r, s \in{ }^{*} \mathbb{R}$.
$r \approx 0$ iff $|r|<\frac{1}{k}$ for all $k \in \mathbb{N}$ and
$r \approx s$ iff $r-s \approx 0$.
r is called an infinitesimal if $r \approx 0$.
$r \lesssim s(r \gtrsim s)$ if $r<s(r>s)$ or $r \approx s$.
$r \ll s(r \gg s)$ if $r<s(r>s)$ and $r \not \approx s$.
$\operatorname{Fin}\left({ }^{*} \mathbb{R}\right)=\left\{r \in{ }^{*} \mathbb{R}:|r|<n\right.$ for some $\left.n \in \mathbb{N}\right\}$.

Proposition 1 For each $r \in \operatorname{Fin}\left({ }^{*} \mathbb{R}\right)$ there is a unique $\alpha \in \mathbb{R}$ such that $r \approx \alpha$.

The standard part map is the function st : $\operatorname{Fin}\left({ }^{*} \mathbb{R}\right) \mapsto \mathbb{R}$ such that $s t(r)=\alpha$ iff $r \approx \alpha$.

Densities of an Infinite Subset of \mathbb{N}

Let $A \subseteq \mathbb{N}$ and $x, y \in \mathbb{N}$. Let $A(x, y)=$ $|A \cap[x, y]|$ and $A(x)=A(1, x)$.

Shnirel'man density of A

$$
\sigma(A)=\inf _{x \geqslant 1} \frac{A(x)}{x}
$$

Lower asymptotic density of A

$$
\underline{d}(A)=\liminf _{x \rightarrow \infty} \frac{A(x)}{x} .
$$

Upper asymptotic density of A

$$
\bar{d}(A)=\limsup _{x \rightarrow \infty} \frac{A(x)}{x} .
$$

Upper Banach density of A

$$
B D(A)=\lim _{x \rightarrow \infty} \sup _{k \in \mathbb{N}} \frac{A(k, k+x)}{x+1}
$$

Clearly

$$
0 \leqslant \sigma(A) \leqslant \underline{d}(A) \leqslant \bar{d}(A) \leqslant B D(A) \leqslant 1
$$

Nonstandard Characterizations
Let $A \subseteq \mathbb{N}$ in V.
Proposition $2 \underline{d}(A) \geqslant \alpha$ iff for every hyperfinite integer $H,{ }^{*} A(H) / H \gtrsim \alpha$.

Proposition $3 \bar{d}(A) \geqslant \alpha$ iff there exists a hyperfinite integer H such that ${ }^{*} A(H) / H \gtrsim \alpha$.

Proposition $4 B D(A) \geqslant \alpha$ iff there is a hyperfinite interval $[k, k+H-1] \subseteq \mathbb{N}$ such that * $A(k, k+H-1) / H \gtrsim \alpha$.

Proposition 5 If $B D(A) \geqslant \alpha$, then there is $x \in \mathbb{N}$ such that $\sigma\left(\left(^{*} A-x\right) \cap \mathbb{N}\right) \geqslant \alpha$.

Proposition 6 If there is $x \in \mathbb{N}$ such that $\left.\underline{d}\left({ }^{*} A-x\right) \cap \mathbb{N}\right) \geqslant \alpha$, then $B D(A) \geqslant \alpha$.

Level One Applications:

Buy-One-Get-One-Free Scheme
There is a theorem about upper Banach density parallel to each theorem about Shnirel'man density or lower asymptotic density.

Mann's Theorem

Let $A, B \subseteq N$. If $0 \in A \cap B$, then

$$
\sigma(A+B) \geqslant \min \{\sigma(A)+\sigma(B), 1\} .
$$

Parallel Theorem

For any $A, B \subseteq N$,
$B D(A+B+\{0,1\}) \geqslant \min \{B D(A)+B D(B), 1\}$.

Can we improve this result?

Kneser's Theorem Let $A, B \subseteq \mathbb{N}$. If

$$
\underline{d}(A+B)<\underline{d}(A)+\underline{d}(B),
$$

then there are $g>0$ and $G \subseteq[0, g-1]$ such that
(1) $\underline{d}(A+B) \geqslant \underline{d}(A)+\underline{d}(B)-\frac{1}{g}$,
(2) $A+B \subseteq G+g \mathbb{N}$, and
(3) $(G+g \mathbb{N}) \backslash(A+B)$ is finite.

Parallel Theorem Let $A, B \subseteq \mathbb{N}$. If

$$
B D(A+B)<B D(A)+B D(B)
$$

then there are $g>0$ and $G \subseteq[0, g-1]$ such that
(1) $B D(A+B) \geqslant B D(A)+B D(B)-\frac{1}{g}$,
(2) $A+B \subseteq G+g \mathbb{N}$,
(3) and there is a sequence of intervals $\left[a_{n}, b_{n}\right]$ with $b_{n}-a_{n} \rightarrow \infty$ and $(A+B) \cap\left[a_{n}, b_{n}\right]=$ $(G+g \mathbb{N}) \cap\left[a_{n}, b_{n}\right]$.

Can we improve this result?

A set $B \subseteq \mathbb{N}$ is called a basis of order h if

$$
h * B=\underbrace{B+B+\cdots+B}_{h}=\mathbb{N} \text {. }
$$

Plünnecke's Theorem Let B be a basis of order h and $A \subseteq \mathbb{N}$. Then

$$
\sigma(A+B) \geqslant \sigma(A)^{1-\frac{1}{h}}
$$

Parallel Theorem 1 Let B be a basis of order h and $A \subseteq \mathbb{N}$. Then

$$
B D(A+B) \geqslant B D(A)^{1-\frac{1}{h}}
$$

A set $B \subseteq \mathbb{N}$ is called an piecewise basis of order h if there is a sequence a_{n} of non-negative integers such that

$$
[0, n] \subseteq h *\left(\left(B-a_{n}\right) \cap \mathbb{N}\right)
$$

Parallel Theorem 2 Let B be a piecewise basis of order h and $A \subseteq \mathbb{N}$. Then

$$
B D(A+B) \geqslant B D(A)^{1-\frac{1}{h}}
$$

Can we improve this result?

Level Two Applications

Kneser's Theorem for $B D$. If $B D(A+$ $B)<B D(A)+B D(B)=\alpha+\beta$, then there are $g>0$ and $G \subseteq[0, g-1]$ such that
(1) $B D(A+B) \geqslant \alpha+\beta-\frac{1}{g}$,
(2) $A+B \subseteq G+g \mathbb{N}$, and
(3) for any two sequences of intervals $\left[a_{n}^{(i)}, b_{n}^{(i)}\right] \subseteq$ \mathbb{N} for $i=0,1$ with $\lim _{n \rightarrow \infty}\left(b_{n}^{(i)}-a_{n}^{(i)}\right)=\infty$,
$\lim _{n \rightarrow \infty} \frac{A\left(a_{n}^{(0)}, b_{n}^{(0)}\right)}{b_{n}^{(0)}-a_{n}^{(0)}+1}=\alpha, \lim _{n \rightarrow \infty} \frac{B\left(a_{n}^{(1)}, b_{n}^{(1)}\right)}{b_{n}^{(1)}-a_{n}^{(1)}+1}=\beta$,
and $0<\inf _{n \in \mathbb{N}} \frac{b_{n}^{(0)}-a_{n}^{(0)}}{b_{n}^{(1)}-a_{n}^{(1)}} \leqslant \sup _{n \in \mathbb{N}} \frac{b_{n}^{(0)}-a_{n}^{(0)}}{b_{n}^{(1)}-a_{n}^{(1)}}<\infty$,
there exists $\left[c_{n}^{(i)}, d_{n}^{(i)}\right] \subseteq\left[a_{n}^{(i)}, b_{n}^{(i)}\right]$ such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{d_{n}^{(i)}-c_{n}^{(i)}}{b_{n}^{(i)}-a_{n}^{(i)}}=1 \text { and for every } n \in \mathbb{N} \\
& \begin{array}{l}
(A+B) \cap\left[c_{n}^{(0)}+c_{n}^{(1)}, d_{n}^{(0)}+d_{n}^{(1)}\right] \\
\quad=(G+g \mathbb{N}) \cap\left[c_{n}^{(0)}+c_{n}^{(1)}, d_{n}^{(0)}+d_{n}^{(1)}\right] .
\end{array}
\end{aligned}
$$

Definition Let $B \subseteq \mathbb{N}$ and $h \in \mathbb{N}$.

- B is a lower asymptotic basis of order h if $\underline{d}(h * B)=1$.
- B is a upper asymptotic basis of order h if $\bar{d}(h * B)=1$.
- B is a upper Banach basis of order h if $B D(h * B)=1$.

Remarks (1) B is a basis of order h iff $0 \in B$ and $\sigma(h * B)=1$.
(2) A piecewise basis of order h is an upper Banach basis of order h but not vice versa.

Theorem 1 (Plünnecke's inequality for \underline{d})
Let B be a lower asymptotic basis of order h and $A \subseteq \mathbb{N}$. Then

$$
\underline{d}(A+B) \geqslant \underline{d}(A)^{1-\frac{1}{h}} .
$$

Theorem 2 (Plünnecke's inequality not true for \bar{d})

There exists an upper asymptotic basis B of order 2 and a set A with $\bar{d}(A)=\frac{1}{2}$ such that $\bar{d}(A+B)=\bar{d}(A)$.

Theorem 3 (Plünnecke's inequality for $B D$)
Let B be an upper Banach basis of order h and $A \subseteq \mathbb{N}$. Then

$$
B D(A+B) \geqslant B D(A)^{1-\frac{1}{h}}
$$

Inverse Theorem for \bar{d}

Let $A \subseteq \mathbb{N}, 0 \in A, \operatorname{gcd}(A)=1$, and $0<$ $\bar{d}(A)=\alpha<\frac{1}{2}$. Then $\bar{d}(A+A) \geqslant \frac{3}{2} \alpha$. If $\bar{d}(A+A)=\frac{3}{2} \alpha$, then either (a) there exist $k>4$ and $c \in[1, k-1]$ such that $\alpha=\frac{2}{k}$ and

$$
A \subseteq k \mathbb{N} \cup(c+k \mathbb{N})
$$

or (b) for every increasing sequence $\left\langle h_{n}: n \in\right.$ $\mathbb{N}\rangle$ with

$$
\lim _{n \rightarrow \infty} \frac{A\left(0, h_{n}\right)}{h_{n}+1}=\alpha
$$

there exist two sequences $0 \leqslant c_{n} \leqslant b_{n} \leqslant h_{n}$ such that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{A\left(b_{n}, h_{n}\right)}{h_{n}-b_{n}+1}=1, \\
\lim _{n \rightarrow \infty} \frac{c_{n}}{h_{n}}=0,
\end{gathered}
$$

and

$$
\left[c_{n}+1, b_{n}-1\right] \cap A=\emptyset
$$

for every $n \in \mathbb{N}$.

