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Euclid’s Common Notions

1. Things equal to the same thing are also equal to one another.

2. And if equals be added to equals, the wholes are equal.

3. And if equals be subtracted from equals, the remainders are

equal.

4. Things applying [exactly] onto one another are equal to one

another.

5. The whole is greater than the part.

NB We translate εφαρµoζoντα by “applying [exactly] onto”, instead of the

usual “coinciding with”. This translation seems to give a more appropriate

rendering of the Euclidean usage of the verb εφαρµoζειν, which refers to

superposition of congruent figures.
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The presence of the fourth and fifth principles among the Com-

mon Notions in the original Euclid’s treatise is controversial,

notwithstanding the fact that they are explicitly accepted in the

fundamental commentary by Proclus to Euclid’s Book I, where

all the remaining statements included as axioms by Pappus and

others are rejected as spurious additions.

We consider the five principles on a par, since all of them can

be viewed as basic assumptions for any reasonable theory of

magnitudes.
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The 1st Euclidean principle for collections

• Things equal to the same thing are also equal to

one another

essentially states that “having equal sizes” is an equiv-

alence. We write A ≈ B when A and B are equinu-

merous (have equal sizes). The first Euclidean prin-

ciple becomes

E1 (Equinumerosity Principle)

A ≈ C, B ≈ C =⇒ A ≈ B.
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2nd and 3rd Euclidean principles for collections

• And if equals be added to equals, the wholes are equal

• And if equals be subtracted from equals, the remainders are

equal

addition and subtraction are “compatible” with equinumeros-

ity. For collections, sum and difference naturally correspond to

disjoint union and relative complement:

E2 (Sum Principle)

A ≈ A′, B ≈ B′, A ∩B = A′ ∩B′ = ∅ =⇒A ∪B ≈ A′ ∪B′

E3 (Difference Principle)

A ≈ A′, B ≈ B′, B ⊆ A, B′ ⊆ A′ =⇒ A\B ≈ A′\B′
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The 4th Euclidean principle for collections

• Things applying [exactly] onto one another are

equal to one another

. . . the [fourth] Common Notion . . . is intended to as-

sert that superposition is a legitimate way of proving the

equality of two figures . . . or . . . to serve as an axiom of

congruence. ([5], p.225).

i.e.“appropriately faithful” transformations (congru-

ences) preserve sizes: it is a criterion for being equinu-

merous.
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Equinumerosity vs. equipotency

• Cantor: all and only biunique transformations are

size-preserving.

• Cardinal arithmetic: a + b = max (a, b) whenever

the latter is infinite.

No cancellation law, hence 3rd principle E3 fails

(a fortiori no subtraction)
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Isometries vs. congruences

Even the isometries of Euclidean geometry work only for special

classes of bounded geometrical figures.

• Banach-Tarski: a ball can be partitioned into six

pieces that can be used to rebuild two balls identical

to the original one

Without any structure, the 3rd (and 5th) common notion can

be saved only by restricting the meaning of “applying [exactly]

onto” to comprehend only “natural transformations”, such as

permutations and repetitions of components of n-tuples, em-

beddings in higher dimensions, and similars.
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Natural congruences

A notion of congruence appropriate for the 4th Euclidean princi-

ple might include all “natural transformations” that map tuples

to tuples having the same sets of components

• Two tuples are congruent if their respective sets of

components coincide.

• A natural congruence is an injective function map-

ping tuples to congruent tuples.

E4a (Natural Congruence Principle)

X ≈ T [X] for all natural congruences T .
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Generalized Substitutions

A notion of congruence appropriate for the 4th Euclidean princi-

ple might include also all “generalized substitutions” that, fixed

a function f : N → N, take any m-tuple x = (x1, . . . , xm) and

replace the component ai of a fixed n-tuple a = (a1, . . . , an) by

xf(i), whenever possible:

Sa
f(x) = (y1, . . . , yn) where yi =

 xf(i) if 1 ≤ f(i) ≤ m

ai otherwise.

E4b (Generalized Substitution Principle)

{1, . . . , m} ⊆ f [{1, . . . , n}] =⇒ A ≈ Sa
f [A]

for all sets A of m-tuples and any n-tuple a.
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More congruences?

When some algebraic or geometric structure is added, it may

be possible to have more congruences, naturally connected with

this structure.

However a wider class of “isometries” is admissible only after

“appropriately restricting” their domains of application. In fact

any transformation T with an infinite orbit

Γ = {x, Tx, T2x, . . . }

maps Γ onto a proper subset of Γ, so T is not a “congruence”for

Γ itself.

An important example is that of finite dimensional spaces over

wellordered lines, where suitably restricted translations and ho-

motheties can be taken as isometries.
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The 5th Euclidean principle for collections

• The whole is greater than the part

Say that A is smaller than B, written A ≺ B, when A

is equinumerous to a proper subset of B

A ≺ B ⇐⇒ A ≈ A′ ⊂ B

Comparison of sizes must be consistent with equinu-

merosity. So the fifth principle becomes

E5 (Ordering Principle)

A ⊂ B ≈ B′ =⇒ A 6≈ B & A ≺ B′
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The problem of comparability

Homogeneous magnitudes are usually arranged in a

linear ordering.

• Cardinalities of infinite sets are always comparable,

thanks to Zermelo’s Axiom of Choice.

The followig strengthening of the Ordering Principle would be

most wanted (but it may exceed ZFC!)

E5b (Total Ordering Principle)

Exactly one of the following relations always holds:

A ≺ B, A ≈ B, B ≺ A

A weaker alternative could be requiring E5b only for a transitive extension

of the relation ≺.
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Restricted isometries

An interesting point of view considers equinumerosity as wit-

nessed by an appropriate family of “restricted isometries”:

IP (Isometry Principle) There exists a group of trans-

formations T such that

A ≈ B ⇐⇒ ∃T ∈ T A ⊆ dom T & B = T [A].

Remark: IP2 implies both the Half Cantor Principle HCP of [2],

A ≈ B =⇒ |A| = |B|

and half of the ordering principle E5

A ⊂ B ≈ B′ =⇒ A ≺ B′
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The algebra of numerosities

Measuring size amounts to associating suitable “numbers” (nu-

merosities) to the equivalence classes of equinumerous collec-

tions. Sum and ordering of numerosities can be naturally de-

fined à la Cantor

(sum) n(X)+n(Y ) = n(X∪Y ) whenever X∩Y = ∅;

(ord) n(X) ≤ n(Y ) if and only if X � Y .

thanks to the principles E2, E3, and E5a.

A “satisfactory” algebra of numerosities should also compre-

hend a product, so as to obtain (the non-negative part of) a

(discretely) ordered ring.
(This condition was in fact the starting point of the theory outlined in [2].)



15

The product of numerosities

One could view the notion of measure as originating from the

length of lines, and later extended to higher dimensions by

means of products. In classical geometry, a product of lines is

usually intended as the corresponding rectangle. So one could

use Cartesian products in defining the product of numerosities.

The natural “arithmetical” idea that multiplication is an iterated

addition of equals is consistent with the “geometrical” idea of

rectangles, because the Cartesian product A×B can be naturally

viewed as the union of “B-many disjoint copies” of A

A×B =
⋃

b∈B
Ab, where Ab = {(a, b) | a ∈ A }.

• But is Ab a “faithful copy” of A?
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The Product Principle

• Let A = {b, (b, b), ((b, b), b), . . . , (((. . . , b), b), b), . . .}

Ab = A×{b} is a proper subset of A, so (the numerosity of) the

singleton {b} is not an identity w.r.t. (the numerosity of) A.

A disjointness constraint, stronger than that of the Sum Prin-

ciple E2, e.g.

TC(A) ∩ TC(B) = TC(A′) ∩ TC(B′) = ∅

has to be put in the following

PP (Product Principle)

A ≈ A′, B ≈ B′ =⇒ A×B ≈ A′ ×B′
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An “Axiom der Beschränkung”

We can avoid the introduction of restrictions on prod-

ucts by considering only finite dimensional point sets,

i.e. subsets of the n-dimensional spaces En(L) built

over any “line” L, where “paradoxical” sets of the

kind of A cannot appear.

It amounts to assuming an “Axiom der Beschränkung”,

similar to that commonly used in admitting only well-

founded sets.
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Finite dimensional point-sets

• Fix a “base line” L (an arbitrary set or class)

• En(L) = the n-dimensional Euclidean space over L,

i.e. the collection of all n-tuples of elements of L.

• n-dimensional point-set (over L) = subset of En(L)

• given point-sets X ∈ Eh(L) and Y ∈ Ek(L), iden-

tify the Cartesian product X × Y with the (h + k)-

dimensional point-set obtained by concatenation, i.e.

{(z1, . . . , zh+k) | (z1, . . . , zh) ∈ X, (zh+1, . . . , zh+k) ∈ Y }
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Full families of point-sets over L

We consider families of point-sets over L, which are

sufficiently rich so as to make Euclid’s principles work.

Call
W ⊆ ⋃

n∈N
P(En(L))

a full family of point-sets over L if

• X ⊆ Y ∈ W =⇒ X ∈ W

• X, Y ∈ W =⇒ X × Y ∈ W

• X ∈ W =⇒ T [X] ∩ En(L) ∈ W for every natural

congruence T
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Numerosity on a full family of point-sets

Definition . Let W be a full family of point-sets over L. An

equinumerosity relation for W is an equivalence ≈ satisfying the

following conditions for all X, Y ∈ W:

(e1) X ≈ Y ⇐⇒ X \ Y ≈ Y \X

(e2) X ≈ X ′ =⇒ X × Y ≈ X ′ × Y

(e3) X ≈ {x} ×X for all x ∈ L

(e4) X ≈ T [X] for every natural congruence T

(e5a) X ⊂ Y ≈ Y ′ =⇒ ∃X ′ ⊂ Y ′ X ≈ X ′ 6≈ Y ′.

The equinumerosity ≈ is Euclidean if (e5a) is strengthened to

(e5b) for all X, Y , exactly one of the conditions X ≈ Y , X ≺ Y ,

Y ≺ X holds .
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Theorem.Any equinumerosity relation satisfies the

five Euclidean principles E1-E5a together with the

product principle PP. Moreover the Total Ordering

Principle E5b is fulfilled if and only if the equinu-

merosity is Euclidean.

• finite point-sets receive their “number of elements”

as numerosities:

Proposition. Let A, B be finite. Then

A ≈ B ⇐⇒ |A| = |B|

Moreover, if X is infinite, then A ≺ X.
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The algebra of numerosities

A surjective map n : W → N is a numerosity function corre-

sponding to the equinumerosity relation ≈ if

n(X) = n(Y ) ⇐⇒ X ≈ Y.

Define +, · and < on N by

(sum) n(X) + n(Y ) = n(X ∪ Y ) whenever X ∩ Y = ∅;
(prod) n(X) · n(Y ) = n(X × Y ) for all X, Y ;

(ord) n(X) < n(Y ) if and only if X ≺ Y .

Theorem.The structure 〈N,+, ·, <〉 is a positive subsemiring of

a partially ordered discrete ring, and N can be taken as an initial

segment of N. N is the positive part of a discretely ordered ring

if and only if n is Euclidean.
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The natural series

Let T = {ta | a ∈ L} be a family of indeterminates over Q, indexed by L. Let

R ⊆ Z[[T]] be the set of all formal series in T of bounded degree (i.e. the

subring generated by the homogeneous series).

• To each point x = (x1, . . . , xd) ∈ Ed(L) associate the monomial

tx = tx1 . . . txd

• The natural series of the point set X ⊆ ⋃
d≤n Ed(L) is the

formal sum X∑
=

∑
x∈X

tx ∈ R

• natural series behave well w.r.t. disjoint unions and Cartesian

products: X∑
+

Y∑
=

X∪Y∑
+

X∩Y∑
and

X×Y∑
=

X∑
·

Y∑



24

• Let σ be obtained from σ ∈ R by replacing each monomial by

the corresponding squarefree monomial and summing up the

coefficients, and put

σ ≤∗ τ ⇐⇒ σ ≤ τ (coefficientwise)

• Let i be the ideal of R generated by {σ − σ | σ ∈ R}, and let

R = R/i be the corresponding (partially ordered) quotient

ring.

• Let RW be the subring of R generated by the natural series

σX for X ∈ W, and let RW = RW/i∩RW be the corresponding

(partially ordered) quotient ring.



25

Theorem .Let ≈ be an equinumerosity relation on

a full family W. There exists a prime ideal p ⊇ i ∩RW
of the ring RW such that, for all X, Y ∈ W,

X ≈ Y ⇐⇒ σX − σY ∈ p

moreover

σX <∗ σY =⇒ X ≺ Y

The equinumerosity ≈ is Euclidean if and only if for

all X, Y ∈ W there exists Z ∈ W such that

σX − σY ± σZ ∈ p
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Nonstandard numbers as numerosities

Let I = [L]<ω be the family of all finite subsets of L.

For σ ∈ R and F ∈ I let

σF =
∑

G⊆F
ξG,

where ξF is the coefficient of the monomial tF =
∏

a∈F ta in the

squarefree series σ, so σF is ‘’the value of σ on the characteristic

function of F”. Put

Φ(σ) = 〈σF | F ∈ I〉

The map Φ : R → ZI is a ring homomorphism whose kernel

includes i, and σ <∗ τ =⇒ Φσ < Φ(τ).
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Let U be a nonprincipal ultrafilter on I, let W be the

family of all finite dimensional point sets over L, and

for X ∈ W put

nU = Φ(σX) mod U

Corollary 1.The map nU : W → ZIU is a numeros-

ity function, whose range NU ⊆ NIU is a semiring of

nonstandard integers. The equinumerosity ≈U corre-

sponding to nU is Euclidean if and only if the range

NU is an initial segment of NIU.
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The countable line

Let L be countable, and let I = [L]<ω. Then for any ultrafilter

V on N there exist ultrafilters U on I such that NIU
∼= NN

V.

A nonprincipal ultrafilter V on N is Euclidean if every polyno-

mially bounded function f : N → N is V-equivalent to a nonde-

creasing function. Notice that

V Ramsey =⇒ V Euclidean =⇒ V P-point

Corollary 2.The numerosity function nU is Euclidean

if and only if the set of numerosities NU is isomor-

phic to a proper initial segment of the ultrapower NN
V

modulo an Euclidean ultrafilter V.
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Countable pointsets on arbitrary lines

Let |L| = κ be uncountable, let I = [L]<ω, and let W be the

family of all countable point sets over L.

A nonprincipal ultrafilter U on I is countably Euclidean if there

exists an Euclidean ultrafilter V on N such that

N[X]<ω

UX

∼= NN
V for all countable X ⊆ L

where UX is the ultrfilter induced by U on [X]<ω.

Corollary 3.The numerosity function nU is Euclidean if and only

if the ultrafilter U is countably Euclidean, and so there exists an

Euclidean ultrafilter V over N such that the set of numerosities

NU is isomorphic to an initial segment of the ultrapower NN
V
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The real line

Let W0 be the family of all countable point sets over R, and

let W be the family of all point sets over R.

• A countably Euclidean ultrafilter U on I = [R]<ω is weakly

Euclidean if for each uncountable κ ≤ c there exists an ultrafilter

Uκ on κ such that

N[X]<ω

UX

∼= Nκ
Uκ

for all X ∈ [R]κ

where UX is the ultrfilter induced by U on [X]<ω.

• If there exist a countably Euclidean ultrafilter, then there ex-

ist a weakly Euclidian ultrafilter U such that the numerosity

function nU defined on W is continuous w.r.t. normal approxi-

mations.

• We conjecture that no such numerosity on W can be Euclidean
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Set theoretic commitments

• Assuming the Continuum Hypothesis every filter on [N]<ω can

be refined to a countably Ramsey ultrafilter on [R]<ω.

• The existence of Euclidean ultrafilters is independent of ZFC.

A sufficient condition is c = cov(B)

• If there exists Euclidean ultrafilters on N, then there exist

countably Euclidean ultrafilters on [ωn]<ω.

• A sufficient condition for the existence of countably Euclidean

ultrafilters on [λ]<ω is that both κℵ0 = κ+ and 2κ hold for all

singular cardinals κ < λ of countable cofinality.
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