slides.aux slides.aux

RELATIVE SET THEORY Karel Hrbacek

 $\mathbf{2}$

Department of Mathematics The City College of CUNY New York, NY 10031

Email: khrbacek@nyc.rr.com

May 29, 2008

References:

KH, O. Lessmann and R. O'Donovan, Analysis using Relative Infinitesimals, manuscript, 267 pp., March 19, 2008.

Y. Péraire, *Théorie relative des ensembles intérnes*, Osaka Journ. Math. 29 (1992), 267 - 297.

KH, Internally iterated ultrapowers,
in: Nonstandard Models of Arithmetic and Set Theory,
ed. by A. Enayat and R. Kossak, Contemp. Math. 361,
AMS 2004, 87 - 120.

KH, Relative set theory, in preparation.

V. Kanovei and M. Reeken, Nonstandard Analysis, Axiomatically, xvi + 408 pp., Springer-Verlag Berlin Heidelberg New York, 2004.

Axioms of FRIST

4

Primitive concepts: \in , \sqsubseteq

We postulate all axioms of ZFC (with Separation and Replacement for \in -formulas).

 $\mathcal{P}^{\operatorname{fin}}A$ is the set of all finite subsets of A.

We read $x \sqsubseteq y$ as "x appears at the level of y".

Notation: $x \in \mathbf{V}(y)$ means $x \sqsubseteq y$.

 $x \in \mathbf{V}(x_1, \ldots, x_k)$ means $x \in \mathbf{V}(x_1) \lor \cdots \lor x \in \mathbf{V}(x_k)$.

 $\mathbf{V}(x) \subseteq \mathbf{V}(y)$ means $(\forall z)(z \in \mathbf{V}(x) \Rightarrow z \in \mathbf{V}(y)).$

 $\mathbf{V}(x) \subset \mathbf{V}(y) \text{ means } \mathbf{V}(x) \subseteq \mathbf{V}(y) \land \neg \mathbf{V}(y) \subseteq \mathbf{V}(x).$

Relativization:

 \sqsubseteq is a dense total pre-ordering with a least element 0 and no greatest element.

In detail, the conjunction of the universal closures of:

$$0 \in \mathbf{V}(x) \land x \in \mathbf{V}(x);$$
$$y \in \mathbf{V}(x) \Rightarrow \mathbf{V}(y) \subseteq \mathbf{V}(x);$$
$$\mathbf{V}(x) \subseteq \mathbf{V}(y) \lor \mathbf{V}(y) \subseteq \mathbf{V}(x);$$
$$(\exists y) \mathbf{V}(x) \subset \mathbf{V}(y);$$
$$\mathbf{V}(x) \subset \mathbf{V}(y) \Rightarrow (\exists z)(\mathbf{V}(x) \subset \mathbf{V}(z) \subset \mathbf{V}(y)).$$

Let $\mathcal{P}(x_1, \ldots, x_k)$ be an \in - \sqsubseteq -formula and α a variable (the possibility that it is one of the variables x_1, \ldots, x_k is allowed).

 $\mathcal{P}^{\alpha}(x_1, \ldots, x_k)$ is the formula obtained by replacing each occurrence of $\mathbf{V}(\cdot)$ in $\mathcal{P}(x_1, \ldots, x_k)$ by $\mathbf{V}(\cdot, \alpha)$.

In terms of \sqsubseteq this means that every occurence of \sqsubseteq is replaced by \sqsubseteq_{α} , where $x \sqsubseteq_{\alpha} y$ means $x \sqsubseteq \alpha \lor x \sqsubseteq y$.

Explicitly:

- $(x \in y)^{\alpha}$ is $(x \in y)$;
- $(x \in \mathbf{V}(y))^{\alpha}$ is $(x \in \mathbf{V}(y, \alpha))$;
- $(x = y)^{\alpha}$ is (x = y);
- $(\mathcal{P} \wedge \mathcal{Q})^{\alpha}$ is $(\mathcal{P}^{\alpha} \wedge \mathcal{Q}^{\alpha})$, and similarly for the other connectives;
- $(\forall x \mathcal{P})^{\alpha}$ is $\forall x \ (\mathcal{P}^{\alpha})$ and $(\exists x \mathcal{P})^{\alpha}$ is $\exists x \ (\mathcal{P}^{\alpha})$.

Intuitively, \mathcal{P}^{α} makes the same statement about the level $\mathbf{V}(\alpha)$ as \mathcal{P} makes about $\mathbf{V}(0)$.

Definition. A formula $\mathcal{Q}(x_1, \ldots, x_n)$ is **internal** if it is of the form $\mathcal{P}^{x_1, \ldots, x_k}(x_1, \ldots, x_k)$, for some $\in -\sqsubseteq$ -formula $\mathcal{P}(x_1, \ldots, x_k)$.

Transfer:

If
$$\mathbf{V}(\alpha) \subseteq \mathbf{V}(\beta)$$
 and $x_1, \ldots, x_k \in \mathbf{V}(\alpha)$, then
 $\mathcal{P}^{\alpha}(x_1, \ldots, x_k) \iff \mathcal{P}^{\beta}(x_1, \ldots, x_k).$

Informally:

A statement with parameters from some level is true about this level if and only if it is true about any finer level. Corollaries:

8

Existential Closure Principle

Given a formula $\mathcal{P}(x, x_1, \dots, x_k)$ in the \in -language: If $(\exists x) \mathcal{P}(x, x_1, \dots, x_k)$ is true, then $(\exists x \in \mathbf{V}(x_1, \dots, x_k))\mathcal{P}(x, x_1, \dots, x_k)$ is true.

Universal Closure Principle

Given a formula $\mathcal{P}(x, x_1, \ldots, x_k)$ in the \in -language: If $(\forall x \in \mathbf{V}(x_1, \ldots, x_k))\mathcal{P}(x, x_1, \ldots, x_k)$ is true, then $(\forall x) \mathcal{P}(x, x_1, \ldots, x_k)$ is true.

Standardization:

Given any α and any x_1, \ldots, x_k ; For every A there is $B \in \mathbf{V}(\alpha)$ such that for all $z \in \mathbf{V}(\alpha)$

$$z \in B \iff z \in A \land \mathcal{P}^{\alpha}(z, A, x_1, \dots, x_k).$$

Corollaries:

For every A there is $B \in \mathbf{V}(\alpha)$ such that for all $z \in \mathbf{V}(\alpha)$ $z \in B \iff z \in A \quad (\alpha \text{-shadow of } A).$

Neighbor Principle

If a real number is not superlarge relative to a given level, then there is a real number appearing at that level and superclose to it (relative to that level).

Definition Principle

- 1. Let $\mathcal{P}(x, A, x_1, \dots, x_k)$ be an internal formula. Then there exists a set $B \in \mathbf{V}(A, x_1, \dots, x_k)$ such that $(\forall x) (x \in B \iff x \in A \land \mathcal{P}(x, A, x_1, \dots, x_k)).$
- 2. Let $\mathcal{P}(x, y, A, x_1, \dots, x_k)$ be an internal formula. If

$$(\forall x \in A)(\exists !y)\mathcal{P}(x, y, A, x_1, \dots, x_k),$$

then there is a function $F \in \mathbf{V}(A, x_1, \dots, x_k)$ with domain A such that

 $(\forall x \in A)\mathcal{P}(x, F(x), A, x_1, \dots, x_k).$

Idealization:

For any $\mathbf{V}(\alpha) \subset \mathbf{V}(\beta)$, any $A \in \mathbf{V}(\alpha)$, and any x_1, \ldots, x_k , $(\forall a \in \mathcal{P}^{\mathbf{fin}} A \cap \mathbf{V}(\alpha))(\exists y)(\forall x \in a)\mathcal{P}^{\beta}(x, y, A, x_1, \ldots, x_k)$ $\iff (\exists y)(\forall x \in A \cap \mathbf{V}(\alpha))\mathcal{P}^{\beta}(x, y, A, x_1, \ldots, x_k).$ Corollary:

If $\mathbf{V}(\alpha) \subset \mathbf{V}(\beta),$ then there are natural numbers n such that

$$n \in \mathbf{V}(\beta), \ n \notin \mathbf{V}(\alpha).$$

Local Transfer Principle.

Let $\mathcal{P}(x_1, \ldots, x_k)$ be any \in - \sqsubseteq -formula. If $\mathcal{P}^{\alpha}(x_1, \ldots, x_k)$ holds, then there exists $\gamma \sqsupset \alpha$ such that $\mathcal{P}^{\beta}(x_1, \ldots, x_k)$ holds for all β with $\alpha \sqsubseteq \beta \sqsubset \gamma$.

The point is that x_1, \ldots, x_k are arbitrary; they do not have to belong to $\mathbf{V}(\alpha)$!

Axioms of GRIST:

We strengthen Idealization and Standardization, and add Granularity.

Idealization:

For any $\mathbf{V}(\alpha) \subset \mathbf{V}(\beta)$, any $A \in \mathbf{V}(\alpha)$, and any x_1, \ldots, x_k ,

$$(\forall a \in \mathcal{P}^{\mathbf{fin}} A \cap \mathbf{V}(\alpha))(\exists y)(\forall x \in a)\mathcal{P}^{\beta}(x, y, A, x_1, \dots, x_k) \\ \iff (\exists y)(\forall x \in A)[\mathbf{V}(x) \subset \mathbf{V}(\beta) \Rightarrow \mathcal{P}^{\beta}(x, y, A, x_1, \dots, x_k)].$$

Standardization:

Given A such that $\mathbf{V}(0) \subset \mathbf{V}(A)$, and any x_1, \ldots, x_k , there exists B such that $\mathbf{V}(B) \subset \mathbf{V}(A)$ and, for every β with $\mathbf{V}(B) \subseteq \mathbf{V}(\beta) \subset \mathbf{V}(A)$ and every $z \in \mathbf{V}(\beta)$,

 $z \in B \iff z \in A \land \mathcal{P}^{\beta}(z, A, x_1, \dots, x_k)).$

Granularity:

For any x_1, \ldots, x_k , if $(\exists \alpha) \mathcal{P}^{\alpha}(x_1, \ldots, x_k)$, then $(\exists \alpha) [\mathcal{P}^{\alpha}(x_1, \ldots, x_k) \land (\forall \beta) (\mathbf{V}(\beta) \subset \mathbf{V}(\alpha) \Rightarrow \neg \mathcal{P}^{\beta}(x_1, \ldots, x_k))].$ **Theorem 1.** *GRIST* has an interpretation in *ZFC*, in which V(0) is isomorphic to the universe V of sets of *ZFC*.

The interpretation is given by a complicated limit ultrapower.

Corollary 2. *GRIST* is a conservative extension of ZFC. In particular, *GRIST* is consistent relative to ZFC.

Corollary 3. Every model \mathfrak{M} of **ZFC** has an extension to a model \mathfrak{N} of **GRIST** (where sets of \mathfrak{M} are precisely the sets of \mathfrak{N} that appear at the level $\mathbf{V}(0)$).

Theorem 4. (*Reduction Algorithm*) There is a formula $xM_{\alpha}U$ of the \in - \sqsubseteq -language and a formula S(U) of the \in -language such that

$$(\forall x)(\exists U)[\mathbb{S}(U) \land U \in \mathbf{V}(\alpha) \land x\mathbb{M}_{\alpha}U]; (\forall U)[(\mathbb{S}(U) \land U \in \mathbf{V}(\alpha)) \to (\exists x) x\mathbb{M}_{\alpha}U].$$

Moreover, for every formula $\mathcal{P}(x_1, \ldots, x_k)$ of the \in - \sqsubseteq -language there is a formula $\mathcal{Q}(U)$ of the \in -language (effectively obtained from it) such that

 $\langle x_1,\ldots,x_k\rangle\mathbb{M}_{\alpha}U \Rightarrow (\mathcal{P}^{\alpha}(x_1,\ldots,x_k) \iff \mathcal{Q}(U)).$

Corollary 5. If \mathfrak{N}_1 and \mathfrak{N}_2 are two extensions of a model \mathfrak{M} of **ZFC** to a model of **GRIST**, then they are $L_{\infty,\omega}$ -elementarily equivalent.

Corollary 6. Every countable model \mathfrak{M} of **ZFC** has a unique (up to isomorphism which is identity on \mathfrak{M}) extension to a countable model of **GRIST**.

Corollary 7. If \mathcal{T} is a complete consistent extension of **ZFC** (in \in -language), then $\mathcal{T}+\mathbf{GRIST}$ is a complete consistent theory in the \in - \sqsubseteq -language.

Corollary 8. GRIST is finitely axiomatizable over ZFC.

Corollary 9. If x is uniquely definable in **GRIST** from parameters in V(0), then x belongs to V(0). If $x \notin V(0)$, then for each α there exist $y \in V(\alpha)$, $y \notin V(\beta)$ for any $\beta \sqsubset \alpha$, such that x and y are $\in -\sqsubseteq$ -indiscernible. Let f be a function and a a real number.

If f is differentiable at a, then, for each dx supersmall relative to the level of f and a,

 $f(a + dx) = f(a) + f'(a) \cdot dx + \varepsilon \cdot dx,$

for some $\varepsilon \simeq 0$ (relative to the level of f and a).

A tagged partition of [a; b] is a finite set $\mathcal{P} = \{x_0, x_1, \dots, x_n\}$ where

 $a = x_0 < x_1 < \ldots < x_i < \ldots < x_n = b.$

and a set $\mathcal{T} = \{t_0, \ldots, t_{n-1}\}$ where

$$x_i \le t_i \le x_{i+1}$$
, for $i = 0, \dots, n-1$.

We let

$$dx_i = x_{i+1} - x_i$$

A partition is **fine** if all dx_i are supersmall relative to the context level.

The function f is **Riemann integrable** on [a, b] if there is $R \in \mathbb{R}$ in $\mathbf{V}(f, a, b)$ such that

$$\sum_{i=0}^{n-1} f(t_i) \cdot dx_i \simeq R,$$

for all fine tagged partitions \mathcal{P}, \mathcal{T} of [a; b].

Definition 10. Given a context level and a real number *a*:

- 1. A real number r is a-accessible if $r = \varphi(a)$ for some function $\varphi : \mathbb{R} \to \mathbb{R}$ in the context level.
- 2. A real number $h \neq 0$ is *a*-supersmall if $|h| \leq r$ for all *a*-accessible r > 0.

We say that a function φ is **positive** if $\varphi(x) > 0$ for all x in its domain. It follows immediately from these definitions that $h \neq 0$ is *a*-supersmall if and only if $|h| \leq \varphi(a)$ for all positive $\varphi : \mathbb{R} \to \mathbb{R}$ in the context level.

Theorem 11. The following statements are equivalent:

- 1. $\lim_{x \to a} f(x) = L$
- 2. The number L is a accessible relative to V(f)and f(a+h) - L is a supersmall relative to V(f)(or 0), for all h a supersmall relative to V(f).

Definition 12. A tagged partition $(\mathcal{P}, \mathcal{T})$ is superfine relative to the level $\mathbf{V}(\alpha)$ if each dx_i is t_i -supersmall relative to $\mathbf{V}(\alpha)$.

Theorem 13. If $(\mathcal{P}, \mathcal{T})$ is a superfine partition of [a; b], then every real number $c \in [a; b]$ appearing at the context level belongs to \mathcal{T} .

Theorem 14. Let $a, b \in \mathbb{R}$ and let $\{I_k\}_{k=1}^{\infty}$ be a system of open intervals appearing at the context level. If $(\mathcal{P}, \mathcal{T})$ is a superfine partition of [a; b], then for each $t_i \in \bigcup_{k=1}^{\infty} I_k$ there is some k such that $[x_i; x_{i+1}] \subseteq I_k$.

Definition 15. A function f defined on [a; b] is generalized Riemann integrable on [a; b] if there is a number R appearing at the context level such that

$$\sum_{i=0}^{n-1} f(t_i) \cdot dx_i \simeq R,$$

for all superfine tagged partitions $(\mathcal{P}, \mathcal{T})$ of [a; b].