Stochastic Navier-Stokes equations: ideas and results using nonstandard analysis

Nigel J. Cutland University of York, UK e-mail: nc507@york.ac.uk

(Joint with Marek Capiński, Jerry Keisler, Kasia Grzesiak, Brendan Enright)

UltraMath 2008 Pisa June 2008

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

$$\begin{cases} du = \left[\nu \Delta u - \langle u, \nabla \rangle u + f(t, u) - \nabla \rho\right] dt + g(t, u) dw_t \\ \operatorname{div} u = 0 \end{cases}$$

 $u(t, x, \omega) =$ (random) velocity of the fluid at the location $x \in D$ at time t:

 $u: [0,\infty) \times D \times \Omega \to \mathbb{R}^d$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

 Ω = domain of an underlying probability space.

$$\begin{cases} du = \left[\nu \Delta u - \langle u, \nabla \rangle u + f(t, u) - \nabla p\right] dt + g(t, u) dw_t \\ \operatorname{div} u = 0 \end{cases}$$

 $u(t, x, \omega) = (random)$ velocity of the fluid at the location $x \in D$ at time t:

$$u: [0,\infty) imes D imes \Omega o \mathbb{R}^d$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

 Ω = domain of an underlying probability space. Initial condition $u(0) = u_0$ (may be random); boundary condition is either u(t,x) = 0 for $x \in \partial D$ (or sometimes periodic for d = 2).

$$\begin{cases} du = \left[\nu \Delta u - \langle u, \nabla \rangle u + f(t, u) - \nabla \rho\right] dt + g(t, u) dw_t \\ \operatorname{div} u = 0 \end{cases}$$

 $u(t, x, \omega) = (random)$ velocity of the fluid at the location $x \in D$ at time t:

$$u: [0,\infty) imes D imes \Omega o \mathbb{R}^d$$

 Ω = domain of an underlying probability space. Initial condition $u(0) = u_0$ (may be random); boundary condition is either u(t,x) = 0 for $x \in \partial D$ (or sometimes periodic for d = 2). First solutions in d = 3: Capiński & NJC (1991) using Loeb space methods.

$$\begin{cases} du = \left[\nu \Delta u - \langle u, \nabla \rangle u + f(t, u) - \nabla \rho\right] dt + g(t, u) dw_t \\ \operatorname{div} u = 0 \end{cases}$$

 $u(t, x, \omega) = (random)$ velocity of the fluid at the location $x \in D$ at time t:

$$u: [0,\infty) imes D imes \Omega o \mathbb{R}^d$$

 Ω = domain of an underlying probability space. Initial condition $u(0) = u_0$ (may be random); boundary condition is either u(t, x) = 0 for $x \in \partial D$ (or sometimes periodic for d = 2). First solutions in d = 3: Capiński & NJC (1991) using Loeb space methods. Methods extend to give results on:

$$\begin{cases} du = \left[\nu \Delta u - \langle u, \nabla \rangle u + f(t, u) - \nabla \rho\right] dt + g(t, u) dw_t \\ \operatorname{div} u = 0 \end{cases}$$

 $u(t, x, \omega) = (random)$ velocity of the fluid at the location $x \in D$ at time t:

$$u: [0,\infty) imes D imes \Omega o \mathbb{R}^d$$

 Ω = domain of an underlying probability space. Initial condition $u(0) = u_0$ (may be random); boundary condition is either u(t,x) = 0 for $x \in \partial D$ (or sometimes periodic for d = 2). First solutions in d = 3: Capiński & NJC (1991) using Loeb space methods. Methods extend to give results on:

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

attractors for sNSe

$$\begin{cases} du = \left[\nu \Delta u - \langle u, \nabla \rangle u + f(t, u) - \nabla \rho\right] dt + g(t, u) dw_t \\ \operatorname{div} u = 0 \end{cases}$$

 $u(t, x, \omega) = (random)$ velocity of the fluid at the location $x \in D$ at time t:

$$u: [0,\infty) imes D imes \Omega o \mathbb{R}^d$$

 Ω = domain of an underlying probability space. Initial condition $u(0) = u_0$ (may be random); boundary condition is either u(t,x) = 0 for $x \in \partial D$ (or sometimes periodic for d = 2). First solutions in d = 3: Capiński & NJC (1991) using Loeb space methods. Methods extend to give results on:

- attractors for sNSe
- optimal control theory for sNSe

$$\begin{cases} du = \left[\nu \Delta u - \langle u, \nabla \rangle u + f(t, u) - \nabla \rho\right] dt + g(t, u) dw_t \\ \operatorname{div} u = 0 \end{cases}$$

 $u(t, x, \omega) = (random)$ velocity of the fluid at the location $x \in D$ at time t:

$$u: [0,\infty) imes D imes \Omega o \mathbb{R}^d$$

 Ω = domain of an underlying probability space. Initial condition $u(0) = u_0$ (may be random); boundary condition is either u(t,x) = 0 for $x \in \partial D$ (or sometimes periodic for d = 2). First solutions in d = 3: Capiński & NJC (1991) using Loeb space methods. Methods extend to give results on:

- attractors for sNSe
- optimal control theory for sNSe
- nonhomogeneous (i.e. non-constant density) sNSe.

$$\begin{cases} du = \left[\nu \Delta u - \langle u, \nabla \rangle u + f(t, u) - \nabla \rho\right] dt + g(t, u) dw_t \\ \operatorname{div} u = 0 \end{cases}$$

 $u(t, x, \omega) = (random)$ velocity of the fluid at the location $x \in D$ at time t:

$$u: [0,\infty) imes D imes \Omega o \mathbb{R}^d$$

 Ω = domain of an underlying probability space. Initial condition $u(0) = u_0$ (may be random); boundary condition is either u(t, x) = 0 for $x \in \partial D$ (or sometimes periodic for d = 2). First solutions in d = 3: Capiński & NJC (1991) using Loeb space methods. Methods extend to give results on:

attractors for sNSe

optimal control theory for sNSe

■ nonhomogeneous (i.e. non-constant density) sNSe.

Aim of the talk: to sketch informally the Loeb space approach and what can be achieved in these areas.

Set $\mathcal{H} = \{ u \in C_0^{\infty}(D, \mathbb{R}^d) : \text{ div } u = 0 \}$ with norms |u| and ||u|| derived from

$$(u,v) = \sum_{j=1}^{d} \int_{D} u^{j}(x)v^{j}(x)dx, \qquad ((u,v)) = \sum_{j=1}^{d} \left(\frac{\partial u}{\partial x_{j}}, \frac{\partial v}{\partial x_{j}}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\mathbf{H} = \text{closure of } \mathcal{H} \text{ in the norm } |u| \text{ and } \mathbf{V} \text{ is the closure in norm } |u| + ||u||.$

Set $\mathcal{H} = \{ u \in C_0^\infty(D, \mathbb{R}^d) : \text{ div } u = 0 \}$ with norms |u| and ||u|| derived from

$$(u,v) = \sum_{j=1}^{d} \int_{D} u^{j}(x) v^{j}(x) dx, \qquad ((u,v)) = \sum_{j=1}^{d} \left(\frac{\partial u}{\partial x_{j}}, \frac{\partial v}{\partial x_{j}} \right)$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

H = closure of \mathcal{H} in the norm |u| and V is the closure in norm |u| + ||u||. H and V are Hilbert spaces with scalar products (\cdot, \cdot) and $((\cdot, \cdot))$ resp.

Set $\mathcal{H} = \{ u \in C_0^\infty(D, \mathbb{R}^d) : \text{ div } u = 0 \}$ with norms |u| and ||u|| derived from

$$(u,v) = \sum_{j=1}^{d} \int_{D} u^{j}(x)v^{j}(x)dx, \qquad ((u,v)) = \sum_{j=1}^{d} \left(\frac{\partial u}{\partial x_{j}}, \frac{\partial v}{\partial x_{j}}\right)$$

H = closure of \mathcal{H} in the norm |u| and **V** is the closure in norm |u| + ||u||. **H** and **V** are Hilbert spaces with scalar products (\cdot, \cdot) and $((\cdot, \cdot))$ resp. A = self adjoint extension of the projection of $-\Delta$ in **H**; A has an orthonormal basis $\{e_k\}$ of eigenfunctions with eigenvalues $0 < \lambda_k \nearrow \infty$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Set $\mathcal{H} = \{ u \in C_0^\infty(D, \mathbb{R}^d) : \text{ div } u = 0 \}$ with norms |u| and ||u|| derived from

$$(u,v) = \sum_{j=1}^{d} \int_{D} u^{j}(x)v^{j}(x)dx, \qquad ((u,v)) = \sum_{j=1}^{d} \left(\frac{\partial u}{\partial x_{j}}, \frac{\partial v}{\partial x_{j}}\right)$$

H = closure of \mathcal{H} in the norm |u| and **V** is the closure in norm |u| + ||u||. **H** and **V** are Hilbert spaces with scalar products (\cdot, \cdot) and $((\cdot, \cdot))$ resp. A = self adjoint extension of the projection of $-\Delta$ in **H**; A has an orthonormal basis $\{e_k\}$ of eigenfunctions with eigenvalues $0 < \lambda_k \nearrow \infty$. $\mathbf{H}_m = \operatorname{span}\{e_1, \ldots, e_m\} \subset \mathbf{V}$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Set $\mathcal{H} = \{ u \in C_0^\infty(D, \mathbb{R}^d) : \text{ div } u = 0 \}$ with norms |u| and ||u|| derived from

$$(u,v) = \sum_{j=1}^{d} \int_{D} u^{j}(x)v^{j}(x)dx, \qquad ((u,v)) = \sum_{j=1}^{d} \left(\frac{\partial u}{\partial x_{j}}, \frac{\partial v}{\partial x_{j}}\right)$$

H = closure of \mathcal{H} in the norm |u| and **V** is the closure in norm |u| + ||u||. **H** and **V** are Hilbert spaces with scalar products (\cdot, \cdot) and $((\cdot, \cdot))$ resp. A = self adjoint extension of the projection of $-\Delta$ in **H**; A has an orthonormal basis $\{e_k\}$ of eigenfunctions with eigenvalues $0 < \lambda_k \nearrow \infty$. $\mathbf{H}_m = \operatorname{span}\{e_1, \ldots, e_m\} \subset \mathbf{V}$. The operator B(u) is defined by $B(u)w = (\langle u, \nabla \rangle u, w)$.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Set $\mathcal{H} = \{ u \in C_0^{\infty}(D, \mathbb{R}^d) : \text{ div } u = 0 \}$ with norms |u| and ||u|| derived from

$$(u,v) = \sum_{j=1}^{d} \int_{D} u^{j}(x)v^{j}(x)dx, \qquad ((u,v)) = \sum_{j=1}^{d} \left(\frac{\partial u}{\partial x_{j}}, \frac{\partial v}{\partial x_{j}}\right)$$

H = closure of \mathcal{H} in the norm |u| and **V** is the closure in norm |u| + ||u||. **H** and **V** are Hilbert spaces with scalar products (\cdot, \cdot) and $((\cdot, \cdot))$ resp. A = self adjoint extension of the projection of $-\Delta$ in **H**; A has an orthonormal basis $\{e_k\}$ of eigenfunctions with eigenvalues $0 < \lambda_k \nearrow \infty$. $\mathbf{H}_m = \operatorname{span}\{e_1, \ldots, e_m\} \subset \mathbf{V}$. The operator B(u) is defined by $B(u)w = (\langle u, \nabla \rangle u, w)$. The sNSe are now formulated as a stochastic differential equation in **H**:

$$du = [-\nu Au - B(u) + f(t, u)]dt + g(t, u)dw_t$$

Initially regard this as an equation in \mathbf{V}' (the dual of \mathbf{V}) although it turns out that solutions live in \mathbf{H} (and in fact in \mathbf{V} for almost all times).

$$du = [-\nu A u - B(u) + f(t, u)]dt + g(t, u)dw_t$$
(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The equation is understood as a weak *integral* equation :

$$u(t) = u_0 + \int_0^t [\nu A u(s) - B(u(s)) + f(s, u(s))] ds + \int_0^t g(s, u(s)) dw_s$$

the first $\int =$ Bochner integral; the second $\int =$ Ichikawa's extension of the Itô integral to Hilbert spaces; evaluated by testing against functions in **V**.

$$du = [-\nu Au - B(u) + f(t, u)]dt + g(t, u)dw_t$$
(1)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The equation is understood as a weak *integral* equation :

$$u(t) = u_0 + \int_0^t [\nu A u(s) - B(u(s)) + f(s, u(s))] ds + \int_0^t g(s, u(s)) dw_s$$

the first $\int =$ Bochner integral; the second $\int =$ lchikawa's extension of the ltô integral to Hilbert spaces; evaluated by testing against functions in **V**. The noise $w : [0, \infty) \times \Omega \rightarrow \mathbf{H}$ is a Wiener process with trace class covariance.

$$du = [-\nu Au - B(u) + f(t, u)]dt + g(t, u)dw_t$$
(1)

The equation is understood as a weak *integral* equation :

$$u(t) = u_0 + \int_0^t [\nu A u(s) - B(u(s)) + f(s, u(s))] ds + \int_0^t g(s, u(s)) dw_s$$

the first $\int =$ Bochner integral; the second $\int =$ Ichikawa's extension of the Itô integral to Hilbert spaces; evaluated by testing against functions in **V**. The noise $w : [0, \infty) \times \Omega \rightarrow \mathbf{H}$ is a Wiener process with trace class covariance. The coefficients

$$g:[0,\infty) imes {f V} o L({f H},{f H}) \qquad ext{and} \qquad f:[0,\infty) imes {f V} o {f V}'.$$

can be quite general - we only need appropriate continuity and growth conditions. (The restriction to V in the domains is sufficient because solutions will lie in V for almost all times.)

$$du = [-\nu Au - B(u) + f(t, u)]dt + g(t, u)dw_t$$
(1)

The equation is understood as a weak *integral* equation :

$$u(t) = u_0 + \int_0^t [\nu A u(s) - B(u(s)) + f(s, u(s))] ds + \int_0^t g(s, u(s)) dw_s$$

the first $\int =$ Bochner integral; the second $\int =$ lchikawa's extension of the ltô integral to Hilbert spaces; evaluated by testing against functions in **V**. The noise $w : [0, \infty) \times \Omega \rightarrow \mathbf{H}$ is a Wiener process with trace class covariance. The coefficients

$$g:[0,\infty) imes V
ightarrow L(H,H)$$
 and $f:[0,\infty) imes V
ightarrow V'.$

can be quite general - we only need appropriate continuity and growth conditions. (The restriction to **V** in the domains is sufficient because solutions will lie in **V** for almost all times.) **Note** The pressure has disappeared, because $\nabla p = 0$ in **V**'.

Theorem

For any $u_0 \in H$ and given f, g there is an adapted probability space Ω carrying an H-valued Wiener process w and a (weak) solution of the stochastic Navier–Stokes equations.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem

For any $u_0 \in H$ and given f, g there is an adapted probability space Ω carrying an H-valued Wiener process w and a (weak) solution of the stochastic Navier–Stokes equations.

That is, an adapted stochastic process $u:[0,\infty) imes\Omega o H$ such that for a.a. ω

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem

For any $u_0 \in H$ and given f, g there is an adapted probability space Ω carrying an H-valued Wiener process w and a (weak) solution of the stochastic Navier–Stokes equations.

That is, an adapted stochastic process $u:[0,\infty) imes\Omega o H$ such that for a.a. ω

うして ふゆう ふほう ふほう うらう

(i) $u(\cdot,\omega) \in L^2(0,T;V) \cap L^\infty(0,T;H) \cap C(0,T;H_{weak})$ for all $T < \infty$,

Theorem

For any $u_0 \in H$ and given f, g there is an adapted probability space Ω carrying an H-valued Wiener process w and a (weak) solution of the stochastic Navier–Stokes equations.

That is, an adapted stochastic process $u : [0, \infty) \times \Omega \to H$ such that for a.a. ω (i) $u(\cdot, \omega) \in L^2(0, T; V) \cap L^{\infty}(0, T; H) \cap C(0, T; H_{weak})$ for all $T < \infty$, (ii) for all $t \ge 0$

$$u(t) = u_0 + \int_0^t [\nu A u(s) - B(u(s)) + f(s, u(s))] ds + \int_0^t g(s, u(s)) dw_s$$

うして ふゆう ふほう ふほう うらう

$$u(t) = u_0 + \int_0^t [\nu A u(s) - B(u(s)) + f(s, u(s))] ds + \int_0^t g(s, u(s)) dw_s$$

$$u(t) = u_0 + \int_0^t [\nu A u(s) - B(u(s)) + f(s, u(s))] ds + \int_0^t g(s, u(s)) dw_s$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

(1) solve an approximate version (the *Galerkin* approximation) in each finite dimensional space \mathbf{H}_n on a probability space Ω_n with Wiener process w_n

$$u(t) = u_0 + \int_0^t [\nu A u(s) - B(u(s)) + f(s, u(s))] ds + \int_0^t g(s, u(s)) dw_s$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(1) solve an approximate version (the *Galerkin* approximation) in each finite dimensional space \mathbf{H}_n on a probability space Ω_n with Wiener process w_n (2) pass to the limit as $n \to \infty$

$$u(t) = u_0 + \int_0^t [\nu A u(s) - B(u(s)) + f(s, u(s))] ds + \int_0^t g(s, u(s)) dw_s$$

(1) solve an approximate version (the *Galerkin* approximation) in each finite dimensional space \mathbf{H}_n on a probability space Ω_n with Wiener process w_n (2) pass to the limit as $n \to \infty$

This needs specialized compactness theorems and ways to enlarge the spaces Ω_n to a "limit" probability space (which may depend on the solution).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

$$u(t) = u_0 + \int_0^t [\nu A u(s) - B(u(s)) + f(s, u(s))] ds + \int_0^t g(s, u(s)) dw_s$$

(1) solve an approximate version (the *Galerkin* approximation) in each finite dimensional space \mathbf{H}_n on a probability space Ω_n with Wiener process w_n (2) pass to the limit as $n \to \infty$

This needs specialized compactness theorems and ways to enlarge the spaces Ω_n to a "limit" probability space (which may depend on the solution). Loeb space methods provide a single space Ω (a Loeb space) and a Wiener process w carrying solutions for all (random) initial conditions and all f, g. This makes them powerful for discussing attractors and optimal control theory for sNSe. Loeb spaces are saturated and homogeneous.

| ◆ □ ▶ → □ ▶ → □ ▶ → □ ● ○ ○ ○ ○

NONSTANDARD ANALYSIS The *hyperreals* or *nonstandard reals* $*\mathbb{R} \supset \mathbb{R}$ is a field such that $*\mathbb{R}$ contains non-zero *infinitesimal numbers*; and positive and negative *infinite numbers* using the following definitions:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let $x \in \mathbb{R}$. We say that

(i) x is infinitesimal if $|x| < \varepsilon$ for all $\varepsilon > 0, \varepsilon \in \mathbb{R}$;

NONSTANDARD ANALYSIS The *hyperreals* or *nonstandard reals* $*\mathbb{R} \supset \mathbb{R}$ is a field such that $*\mathbb{R}$ contains non-zero *infinitesimal numbers*; and positive and negative *infinite numbers* using the following definitions:

(ロ) (型) (E) (E) (E) (O)

```
Let x \in {}^*\mathbb{R}. We say that
(i) x is infinitesimal if |x| < \varepsilon for all \varepsilon > 0, \varepsilon \in \mathbb{R};
(ii) x is finite if |x| < r for some r \in \mathbb{R};
```

NONSTANDARD ANALYSIS The *hyperreals* or *nonstandard reals* $*\mathbb{R} \supset \mathbb{R}$ is a field such that $*\mathbb{R}$ contains non-zero *infinitesimal numbers*; and positive and negative *infinite numbers* using the following definitions:

(ロ) (型) (E) (E) (E) (O)

```
Let x \in {}^*\mathbb{R}. We say that
(i) x is infinitesimal if |x| < \varepsilon for all \varepsilon > 0, \varepsilon \in \mathbb{R};
(ii) x is finite if |x| < r for some r \in \mathbb{R};
(iii) x is infinite if |x| > r for all r \in \mathbb{R}.
```

NONSTANDARD ANALYSIS The *hyperreals* or *nonstandard reals* $\mathbb{R} \supset \mathbb{R}$ is a field such that \mathbb{R} contains non-zero *infinitesimal numbers*; and positive and negative *infinite numbers* using the following definitions:

Let $x \in {}^*\mathbb{R}$. We say that (i) x is infinitesimal if $|x| < \varepsilon$ for all $\varepsilon > 0$, $\varepsilon \in \mathbb{R}$; (ii) x is finite if |x| < r for some $r \in \mathbb{R}$; (iii) x is infinite if |x| > r for all $r \in \mathbb{R}$. (iv) x and y are infinitely close, denoted by $x \approx y$, if x - y is infinitesimal. (So $x \approx 0$ means that x is infinitesimal)

うして ふゆう ふほう ふほう うらう

NONSTANDARD ANALYSIS The *hyperreals* or *nonstandard reals* $\mathbb{R} \supset \mathbb{R}$ is a field such that \mathbb{R} contains non-zero *infinitesimal numbers*; and positive and negative *infinite numbers* using the following definitions:

Let $x \in {}^*\mathbb{R}$. We say that (i) x is infinitesimal if $|x| < \varepsilon$ for all $\varepsilon > 0$, $\varepsilon \in \mathbb{R}$; (ii) x is finite if |x| < r for some $r \in \mathbb{R}$; (iii) x is infinite if |x| > r for all $r \in \mathbb{R}$. (iv) x and y are infinitely close, denoted by $x \approx y$, if x - y is infinitesimal. (So $x \approx 0$ means that x is infinitesimal) One way to construct ${}^*\mathbb{R}$ is as an *ultrapower* of the reals

$${}^*\mathbb{R}=\mathbb{R}^{\mathbb{N}}\mathcal{U}$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

where \mathcal{U} is a nonprincipal ultrafilter (or maximal filter) on \mathbb{N} .

NONSTANDARD ANALYSIS The *hyperreals* or *nonstandard reals* $\mathbb{R} \supset \mathbb{R}$ is a field such that \mathbb{R} contains non-zero *infinitesimal numbers*; and positive and negative *infinite numbers* using the following definitions:

Let $x \in {}^*\mathbb{R}$. We say that (i) x is infinitesimal if $|x| < \varepsilon$ for all $\varepsilon > 0$, $\varepsilon \in \mathbb{R}$; (ii) x is finite if |x| < r for some $r \in \mathbb{R}$; (iii) x is infinite if |x| > r for all $r \in \mathbb{R}$. (iv) x and y are infinitely close, denoted by $x \approx y$, if x - y is infinitesimal. (So $x \approx 0$ means that x is infinitesimal) One way to construct ${}^*\mathbb{R}$ is as an *ultrapower* of the reals

$${}^*\mathbb{R}=\mathbb{R}^{\mathbb{N}}\mathcal{U}$$

(日) (伊) (日) (日) (日) (0) (0)

where \mathcal{U} is a nonprincipal ultrafilter (or maximal filter) on \mathbb{N} . An example of a non-zero infinitesimal is given by $(1, \frac{1}{2}, \frac{1}{3}, \ldots)\mathcal{U}$. Define addition and multiplication on ${}^*\mathbb{R}$ pointwise (this is safe) and it is then easy to see that

 $(^*\mathbb{R},+,\times,<)$ is an ordered field.

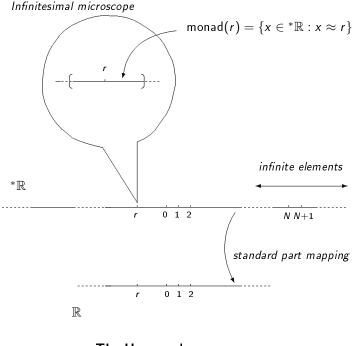
▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

Define addition and multiplication on ${}^*\mathbb{R}$ pointwise (this is safe) and it is then easy to see that

 $(*\mathbb{R},+,\times,<)$ is an ordered field.

A good way to picture $*\mathbb{R}$ is as follows (note that some features in the diagram are yet to be explained).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()



The Hyperreals

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Now extend *all* sets A, functions f and relations R on \mathbb{R} to $*\mathbb{R}$ pointwise – with the extensions denoted by *A, *f and *R.

Examples: $*\mathbb{N}, *\mathbb{Z}$ and $*\mathbb{Q}$, the sets of *hypernatural numbers, hyperintegers* and *hyperrationals* respectively. We can talk about an infinite (hyper)natural number N.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 $\varphi \quad \text{holds in} \quad \mathbb{R} \quad \iff \quad {}^*\varphi \quad \text{holds in} \quad {}^*\mathbb{R}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\varphi \ \text{holds in} \ \mathbb{R} \quad \Longleftrightarrow \quad {}^*\varphi \ \text{holds in} \ {}^*\mathbb{R}$

A *first order* statement φ (respectively $*\varphi$): refers to elements of \mathbb{R} (respectively $*\mathbb{R}$), both fixed and variable, and to fixed relations and functions f, R (respectively *f, *R), with quantification ($\forall x, \exists y$) only for *elements*.

うして ふゆう ふほう ふほう うらう

 $\varphi \ \text{holds in} \ \mathbb{R} \quad \Longleftrightarrow \quad {}^*\varphi \ \text{holds in} \ {}^*\mathbb{R}$

A first order statement φ (respectively $*\varphi$): refers to elements of \mathbb{R} (respectively $*\mathbb{R}$), both fixed and variable, and to fixed relations and functions f, R (respectively *f, *R), with quantification ($\forall x, \exists y$) only for elements. To get back to \mathbb{R} from $*\mathbb{R}$:

Theorem (Standard Part Theorem)

If $x \in \mathbb{R}$ is finite, then there is a unique $r \in \mathbb{R}$ such that $x \approx r$; i.e. any finite hyperreal x is uniquely expressible as $x = r + \delta$ with r a standard real and δ infinitesimal.

うして ふゆう ふほう ふほう うらう

 $\varphi \ \text{holds in} \ \mathbb{R} \quad \Longleftrightarrow \quad {}^*\varphi \ \text{holds in} \ {}^*\mathbb{R}$

A *first order* statement φ (respectively $*\varphi$): refers to elements of \mathbb{R} (respectively $*\mathbb{R}$), both fixed and variable, and to fixed relations and functions f, R (respectively *f, *R), with quantification ($\forall x, \exists y$) only for *elements*. To get back to \mathbb{R} from $*\mathbb{R}$:

Theorem (Standard Part Theorem)

If $x \in \mathbb{R}$ is finite, then there is a unique $r \in \mathbb{R}$ such that $x \approx r$; i.e. any finite hyperreal x is uniquely expressible as $x = r + \delta$ with r a standard real and δ infinitesimal.

Definition (Standard Part)

If x is a finite hyperreal the unique real $r \approx x$ is called the standard part of x, written $r = {}^{\circ}x = \operatorname{st}(x)$.

Repeat the above construction to give *A for any mathematical object or structure A; e.g. *M for a metric space with $*d : *M \times *M \to *\mathbb{R}$.

Repeat the above construction to give *A for any mathematical object or structure A; e.g. *M for a metric space with $*d : *M \times *M \to *\mathbb{R}$. The most economical way to do this is for a whole mathematical universe \mathbb{V} with $A \in \mathbb{V}$ for each object A that might be needed.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Repeat the above construction to give *A for any mathematical object or structure A; e.g. *M for a metric space with ${}^*d : {}^*M \times {}^*M \to {}^*\mathbb{R}$. The most economical way to do this is for a whole mathematical universe \mathbb{V} with $A \in \mathbb{V}$ for each object A that might be needed. Information about the resulting *nonstandard universe* ${}^*\mathbb{V}$ is given by:

Theorem (The Transfer Principle)

Suppose that φ is a bounded quantifier statement. Then φ holds in \mathbb{V} if and only if $^{*}\varphi$ holds in $^{*}\mathbb{V}$.

うして ふゆう ふほう ふほう うらう

Repeat the above construction to give *A for any mathematical object or structure A; e.g. *M for a metric space with ${}^*d : {}^*M \times {}^*M \to {}^*\mathbb{R}$. The most economical way to do this is for a whole mathematical universe \mathbb{V} with $A \in \mathbb{V}$ for each object A that might be needed. Information about the resulting *nonstandard universe* ${}^*\mathbb{V}$ is given by:

Theorem (The Transfer Principle)

Suppose that φ is a bounded quantifier statement. Then φ holds in \mathbb{V} if and only if $^{*}\varphi$ holds in $^{*}\mathbb{V}$.

Elements (objects) belonging to the nonstandard universe $*\mathbb{V}$ are called *internal*.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Repeat the above construction to give *A for any mathematical object or structure A; e.g. *M for a metric space with ${}^*d : {}^*M \times {}^*M \to {}^*\mathbb{R}$. The most economical way to do this is for a whole mathematical universe \mathbb{V} with $A \in \mathbb{V}$ for each object A that might be needed. Information about the resulting *nonstandard universe* ${}^*\mathbb{V}$ is given by:

Theorem (The Transfer Principle)

Suppose that φ is a bounded quantifier statement. Then φ holds in \mathbb{V} if and only if $^{*}\varphi$ holds in $^{*}\mathbb{V}$.

Elements (objects) belonging to the nonstandard universe $*\mathbb{V}$ are called *internal*. **Remark** The standard part mapping extends to the "nearstandard" elements of any extension metric (or topological) space *M - in particular the space $*\mathbf{H}$.

Repeat the above construction to give *A for any mathematical object or structure A; e.g. *M for a metric space with ${}^*d : {}^*M \times {}^*M \to {}^*\mathbb{R}$. The most economical way to do this is for a whole mathematical universe \mathbb{V} with $A \in \mathbb{V}$ for each object A that might be needed. Information about the resulting *nonstandard universe* ${}^*\mathbb{V}$ is given by:

Theorem (The Transfer Principle)

Suppose that φ is a bounded quantifier statement. Then φ holds in \mathbb{V} if and only if $^{*}\varphi$ holds in $^{*}\mathbb{V}$.

Elements (objects) belonging to the nonstandard universe $*\mathbb{V}$ are called *internal*. **Remark** The standard part mapping extends to the "nearstandard" elements of any extension metric (or topological) space *M - in particular the space *H. It is easy to show that elements U in *H with |U| finite are *nearstandard* in the *weak* topology.

A *Loeb measure space* is a measure constructed from a nonstandard (i.e. *internal*) measure (essentially it is an <u>ultraproduct of measures</u>).

Suppose that an internal set Ω and an internal algebra \mathcal{A} of subsets of Ω , are given, μ is a finite internal finitely additive measure on \mathcal{A} ;

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

A *Loeb measure space* is a measure constructed from a nonstandard (i.e. *internal*) measure (essentially it is an <u>ultraproduct of measures</u>).

Suppose that an internal set Ω and an internal algebra \mathcal{A} of subsets of Ω , are given, μ is a finite internal finitely additive measure on \mathcal{A} ; that is

$$\mu: \mathcal{A} \to {}^*[0,\infty)$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

with $\mu(A \cup B) = \mu(A) + \mu(B)$ for disjoint A, $B \in A$, and $\mu(\Omega)$ is finite.

A *Loeb measure space* is a measure constructed from a nonstandard (i.e. *internal*) measure (essentially it is an ultraproduct of measures).

Suppose that an internal set Ω and an internal algebra \mathcal{A} of subsets of Ω , are given, μ is a finite internal finitely additive measure on \mathcal{A} ; that is

$$\mu:\mathcal{A}
ightarrow {}^*[0,\infty)$$

with $\mu(A \cup B) = \mu(A) + \mu(B)$ for disjoint A, $B \in A$, and $\mu(\Omega)$ is finite. Define the mapping

$$^{\circ}\mu:\mathcal{A}
ightarrow$$
 [0, ∞)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

by $^{\circ}\mu(A) = ^{\circ}(\mu(A)).$

A *Loeb measure space* is a measure constructed from a nonstandard (i.e. *internal*) measure (essentially it is an <u>ultraproduct of measures</u>).

Suppose that an internal set Ω and an internal algebra \mathcal{A} of subsets of Ω , are given, μ is a finite internal finitely additive measure on \mathcal{A} ; that is

$$\mu:\mathcal{A}
ightarrow {*[0,\infty)}$$

with $\mu(A \cup B) = \mu(A) + \mu(B)$ for disjoint A, $B \in A$, and $\mu(\Omega)$ is finite. Define the mapping

$$^{\circ}\mu:\mathcal{A}
ightarrow$$
 [0, ∞)

by $^{\circ}\mu(A) = ^{\circ}(\mu(A))$. Then $(\Omega, \mathcal{A}, ^{\circ}\mu)$ is a standard finitely additive measure space but \mathcal{A} is **not** σ -additive in general.

A *Loeb measure space* is a measure constructed from a nonstandard (i.e. *internal*) measure (essentially it is an ultraproduct of measures).

Suppose that an internal set Ω and an internal algebra \mathcal{A} of subsets of Ω , are given, μ is a finite internal finitely additive measure on \mathcal{A} ; that is

$$\mu:\mathcal{A}
ightarrow {}^*[0,\infty)$$

with $\mu(A \cup B) = \mu(A) + \mu(B)$ for disjoint A, $B \in A$, and $\mu(\Omega)$ is finite. Define the mapping

$$^{\circ}\mu:\mathcal{A}
ightarrow$$
 [0, ∞)

by $^{\circ}\mu(A) = ^{\circ}(\mu(A))$. Then $(\Omega, \mathcal{A}, ^{\circ}\mu)$ is a standard finitely additive measure space but \mathcal{A} is **not** σ -additive in general.

Theorem (Loeb 1975)

There is a unique σ -additive extension of $^{\circ}\mu$ to the σ -algebra $\sigma(\mathcal{A})$ generated by \mathcal{A} . The completion of this measure is the **Loeb measure corresponding to** μ , denoted μ_L and the completion of $\sigma(\mathcal{A})$ is the Loeb σ -algebra, denoted by $L(\mathcal{A})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Loeb integration theory relates nonstandard integrals and Loeb integrals.

Loeb integration theory relates nonstandard integrals and Loeb integrals. Let $F : \Omega \to {}^*\mathbb{R}$ be S-integrable. Then ${}^\circ F : \Omega \to \mathbb{R}$ and

$$^{\circ}\int_{\Omega}\mathsf{F}d\mu=\int_{\Omega}{}^{\circ}\mathsf{F}d\mu_{L}$$

Loeb integration theory relates nonstandard integrals and Loeb integrals. Let $F : \Omega \to {}^*\mathbb{R}$ be S-integrable. Then ${}^\circ F : \Omega \to \mathbb{R}$ and

$$^{\circ}\int_{\Omega}\mathsf{F}d\mu=\int_{\Omega}^{\circ}\mathsf{F}d\mu_{L}$$

Similar relationships connect internal (i.e. nonstandard) stochastic integrals to standard stochastic integrals on the Loeb space.

(1) Use standard SDE methods + Transfer to solve the Galerkin approximation to the sNSe in dimension N ($N \in *\mathbb{N}$ infinite)

$$dU(\tau) = [-\nu^* A U(\tau) + {}^*B_N(U) + {}^*f_N(\tau, U(\tau))]d\tau + {}^*g_N(\tau, U(\tau))dW_{\tau}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

U is an internal stochastic processes $U : *[0, T] \times \Omega \to \mathbf{H}_N \subset *\mathbf{H}$ on an internal space $\Omega_0 = (\Omega, \mathcal{A}, \mathcal{P})$ with internal Wiener process W in \mathbf{H}_N

(1) Use standard SDE methods + Transfer to solve the Galerkin approximation to the sNSe in dimension N ($N \in *\mathbb{N}$ infinite)

$$dU(\tau) = [-\nu^* A U(\tau) + {}^*B_N(U) + {}^*f_N(\tau, U(\tau))]d\tau + {}^*g_N(\tau, U(\tau))dW_{\tau}$$

U is an internal stochastic processes $U : *[0, T] \times \Omega \to H_N \subset *H$ on an internal space $\Omega_0 = (\Omega, \mathcal{A}, \mathcal{P})$ with internal Wiener process *W* in H_N (2) Establish an **energy estimate**. There is a **finite** constant *E* (independent of *N*) such that

$$\mathbb{E}\left(\sup_{\tau \leq T} |U(\tau)|^2 + \nu \int_0^T ||U(\sigma)||^2 \, d\sigma\right) < E$$
 (Energy)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

(1) Use standard SDE methods + Transfer to solve the Galerkin approximation to the sNSe in dimension N ($N \in *\mathbb{N}$ infinite)

$$dU(\tau) = [-\nu^* A U(\tau) + {}^*B_N(U) + {}^*f_N(\tau, U(\tau))]d\tau + {}^*g_N(\tau, U(\tau))dW_{\tau}$$

U is an internal stochastic processes $U : *[0, T] \times \Omega \to H_N \subset *H$ on an internal space $\Omega_0 = (\Omega, \mathcal{A}, \mathcal{P})$ with internal Wiener process *W* in H_N (2) Establish an **energy estimate**. There is a **finite** constant *E* (independent of *N*) such that

$$\mathbb{E}\left(\sup_{\tau \leq T} |U(\tau)|^2 + \nu \int_0^T ||U(\sigma)||^2 \, d\sigma\right) < E \qquad (\text{Energy})$$

(3) The energy estimate means that for a.a. ω , $|U(\tau)|$ is finite for **all** $\tau \leq T$ and hence weakly nearstandard. The integral equation for U gives that for a.a. ω , if $\sigma \approx \tau$ then $U(\sigma) \approx U(\tau)$. Hence

(1) Use standard SDE methods + Transfer to solve the Galerkin approximation to the sNSe in dimension N ($N \in *\mathbb{N}$ infinite)

$$dU(\tau) = [-\nu^* A U(\tau) + {}^*B_N(U) + {}^*f_N(\tau, U(\tau))]d\tau + {}^*g_N(\tau, U(\tau))dW_{\tau}$$

U is an internal stochastic processes $U : *[0, T] \times \Omega \to H_N \subset *H$ on an internal space $\Omega_0 = (\Omega, \mathcal{A}, \mathcal{P})$ with internal Wiener process *W* in H_N (2) Establish an **energy estimate**. There is a **finite** constant *E* (independent of *N*) such that

$$\mathbb{E}\left(\sup_{\tau \leq T} |U(\tau)|^2 + \nu \int_0^T ||U(\sigma)||^2 \, d\sigma\right) < E \qquad (\text{Energy})$$

(3) The energy estimate means that for a.a. ω , $|U(\tau)|$ is finite for all $\tau \leq T$ and hence weakly nearstandard. The integral equation for U gives that for a.a. ω , if $\sigma \approx \tau$ then $U(\sigma) \approx U(\tau)$. Hence (4) Define a standard weakly continuous process $u : [0, T] \times \Omega \to \mathbf{H}$ by

$$u(t,\omega) = {}^{\circ} U(t,\omega)$$

(1) Use standard SDE methods + Transfer to solve the Galerkin approximation to the sNSe in dimension N ($N \in *\mathbb{N}$ infinite)

$$dU(\tau) = [-\nu^* A U(\tau) + {}^*B_N(U) + {}^*f_N(\tau, U(\tau))]d\tau + {}^*g_N(\tau, U(\tau))dW_{\tau}$$

U is an internal stochastic processes $U : *[0, T] \times \Omega \to H_N \subset *H$ on an internal space $\Omega_0 = (\Omega, \mathcal{A}, \mathcal{P})$ with internal Wiener process *W* in H_N (2) Establish an **energy estimate**. There is a **finite** constant *E* (independent of *N*) such that

$$\mathbb{E}\left(\sup_{\tau \leq T} |U(\tau)|^2 + \nu \int_0^T ||U(\sigma)||^2 \, d\sigma\right) < E \quad (\text{Energy})$$

(3) The energy estimate means that for a.a. ω , $|U(\tau)|$ is finite for all $\tau \leq T$ and hence weakly nearstandard. The integral equation for U gives that for a.a. ω , if $\sigma \approx \tau$ then $U(\sigma) \approx U(\tau)$. Hence (4) Define a standard weakly continuous process $u : [0, T] \times \Omega \to \mathbf{H}$ by

$$u(t,\omega) = {}^{\circ}U(t,\omega)$$

(5) Show that this *u* solves the sNSe on the Loeb space corresponding to Ω_0 i.e. $\Omega = (\Omega, L(A), \mathcal{P}_L)$ with filtration derived from that on Ω_0

Hence

Theorem (Capiński & NJC (1991))

There is an adapted probability space Ω carrying an H-valued Wiener process w such that for any (L²-random) $u_0 \in H$ and f, g (continuous with linear growth) there is a (weak) solution of the stochastic Navier–Stokes equations.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Hence

Theorem (Capiński & NJC (1991))

There is an adapted probability space Ω carrying an H-valued Wiener process w such that for any (L²-random) $u_0 \in H$ and f, g (continuous with linear growth) there is a (weak) solution of the stochastic Navier–Stokes equations. That is, an adapted stochastic process $u : [0, \infty) \times \Omega \rightarrow H$ such that for a.a. ω (i) $u \in L^2(0, T; V) \cap L^{\infty}(0, T; H) \cap C(0, T; H_{weak})$ for all $T < \infty$, (ii) for all $t \geq 0$

$$u(t) = u_0 + \int_0^t [\nu A u(s) - B(u(s)) + f(s, u(s))] ds + \int_0^t g(s, u(s)) dw_s$$

うして ふゆう ふほう ふほう うらう

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ 釣��

For a *deterministic* dynamical system with uniqueness write $S_t v$ = value at time t of the solution with u(0) = v.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For a *deterministic* dynamical system with uniqueness write $S_t v$ = value at time t of the solution with u(0) = v.

An *attractor* is a compact set $A \subseteq \mathbf{H}$ such that $S_t A = A$ and for any open set $G \supset A$ and bounded set $B \subset \mathbf{H}$, eventually we have $S_t B \subseteq G$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

For a *deterministic* dynamical system with uniqueness write $S_t v$ = value at time t of the solution with u(0) = v.

An *attractor* is a compact set $A \subseteq \mathbf{H}$ such that $S_t A = A$ and for any open set $G \supset A$ and bounded set $B \subset \mathbf{H}$, eventually we have $S_t B \subseteq G$.

Intuitively an attractor is given by

 $A = \{ {}^*S_{\tau}V : V \in B \text{ and } \tau \text{ an infinite time} \}$

where $B \subseteq H_N$ is a chosen bounded set (an absorbing set). This can be made precise using the ideas of NSA.

For a *deterministic* dynamical system with uniqueness write $S_t v$ = value at time t of the solution with u(0) = v.

An *attractor* is a compact set $A \subseteq \mathbf{H}$ such that $S_t A = A$ and for any open set $G \supset A$ and bounded set $B \subset \mathbf{H}$, eventually we have $S_t B \subseteq G$.

Intuitively an attractor is given by

 $A = \{ {}^*S_{\tau}V : V \in B \text{ and } \tau \text{ an infinite time} \}$

where $B \subseteq H_N$ is a chosen bounded set (an absorbing set). This can be made precise using the ideas of NSA.

For stochastic systems there is a variety of notions including

For a *deterministic* dynamical system with uniqueness write $S_t v$ = value at time t of the solution with u(0) = v.

An *attractor* is a compact set $A \subseteq \mathbf{H}$ such that $S_t A = A$ and for any open set $G \supset A$ and bounded set $B \subset \mathbf{H}$, eventually we have $S_t B \subseteq G$.

Intuitively an attractor is given by

 $A = \{ {}^*S_{\tau}V : V \in B \text{ and } \tau \text{ an infinite time} \}$

where $B \subseteq H_N$ is a chosen bounded set (an absorbing set). This can be made precise using the ideas of NSA.

For **stochastic** systems there is a variety of notions including (1) *measure attractors* - limiting behaviour of the measure induced on path space (Schmallfuß and others).

For a *deterministic* dynamical system with uniqueness write $S_t v$ = value at time t of the solution with u(0) = v.

An *attractor* is a compact set $A \subseteq \mathbf{H}$ such that $S_t A = A$ and for any open set $G \supset A$ and bounded set $B \subset \mathbf{H}$, eventually we have $S_t B \subseteq G$.

Intuitively an attractor is given by

 $A = \{ {}^*S_{\tau}V : V \in B \text{ and } \tau \text{ an infinite time} \}$

where $B \subseteq H_N$ is a chosen bounded set (an absorbing set). This can be made precise using the ideas of NSA.

For **stochastic** systems there is a variety of notions including

(1) *measure attractors* - limiting behaviour of the measure induced on path space (Schmallfuß and others).

(2) *stochastic attractors* (Crauel & Flandoli)

Application 1: ATTRACTORS FOR STOCHASTIC NAVIER-STOKES EQUATIONS

For a *deterministic* dynamical system with uniqueness write $S_t v$ = value at time t of the solution with u(0) = v.

An *attractor* is a compact set $A \subseteq \mathbf{H}$ such that $S_t A = A$ and for any open set $G \supset A$ and bounded set $B \subset \mathbf{H}$, eventually we have $S_t B \subseteq G$.

Intuitively an attractor is given by

 $A = \{ {}^*S_{\tau}V : V \in B \text{ and } \tau \text{ an infinite time} \}$

where $B \subseteq H_N$ is a chosen bounded set (an absorbing set). This can be made precise using the ideas of NSA.

For stochastic systems there is a variety of notions including

(1) *measure attractors* - limiting behaviour of the measure induced on path space (Schmallfuß and others).

- (2) *stochastic attractors* (Crauel & Flandoli)
- (3) process attractors (NJC & Keisler)

Application 1: ATTRACTORS FOR STOCHASTIC NAVIER-STOKES EQUATIONS

For a *deterministic* dynamical system with uniqueness write $S_t v$ = value at time t of the solution with u(0) = v.

An *attractor* is a compact set $A \subseteq \mathbf{H}$ such that $S_t A = A$ and for any open set $G \supset A$ and bounded set $B \subset \mathbf{H}$, eventually we have $S_t B \subseteq G$.

Intuitively an attractor is given by

 $A = \{ {}^*S_{\tau}V : V \in B \text{ and } \tau \text{ an infinite time} \}$

where $B \subseteq H_N$ is a chosen bounded set (an absorbing set). This can be made precise using the ideas of NSA.

For stochastic systems there is a variety of notions including

(1) *measure attractors* - limiting behaviour of the measure induced on path space (Schmallfuß and others).

- (2) *stochastic attractors* (Crauel & Flandoli)
- (3) process attractors (NJC & Keisler)
- (4) *neo-attractors* (NJC & Keisler)

Application 1: ATTRACTORS FOR STOCHASTIC NAVIER-STOKES EQUATIONS

For a *deterministic* dynamical system with uniqueness write $S_t v$ = value at time t of the solution with u(0) = v.

An *attractor* is a compact set $A \subseteq \mathbf{H}$ such that $S_t A = A$ and for any open set $G \supset A$ and bounded set $B \subset \mathbf{H}$, eventually we have $S_t B \subseteq G$.

Intuitively an attractor is given by

 $A = \{ {}^*S_{\tau}V : V \in B \text{ and } \tau \text{ an infinite time} \}$

where $B \subseteq H_N$ is a chosen bounded set (an absorbing set). This can be made precise using the ideas of NSA.

For stochastic systems there is a variety of notions including

(1) *measure attractors* - limiting behaviour of the measure induced on path space (Schmallfuß and others).

- (2) *stochastic attractors* (Crauel & Flandoli)
- (3) process attractors (NJC & Keisler)
- (4) *neo-attractors* (NJC & Keisler)

Loeb space methods give new results for each of (2) - (4) for sNSe for drift and noise of the form f(u) and g(u)

(ロ)、(型)、(E)、(E)、 E のQで

For sNSe this only makes sense for d = 2 (where we have uniqueness).

For sNSe this only makes sense for d = 2 (where we have uniqueness). Crauel & Flandoli's idea: a *stochastic attractor* is a random compact set $A(\omega)$ that, at time 0, attracts trajectories "starting at $-\infty$ " (compared to the usual idea of an attractor being a set "at time ∞ " that attracts trajectories starting at time 0).

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

For sNSe this only makes sense for d = 2 (where we have uniqueness). Crauel & Flandoli's idea: a *stochastic attractor* is a random compact set $A(\omega)$ that, at time 0, attracts trajectories "starting at $-\infty$ " (compared to the usual idea of an attractor being a set "at time ∞ " that attracts trajectories starting at time 0). The Loeb space approach to solving the sNSe can be modified by starting the solutions at any given negative time - including **infinite** negative time; then intuitively a random attractor $A(\omega)$ =points in **H** that can be reached at time t = 0 starting at some infinite negative time.

For sNSe this only makes sense for d = 2 (where we have uniqueness). Crauel & Flandoli's idea: a *stochastic attractor* is a random compact set $A(\omega)$ that, at time 0, attracts trajectories "starting at $-\infty$ " (compared to the usual idea of an attractor being a set "at time ∞ " that attracts trajectories starting at time 0). The Loeb space approach to solving the sNSe can be modified by starting the solutions at any given negative time - including **infinite** negative time; then intuitively a random attractor $A(\omega)$ =points in H that can be reached at time t = 0 starting at some infinite negative time. Making this precise gives:

Theorem

(Capiński & NJC 1999) For special forms of the noise term g(u) in the 2D sNSe there is a stochastic attractor $A(\omega)$ (compact in the strong topology of **H**). Precise definition and proof - too long and complicated!

For d = 3 uniqueness is unknown. To overcome this for the deterministic NSe, Sell replaced the phase space **H** by **W** = all solution paths for the *deterministic* Navier–Stokes equations.

For d = 3 uniqueness is unknown. To overcome this for the deterministic NSe, Sell replaced the phase space **H** by **W** = all solution paths for the *deterministic* Navier-Stokes equations. The semigroup action S_t on **W** is time translation: if $u = u(\cdot) \in \mathbf{W}$ then $S_t u = v \in \mathbf{W}$ is given by

$$(S_t u)(s) = u(t+s).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

For d = 3 uniqueness is unknown. To overcome this for the deterministic NSe, Sell replaced the phase space **H** by **W** = all solution paths for the *deterministic* Navier-Stokes equations. The semigroup action S_t on **W** is time translation: if $u = u(\cdot) \in \mathbf{W}$ then $S_t u = v \in \mathbf{W}$ is given by

$$(S_t u)(s) = u(t+s).$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

This has the crucial semi-flow property $S_{t_1} \circ S_{t_2} = S_{t_1+t_2}$ along with $S_0 u = u$.

For d = 3 uniqueness is unknown. To overcome this for the deterministic NSe, Sell replaced the phase space **H** by **W** = all solution paths for the *deterministic* Navier-Stokes equations. The semigroup action S_t on **W** is time translation: if $u = u(\cdot) \in \mathbf{W}$ then $S_t u = v \in \mathbf{W}$ is given by

$$(S_t u)(s) = u(t+s).$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

This has the crucial semi-flow property $S_{t_1} \circ S_{t_2} = S_{t_1+t_2}$ along with $S_0 u = u$.

Theorem (Sell (1996))

There is global attractor $A \subseteq \mathbf{W}$ for the 3-dimensional (deterministic) Navier–Stokes equations.

Basic idea. Let X be a set of solutions to the sNSe on a space Ω with Wiener process w.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Basic idea. Let X be a set of solutions to the sNSe on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t : \Omega \to \Omega$ for $t \ge 0$ that "shift the noise to the right".

Basic idea. Let X be a set of solutions to the sNSe on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t : \Omega \to \Omega$ for $t \ge 0$ that "shift the noise to the right". That is:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

($\theta 1$) $\theta_0 = \text{identity and } \theta_t \circ \theta_s = \theta_{t+s};$

Basic idea. Let X be a set of solutions to the sNSe on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t : \Omega \to \Omega$ for $t \ge 0$ that "shift the noise to the right". That is:

(ロ) (型) (E) (E) (E) (O)

- ($\theta 1$) $\theta_0 = \text{identity and } \theta_t \circ \theta_s = \theta_{t+s};$
- (θ 2) $\theta_t \mathcal{F}_s = \mathcal{F}_{t+s}$ for all $s, t \ge 0$, where (\mathcal{F}_t) is the filtration on Ω ;

Basic idea. Let X be a set of solutions to the sNSe on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t : \Omega \to \Omega$ for $t \ge 0$ that "shift the noise to the right". That is:

- ($\theta 1$) $\theta_0 = \text{identity and } \theta_t \circ \theta_s = \theta_{t+s};$
- ($\theta 2$) $\theta_t \mathcal{F}_s = \mathcal{F}_{t+s}$ for all $s, t \ge 0$, where (\mathcal{F}_t) is the filtration on Ω ;
- (heta3) $w(t+s, heta_t \omega) w(t, heta_t \omega) = w(s, \omega)$ for all $s \ge 0$

Basic idea. Let X be a set of solutions to the sNSe on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t : \Omega \to \Omega$ for $t \ge 0$ that "shift the noise to the right". That is:

$$\begin{array}{ll} (\theta 1) & \theta_0 = \text{identity and } \theta_t \circ \overline{\theta}_s = \theta_{t+s}; \\ (\theta 2) & \theta_t \mathcal{F}_s = \mathcal{F}_{t+s} \text{ for all } s, t \geq 0, \text{ where } (\mathcal{F}_t) \text{ is the filtration on } \mathbf{\Omega} \\ (\theta 3) & w(t+s, \theta_t \omega) - w(t, \theta_t \omega) = w(s, \omega) \text{ for all } s \geq 0 \end{array}$$

Definition

(Semiflow of Processes) For a stochastic process $u = u(t, \omega)$ define a process $v = S_r u$ by

$$v(t,\omega) = u(r+t,\theta_r\omega)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Basic idea. Let X be a set of solutions to the sNSe on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t : \Omega \to \Omega$ for $t \ge 0$ that "shift the noise to the right". That is:

$$(heta 1)$$
 $heta_0 = \mathsf{identity} \text{ and } heta_t \circ heta_s = heta_{t+s};$

$$(heta 2) \quad heta_t \mathcal{F}_s = \mathcal{F}_{t+s} ext{ for all } s,t \geq 0, ext{ where } (\mathcal{F}_t) ext{ is the filtration on } oldsymbol{\Omega};$$

$$(heta 3) \quad w(t+s, heta_t\omega) - w(t, heta_t\omega) = w(s,\omega) ext{ for all } s \geq 0$$

Definition

(Semiflow of Processes) For a stochastic process $u = u(t, \omega)$ define a process $v = S_r u$ by

$$v(t,\omega)=u(r+t,\theta_r\omega)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 S_r is a semigroup, and if u is adapted so is $S_t u$.

Basic idea. Let X be a set of solutions to the sNSe on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t : \Omega \to \Omega$ for $t \ge 0$ that "shift the noise to the right". That is:

$$(\theta 1) \quad \theta_0 = \text{identity and } \theta_t \circ \theta_s = \theta_{t+s};$$

$$(heta 2)$$
 $heta_t \mathcal{F}_s = \mathcal{F}_{t+s}$ for all $s,t \geq 0$, where (\mathcal{F}_t) is the filtration on $oldsymbol{\Omega}$;

$$(heta 3) \quad w(t+s, heta_t\omega) - w(t, heta_t\omega) = w(s,\omega) ext{ for all } s \geq 0$$

Definition

(Semiflow of Processes) For a stochastic process $u = u(t, \omega)$ define a process $v = S_r u$ by

$$v(t,\omega)=u(r+t,\theta_r\omega)$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

 S_r is a semigroup, and if u is adapted so is $S_t u$.

Suppose now that X is closed under S_t . Then a natural definition of a *process attractor* for the class X is $A \subseteq X$ such that

Basic idea. Let X be a set of solutions to the sNSe on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t : \Omega \to \Omega$ for $t \ge 0$ that "shift the noise to the right". That is:

$$(\theta 1)$$
 $\theta_0 =$ identity and $\theta_t \circ \theta_s = \theta_{t+s}$;

$$(heta 2)$$
 $heta_t \mathcal{F}_s = \mathcal{F}_{t+s}$ for all $s,t \geq 0$, where (\mathcal{F}_t) is the filtration on $oldsymbol{\Omega}$;

$$(heta 3) \quad w(t+s, heta_t\omega) - w(t, heta_t\omega) = w(s,\omega) ext{ for all } s \geq 0$$

Definition

(Semiflow of Processes) For a stochastic process $u = u(t, \omega)$ define a process $v = S_r u$ by

$$v(t,\omega)=u(r+t,\theta_r\omega)$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

 S_r is a semigroup, and if u is adapted so is $S_t u$. **Suppose now that** X **is closed under** S_t . Then a natural definition of a process attractor for the class X is $A \subseteq X$ such that (i) $S_t A = A$ for all $t \ge 0$

Basic idea. Let X be a set of solutions to the sNSe on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t : \Omega \to \Omega$ for $t \ge 0$ that "shift the noise to the right". That is:

$$(\theta 1)$$
 $\theta_0 =$ identity and $\theta_t \circ \theta_s = \theta_{t+s}$;

$$(heta 2)$$
 $heta_t \mathcal{F}_s = \mathcal{F}_{t+s}$ for all $s,t \geq 0$, where (\mathcal{F}_t) is the filtration on $oldsymbol{\Omega}$;

$$(heta 3) \quad w(t+s, heta_t\omega) - w(t, heta_t\omega) = w(s,\omega) ext{ for all } s \geq 0$$

Definition

(Semiflow of Processes) For a stochastic process $u = u(t, \omega)$ define a process $v = S_r u$ by

$$v(t,\omega)=u(r+t,\theta_r\omega)$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

 S_r is a semigroup, and if u is adapted so is $S_t u$. **Suppose now that** X **is closed under** S_t . Then a natural definition of a process attractor for the class X is $A \subseteq X$ such that (i) $S_t A = A$ for all $t \ge 0$ (ii) A is compact in some sense

Basic idea. Let X be a set of solutions to the sNSe on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t : \Omega \to \Omega$ for $t \ge 0$ that "shift the noise to the right". That is:

$$(\theta 1)$$
 $\theta_0 =$ identity and $\theta_t \circ \theta_s = \theta_{t+s}$;

$$(heta 2)$$
 $heta_t \mathcal{F}_s = \mathcal{F}_{t+s}$ for all $s,t \geq 0$, where (\mathcal{F}_t) is the filtration on $oldsymbol{\Omega}$;

$$(heta 3) \quad w(t+s, heta_t\omega) - w(t, heta_t\omega) = w(s,\omega) ext{ for all } s \geq 0$$

Definition

(Semiflow of Processes) For a stochastic process $u = u(t, \omega)$ define a process $v = S_r u$ by

$$v(t,\omega)=u(r+t,\theta_r\omega)$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

 S_r is a semigroup, and if u is adapted so is $S_t u$. **Suppose now that** X **is closed under** S_t . Then a natural definition of a process attractor for the class X is $A \subseteq X$ such that (i) $S_t A = A$ for all $t \ge 0$

- (ii) A is compact in some sense
- (iii) A attracts bounded subsets of the class X

Basic idea. Let X be a set of solutions to the sNSe on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t : \Omega \to \Omega$ for $t \ge 0$ that "shift the noise to the right". That is:

$$(\theta 1) \quad \theta_0 = \text{identity and } \theta_t \circ \theta_s = \theta_{t+s};$$

$$(heta 2)$$
 $heta_t \mathcal{F}_s = \mathcal{F}_{t+s}$ for all $s,t \geq 0$, where (\mathcal{F}_t) is the filtration on $oldsymbol{\Omega}$;

$$(heta 3) \quad w(t+s, heta_t\omega) - w(t, heta_t\omega) = w(s,\omega) ext{ for all } s \geq 0$$

Definition

(Semiflow of Processes) For a stochastic process $u = u(t, \omega)$ define a process $v = S_r u$ by

$$v(t,\omega)=u(r+t,\theta_r\omega)$$

 S_r is a semigroup, and if u is adapted so is $S_t u$.

Suppose now that X is closed under S_t . Then a natural definition of a *process attractor* for the class X is $A \subseteq X$ such that

(i) $S_t A = A$ for all $t \ge 0$

(ii) A is compact in some sense

(iii) A attracts bounded subsets of the class X

This turns out to be asking too much. We need a weaker definition. In the following, if u is a stochastic process then Law(u) is defined to be the probability law (on path space) of the coupled process (u, w).

(a) A set of laws $\mathcal{A} \subset \operatorname{Law}(X)$ is a *law-attractor* if

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

(a) A set of laws $\mathcal{A} \subset \text{Law}(X)$ is a **law-attractor** if (i) (Invariance) $\hat{S}_t \mathcal{A} = \mathcal{A}$ for all $t \ge 0$, where \hat{S}_t is the mapping of laws induced by the semigroup S_t .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

(a) A set of laws $\mathcal{A} \subset \operatorname{Law}(X)$ is a *law-attractor* if

(i) (Invariance) $\hat{S}_t A = A$ for all $t \ge 0$, where \hat{S}_t is the mapping of laws induced by the semigroup S_t .

(ii) (Attraction) For any open set $\mathcal{O} \supset \mathcal{A}$ and bounded $\mathcal{Z} \subset \text{Law}(X)$,

$$\hat{S}_t \mathcal{Z} \subseteq \mathcal{O}$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

eventually (i.e. this holds for all $t \ge t_0(\mathcal{O}, \mathcal{Z})$).

(a) A set of laws $\mathcal{A} \subset \operatorname{Law}(X)$ is a *law-attractor* if

(i) (Invariance) $\hat{S}_t A = A$ for all $t \ge 0$, where \hat{S}_t is the mapping of laws induced by the semigroup S_t .

(ii) (Attraction) For any open set $\mathcal{O} \supset \mathcal{A}$ and bounded $\mathcal{Z} \subset Law(X)$,

$$\hat{S}_t \mathcal{Z} \subseteq \mathcal{O}$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

eventually (i.e. this holds for all $t \ge t_0(\mathcal{O}, \mathcal{Z})$). (iii) **(Compactness)** \mathcal{A} is compact

(a) A set of laws $\mathcal{A} \subset \operatorname{Law}(X)$ is a *law-attractor* if

(i) (Invariance) $\hat{S}_t A = A$ for all $t \ge 0$, where \hat{S}_t is the mapping of laws induced by the semigroup S_t .

(ii) (Attraction) For any open set $\mathcal{O} \supset \mathcal{A}$ and bounded $\mathcal{Z} \subset Law(X)$,

$$\hat{S}_t \mathcal{Z} \subseteq \mathcal{O}$$

eventually (i.e. this holds for all $t \geq t_0(\mathcal{O}, \mathcal{Z})$).

(iii) (**Compactness**) A is compact

(b) A *(process) attractor* for the semiflow S_t on X is a set of processes $A \subseteq X$ such that

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

(a) A set of laws $\mathcal{A} \subset \operatorname{Law}(X)$ is a *law-attractor* if

(i) (Invariance) $\hat{S}_t A = A$ for all $t \ge 0$, where \hat{S}_t is the mapping of laws induced by the semigroup S_t .

(ii) (Attraction) For any open set $\mathcal{O} \supset \mathcal{A}$ and bounded $\mathcal{Z} \subset Law(X)$,

$$\hat{S}_t \mathcal{Z} \subseteq \mathcal{O}$$

eventually (i.e. this holds for all $t \ge t_0(\mathcal{O}, \mathcal{Z}))$.

(iii) (Compactness) A is compact

(b) A *(process) attractor* for the semiflow S_t on X is a set of processes $A \subseteq X$ such that

(i) Law(A) is a law-attractor (so Law(A) is compact and A is bounded);

(a) A set of laws $\mathcal{A} \subset \operatorname{Law}(X)$ is a *law-attractor* if

(i) (Invariance) $\hat{S}_t A = A$ for all $t \ge 0$, where \hat{S}_t is the mapping of laws induced by the semigroup S_t .

(ii) (Attraction) For any open set $\mathcal{O} \supset \mathcal{A}$ and bounded $\mathcal{Z} \subset Law(X)$,

$$\hat{S}_t \mathcal{Z} \subseteq \mathcal{O}$$

eventually (i.e. this holds for all $t \geq t_0(\mathcal{O}, \mathcal{Z})$).

(iii) (Compactness) A is compact

(b) A *(process) attractor* for the semiflow S_t on X is a set of processes $A \subseteq X$ such that

(i) Law(A) is a law-attractor (so Law(A) is compact and A is bounded);

(ii) (Invariance) $S_t A = A$ for all $t \ge 0$;

(a) A set of laws $\mathcal{A} \subset \operatorname{Law}(X)$ is a *law-attractor* if

(i) (Invariance) $\hat{S}_t A = A$ for all $t \ge 0$, where \hat{S}_t is the mapping of laws induced by the semigroup S_t .

(ii) (Attraction) For any open set $\mathcal{O} \supset \mathcal{A}$ and bounded $\mathcal{Z} \subset Law(X)$,

$$\hat{S}_t \mathcal{Z} \subseteq \mathcal{O}$$

eventually (i.e. this holds for all $t \geq t_0(\mathcal{O}, \mathcal{Z})$).

(iii) (Compactness) A is compact

(b) A *(process) attractor* for the semiflow S_t on X is a set of processes $A \subseteq X$ such that

(i) Law(A) is a law-attractor (so Law(A) is compact and A is bounded);

(ii) (Invariance) $S_t A = A$ for all $t \ge 0$;

(iii) (Attraction) For bounded $Z \subset X$ and compact K with $\mathcal{O} = (K^{\leq \varepsilon})^c \supset A$, for sufficiently large t

$$S_t Z \subseteq \mathcal{O}.$$

(a) A set of laws $\mathcal{A} \subset \operatorname{Law}(X)$ is a *law-attractor* if

(i) (Invariance) $\hat{S}_t A = A$ for all $t \ge 0$, where \hat{S}_t is the mapping of laws induced by the semigroup S_t .

(ii) (Attraction) For any open set $\mathcal{O} \supset \mathcal{A}$ and bounded $\mathcal{Z} \subset Law(X)$,

$$\hat{S}_t \mathcal{Z} \subseteq \mathcal{O}$$

eventually (i.e. this holds for all $t \geq t_0(\mathcal{O}, \mathcal{Z})$).

(iii) (Compactness) A is compact

(b) A *(process) attractor* for the semiflow S_t on X is a set of processes $A \subseteq X$ such that

(i) Law(A) is a law-attractor (so Law(A) is compact and A is bounded);

(ii) (Invariance) $S_t A = A$ for all $t \ge 0$;

(iii) (Attraction) For bounded $Z \subset X$ and compact K with $\mathcal{O} = (K^{\leq \varepsilon})^c \supset A$, for sufficiently large t

$$S_t Z \subseteq \mathcal{O}.$$

(iv) A is closed.

(a) A set of laws $\mathcal{A} \subset \operatorname{Law}(X)$ is a *law-attractor* if

(i) (Invariance) $\hat{S}_t A = A$ for all $t \ge 0$, where \hat{S}_t is the mapping of laws induced by the semigroup S_t .

(ii) (Attraction) For any open set $\mathcal{O} \supset \mathcal{A}$ and bounded $\mathcal{Z} \subset Law(X)$,

$$\hat{S}_t \mathcal{Z} \subseteq \mathcal{O}$$

eventually (i.e. this holds for all $t \geq t_0(\mathcal{O}, \mathcal{Z})$).

(iii) (Compactness) A is compact

(b) A *(process) attractor* for the semiflow S_t on X is a set of processes $A \subseteq X$ such that

(i) Law(A) is a law-attractor (so Law(A) is compact and A is bounded);

(ii) (Invariance) $S_t A = A$ for all $t \ge 0$;

(iii) (Attraction) For bounded $Z \subset X$ and compact K with $\mathcal{O} = (K^{\leq \varepsilon})^c \supset A$, for sufficiently large t

$$S_t Z \subseteq \mathcal{O}.$$

(iv) A is closed.

Even for this weaker definition, existence requires a rather large probability space

Theorem

(NJC & H.J.Keisler,2004)There is a Loeb space Ω and a natural class of solutions X that has a process attractor A. The class X contains solutions to the sNSe for all L² random initial conditions.

A is the restriction to nonnegative times of a corresponding class \hat{X} of two sided solutions to the sNSe.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem

(NJC & H.J.Keisler,2004)There is a Loeb space Ω and a natural class of solutions X that has a process attractor A. The class X contains solutions to the sNSe for all L² random initial conditions.

A is the restriction to nonnegative times of a corresponding class \hat{X} of two sided solutions to the sNSe.

Remark It can be shown that if Ω is any sufficiently rich space (for example if Ω is a Loeb space) then any process attractor A is **not** compact.

うして ふゆう ふほう ふほう うらう

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

The definition of a process attractor is somewhat unsatisfactory and does not capture the full strength of what was proved above. This is fully captured by the notion of a *neo-attractor*.

The definition of a process attractor is somewhat unsatisfactory and does not capture the full strength of what was proved above. This is fully captured by the notion of a *neo-attractor*.

Keisler's theory of *neo-metric spaces* involves notions of *neo-open*, *neo-compact* and *neo-continuous*. These arise very naturally for metric spaces that are constructed using nonstandard analysis - such as the class of solutions X in the above theorem.

(ロ) (型) (E) (E) (E) (O)

The definition of a process attractor is somewhat unsatisfactory and does not capture the full strength of what was proved above. This is fully captured by the notion of a *neo-attractor*.

Keisler's theory of *neo-metric spaces* involves notions of *neo-open*, *neo-compact* and *neo-continuous*. These arise very naturally for metric spaces that are constructed using nonstandard analysis - such as the class of solutions X in the above theorem.

Neo-compact is weaker than compact in general; neo-open is weaker than open, but neo-continuous is *stronger* than continuous.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The definition of a process attractor is somewhat unsatisfactory and does not capture the full strength of what was proved above. This is fully captured by the notion of a *neo-attractor*.

Keisler's theory of *neo-metric spaces* involves notions of *neo-open*, *neo-compact* and *neo-continuous*. These arise very naturally for metric spaces that are constructed using nonstandard analysis - such as the class of solutions X in the above theorem.

Neo-compact is weaker than compact in general; neo-open is weaker than open, but neo-continuous is *stronger* than continuous.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem

(NJC & H.J.Keisler, 2005) The attractor A of the above theorem is a neo-attractor; that is

The definition of a process attractor is somewhat unsatisfactory and does not capture the full strength of what was proved above. This is fully captured by the notion of a *neo-attractor*.

Keisler's theory of *neo-metric spaces* involves notions of *neo-open*, *neo-compact* and *neo-continuous*. These arise very naturally for metric spaces that are constructed using nonstandard analysis - such as the class of solutions X in the above theorem.

Neo-compact is weaker than compact in general; neo-open is weaker than open, but neo-continuous is *stronger* than continuous.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Theorem (NJC & H.J.Keisler, 2005) The attractor A of the above theorem is a neo-attractor; that is (1) (Invariance) $S_t A = A$ for all $t \ge 0$;

The definition of a process attractor is somewhat unsatisfactory and does not capture the full strength of what was proved above. This is fully captured by the notion of a *neo-attractor*.

Keisler's theory of *neo-metric spaces* involves notions of *neo-open*, *neo-compact* and *neo-continuous*. These arise very naturally for metric spaces that are constructed using nonstandard analysis - such as the class of solutions X in the above theorem.

Neo-compact is weaker than compact in general; neo-open is weaker than open, but neo-continuous is *stronger* than continuous.

Theorem

(NJC & H.J.Keisler, 2005) The attractor A of the above theorem is a neo-attractor; that is (1) (Invariance) $S_t A = A$ for all $t \ge 0$; (2) A is neocompact;

The definition of a process attractor is somewhat unsatisfactory and does not capture the full strength of what was proved above. This is fully captured by the notion of a *neo-attractor*.

Keisler's theory of *neo-metric spaces* involves notions of *neo-open*, *neo-compact* and *neo-continuous*. These arise very naturally for metric spaces that are constructed using nonstandard analysis - such as the class of solutions X in the above theorem.

Neo-compact is weaker than compact in general; neo-open is weaker than open, but neo-continuous is *stronger* than continuous.

Theorem

(NJC & H.J.Keisler, 2005) The attractor A of the above theorem is a neo-attractor; that is

(1) (Invariance) $S_t A = A$ for all $t \ge 0$;

(2) A is neocompact;

(3) for any **neo-open** set $G \supset A$ and bounded set $B \subset X$, eventually $S_t B \subseteq G$.

Using NSA for optimal control problems

Suppose we have a minimizing sequence of controls $\theta_n : [0, T] \to M$ (M a metric space) for a given optimal control problem, say . That is

Cost of using control $\theta_n = J(\theta_n) \searrow J_0$

where J_0 is the infimum of all costs for controls for the given system.

Using NSA for optimal control problems

Suppose we have a minimizing sequence of controls $\theta_n : [0, T] \to M$ (M a metric space) for a given optimal control problem, say . That is

Cost of using control
$$\theta_n = J(\theta_n) \searrow J_0$$

where J_0 is the infimum of all costs for controls for the given system. Then NSA allows us to speak of the *nonstandard control* θ_N for any infinite N. We can usually make sense of $J(\theta_N)$ and we will have $J(\theta_N) \approx J_0$.

Using NSA for optimal control problems

Suppose we have a minimizing sequence of controls $\theta_n : [0, T] \to M$ (M a metric space) for a given optimal control problem, say . That is

Cost of using control
$$\theta_n = J(\theta_n) \searrow J_0$$

where J_0 is the infimum of all costs for controls for the given system. Then NSA allows us to speak of the *nonstandard control* θ_N for any infinite N. We can usually make sense of $J(\theta_N)$ and we will have $J(\theta_N) \approx J_0$. In many circumstances we can then "take standard parts" to produce an *optimal control*

$$\theta = {}^{\circ}\theta_N$$

Using NSA for optimal control problems

Suppose we have a minimizing sequence of controls $\theta_n : [0, T] \to M$ (M a metric space) for a given optimal control problem, say . That is

Cost of using control
$$\theta_n = J(\theta_n) \searrow J_0$$

where J_0 is the infimum of all costs for controls for the given system. Then NSA allows us to speak of the *nonstandard control* θ_N for any infinite N. We can usually make sense of $J(\theta_N)$ and we will have $J(\theta_N) \approx J_0$. In many circumstances we can then "take standard parts" to produce an *optimal control*

$$\theta = {}^{\circ}\theta_N$$

This idea has been applied to the sNSe in a variety of settings, always involving a Loeb space so that solutions for all controls live on the same probability space.

Using NSA for optimal control problems

Suppose we have a minimizing sequence of controls $\theta_n : [0, T] \to M$ (M a metric space) for a given optimal control problem, say . That is

Cost of using control
$$\theta_n = J(\theta_n) \searrow J_0$$

where J_0 is the infimum of all costs for controls for the given system. Then NSA allows us to speak of the *nonstandard control* θ_N for any infinite N. We can usually make sense of $J(\theta_N)$ and we will have $J(\theta_N) \approx J_0$. In many circumstances we can then "take standard parts" to produce an *optimal control*

$$\theta = {}^{\circ}\theta_N$$

This idea has been applied to the sNSe in a variety of settings, always involving a Loeb space so that solutions for all controls live on the same probability space. Results have been obtained for **2D** systems of the form $u(t) = u_0 + \int_0^t \{-\nu Au(s) - B(u(s)) + f(s, u, \theta(s, u))\} ds + \int_0^t g(s, u) dw(s)$

with θ Hölder continuous, or with θ having no feedback in u, or with the feedback consisting of cumulative digital observations of the solution at a fixed finite number of times.

For the **3D** equations results are only for systems with no feedback: i.e. $\theta = \theta(t)$. The possible non-uniqueness of solutions requires a large space to work in - one containing all possible solutions for a given control to allow initially the existence of an optimal solution for a given control.

For the **3D equations** results are only for systems with no feedback: i.e. $\theta = \theta(t)$. The possible non-uniqueness of solutions requires a large space to work in - one containing all possible solutions for a given control to allow initially the existence of an optimal solution for a given control. A typical situation in either 2D or 3D is that we have a nonstandard control Θ (possibly θ_N) and a nonstandard solution for it:

$$U(\tau) = U_0 + \int_0^\tau \{-\nu^* A U(s) - {}^*B (U(s)) + {}^*f (s, U, \Theta(U))\} ds$$
$$+ \int_0^\tau {}^*g (s, U) dW(s)$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

where $U: *[0, T] \rightarrow *H$ or H_N .

For the **3D equations** results are only for systems with no feedback: i.e. $\theta = \theta(t)$. The possible non-uniqueness of solutions requires a large space to work in - one containing all possible solutions for a given control to allow initially the existence of an optimal solution for a given control. A typical situation in either 2D or 3D is that we have a nonstandard control Θ (possibly θ_N) and a nonstandard solution for it:

$$U(\tau) = U_0 + \int_0^\tau \{-\nu^* A U(s) - {}^*B (U(s)) + {}^*f (s, U, \Theta(U))\} ds$$
$$+ \int_0^\tau {}^*g (s, U) dW(s)$$

where $U: *[0, T] \to *H$ or H_N . Then we "standardise" the control to give $\theta = {}^{\circ}\Theta$ and as in the basic existence proof show that it is possible to take $u(t, \omega) = {}^{\circ}U(t, \omega)$ It remains to prove that u is a solution for control θ and $J(\theta) = {}^{\circ}J(\Theta)$ to give optimality.

Details: NJC & K.Grzesiak: Stochastics (2005) and AMO (2007).

These model the velocity u and density ρ of a mixture of viscous incompressible fluids of varying density in a bounded domain $D \subset \mathbb{R}^d$ (d = 2, 3)

These model the velocity u and density ρ of a mixture of viscous incompressible fluids of varying density in a bounded domain $D \subset \mathbb{R}^d$ (d = 2, 3)

(Velocity)
$$\rho du = [\nu \Delta u - \langle \rho u, \nabla \rangle u - \nabla \rho + \rho f(t, u)] dt + \rho g(t, u) dw_t$$

 $\operatorname{div} u = 0$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

These model the velocity u and density ρ of a mixture of viscous incompressible fluids of varying density in a bounded domain $D \subset \mathbb{R}^d$ (d = 2, 3)

(Velocity)
$$\rho du = [\nu \Delta u - \langle \rho u, \nabla \rangle u - \nabla \rho + \rho f(t, u)] dt + \rho g(t, u) dw_t$$

div
$$u = 0$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

(Density)
$$rac{\partial
ho}{\partial t} + < u,
abla >
ho = 0$$

with boundary and initial conditions $u|_{\partial D} = 0$, $u|_{t=0} = u_0$, $\rho|_{t=0} = \rho_0$.

These model the velocity u and density ρ of a mixture of viscous incompressible fluids of varying density in a bounded domain $D \subset \mathbb{R}^d$ (d = 2, 3)

(Velocity)
$$\rho du = [\nu \Delta u - \langle \rho u, \nabla \rangle u - \nabla \rho + \rho f(t, u)] dt + \rho g(t, u) dw_t$$

div
$$u = 0$$

$$({\sf Density}) \qquad \qquad \frac{\partial \rho}{\partial t} + < u, \nabla > \rho = 0$$

with boundary and initial conditions $u|_{\partial D} = 0$, $u|_{t=0} = u_0$, $\rho|_{t=0} = \rho_0$. (1)the *deterministic* nonhomogeneous equations: solved by Kazhikhov (1974) - assuming $M \ge \rho_0 \ge m > 0$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

These model the velocity u and density ρ of a mixture of viscous incompressible fluids of varying density in a bounded domain $D \subset \mathbb{R}^d$ (d = 2, 3)

(Velocity)
$$\rho du = [\nu \Delta u - \langle \rho u, \nabla \rangle u - \nabla \rho + \rho f(t, u)] dt + \rho g(t, u) dw_t$$

$$\operatorname{div} u = 0$$

$$({\sf Density}) \qquad \qquad \frac{\partial \rho}{\partial t} + < u, \nabla > \rho = 0$$

with boundary and initial conditions $u|_{\partial D} = 0$, $u|_{t=0} = u_0$, $\rho|_{t=0} = \rho_0$. (1)the *deterministic* nonhomogeneous equations: solved by Kazhikhov (1974) - assuming $M \ge \rho_0 \ge m > 0$ (2) The *stochastic* equations with *additive* noise (i.e. dG = gdw does not depend on u) - Yashima (1992) assuming $M \ge \rho_0 \ge m > 0$. Solved essentially pathwise.

These model the velocity u and density ρ of a mixture of viscous incompressible fluids of varying density in a bounded domain $D \subset \mathbb{R}^d$ (d = 2, 3)

(Velocity)
$$\rho du = [\nu \Delta u - \langle \rho u, \nabla \rangle u - \nabla \rho + \rho f(t, u)] dt + \rho g(t, u) dw_t$$

$$\operatorname{div} u = 0$$

$$({\sf Density}) \qquad \qquad \frac{\partial \rho}{\partial t} + < u, \nabla > \rho = 0$$

with boundary and initial conditions $u|_{\partial D} = 0$, $u|_{t=0} = u_0$, $\rho|_{t=0} = \rho_0$. (1)the *deterministic* nonhomogeneous equations: solved by Kazhikhov (1974) - assuming $M \ge \rho_0 \ge m > 0$

(2) The stochastic equations with additive noise (i.e. dG = gdw does not depend on u) - Yashima (1992) assuming $M \ge \rho_0 \ge m > 0$. Solved essentially pathwise.

(3) Loeb space methods (NJC & Brendan Enright): solve the *stochastic* equations with general *multiplicative* noise for d = 2, 3 assuming $M \ge \rho_0 \ge m > 0$.

Definition

Given $u_0 \in \mathbf{H}$, $\rho_0 \in L^{\infty}(D)$, $f : [0, T] \times \mathbf{H} \to \mathbf{H}$ and $g : [0, T] \times \mathbf{H} \to L(\mathbf{H}, \mathbf{H})$ a pair of stochastic processes (ρ, u) is a *weak solution* to the stochastic nonhomogeneous Navier-Stokes equations if

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Definition

Given $u_0 \in \mathbf{H}$, $\rho_0 \in L^{\infty}(D)$, $f : [0, T] \times \mathbf{H} \to \mathbf{H}$ and $g : [0, T] \times \mathbf{H} \to L(\mathbf{H}, \mathbf{H})$ a pair of stochastic processes (ρ, u) is a *weak solution* to the stochastic nonhomogeneous Navier-Stokes equations if (i) $u \in L^2([0, T] \times \Omega, \mathbf{V})$ and for a.a. ω

 $u(\cdot,\omega)\in L^{\infty}(0,T;\mathbf{H})\cap L^{2}(0,T;\mathbf{V})$

うして ふゆう ふほう ふほう うらう

Definition

Given $u_0 \in \mathbf{H}$, $\rho_0 \in L^{\infty}(D)$, $f : [0, T] \times \mathbf{H} \to \mathbf{H}$ and $g : [0, T] \times \mathbf{H} \to L(\mathbf{H}, \mathbf{H})$ a pair of stochastic processes (ρ, u) is a *weak solution* to the stochastic nonhomogeneous Navier-Stokes equations if (i) $u \in L^2([0, T] \times \Omega, \mathbf{V})$ and for a.a. ω

$$u(\cdot,\omega)\in L^{\infty}(0,\,T;\mathbf{H})\cap L^{2}(0,\,T;\mathbf{V})$$

うして ふゆう ふほう ふほう うらう

(ii) $\rho \in L^{\infty}([0, T] \times D \times \Omega)$

Definition

Given $u_0 \in \mathbf{H}$, $\rho_0 \in L^{\infty}(D)$, $f : [0, T] \times \mathbf{H} \to \mathbf{H}$ and $g : [0, T] \times \mathbf{H} \to L(\mathbf{H}, \mathbf{H})$ a pair of stochastic processes (ρ, u) is a *weak solution* to the stochastic nonhomogeneous Navier-Stokes equations if (i) $u \in L^2([0, T] \times \Omega, \mathbf{V})$ and for a.a. ω

$$u(\cdot,\omega)\in L^{\infty}(0,\,T;\mathbf{H})\cap L^{2}(0,\,T;\mathbf{V})$$

(ii)
$$\rho \in L^{\infty}([0, T] \times D \times \Omega)$$

(iii) (Velocity) for almost all $T_0 \leq T$, for all $\Phi \in C^1(0, T; \mathbf{V})$
 $(\rho(T_0)u(T_0), \Phi(T_0)) - (\rho_0 u_0, \Phi(0))$
 $= \int_0^{T_0} [(\rho u, \Phi' + \langle u, \nabla \rangle \Phi) - \nu((u, \Phi)) + (\rho f, \Phi)] dt + \int_0^{T_0} (\Phi, \rho g) dw$

(ロ) (型) (E) (E) (E) (O)

Definition

Given $u_0 \in \mathbf{H}$, $\rho_0 \in L^{\infty}(D)$, $f : [0, T] \times \mathbf{H} \to \mathbf{H}$ and $g : [0, T] \times \mathbf{H} \to L(\mathbf{H}, \mathbf{H})$ a pair of stochastic processes (ρ, u) is a *weak solution* to the stochastic nonhomogeneous Navier-Stokes equations if (i) $u \in L^2([0, T] \times \Omega, \mathbf{V})$ and for a.a. ω

$$u(\cdot,\omega)\in L^{\infty}(0,\,T;\mathbf{H})\cap L^{2}(0,\,T;\mathbf{V})$$

(ii)
$$\rho \in L^{\infty}([0, T] \times D \times \Omega)$$

(iii) (Velocity) for almost all $T_0 \leq T$, for all $\Phi \in C^1(0, T; \mathbf{V})$
 $(\rho(T_0)u(T_0), \Phi(T_0)) - (\rho_0 u_0, \Phi(0))$
 $= \int_0^{T_0} [(\rho u, \Phi' + \langle u, \nabla \rangle \Phi) - \nu((u, \Phi)) + (\rho f, \Phi)] dt + \int_0^{T_0} (\Phi, \rho g) dw$

(iv) (**Density**) for all $\varphi \in C^1(0, T; H^1(D))$, for all $T_0 \leq T$ $(\rho(T_0), \varphi(T_0)) - (\rho_0, \varphi(0)) = \int_0^{T_0} (\rho, \varphi' + \langle u, \nabla \rangle \varphi) dt$

Definition

Given $u_0 \in \mathbf{H}$, $\rho_0 \in L^{\infty}(D)$, $f : [0, T] \times \mathbf{H} \to \mathbf{H}$ and $g : [0, T] \times \mathbf{H} \to L(\mathbf{H}, \mathbf{H})$ a pair of stochastic processes (ρ, u) is a *weak solution* to the stochastic nonhomogeneous Navier-Stokes equations if (i) $u \in L^2([0, T] \times \Omega, \mathbf{V})$ and for a.a. ω

$$u(\cdot,\omega)\in L^\infty(0,\,T;\mathbf{H})\cap L^2(0,\,T;\mathbf{V})$$

(ii)
$$\rho \in L^{\infty}([0, T] \times D \times \Omega)$$

(iii) (Velocity) for almost all $T_0 \leq T$, for all $\Phi \in C^1(0, T; \mathbf{V})$
 $(\rho(T_0)u(T_0), \Phi(T_0)) - (\rho_0 u_0, \Phi(0))$
 $= \int_0^{T_0} [(\rho u, \Phi' + \langle u, \nabla \rangle \Phi) - \nu((u, \Phi)) + (\rho f, \Phi)] dt + \int_0^{T_0} (\Phi, \rho g) dw$

(iv) (**Density**) for all $\varphi \in C^1(0, T; H^1(D))$, for all $T_0 \leq T$ $(\rho(T_0), \varphi(T_0)) - (\rho_0, \varphi(0)) = \int_0^{T_0} (\rho, \varphi' + \langle u, \nabla \rangle \varphi) dt$

(v) $\rho(0) = \rho_0$ and $u(0) = u_0$ **Note.** g = 0 gives Kazhikhov's definition for the deterministic equations. **Theorem** (NJC & Brendan Enright, JDE 2006) Suppose that $u_0 \in H$ and $\rho_0 \in L^{\infty}(D)$ with $0 < m \le \rho_0(x) \le M$, and f, g satisfy natural continuity and growth conditions. Then there is a weak solution (ρ, u) to the stochastic nonhomogeneous Navier-Stokes equations with

$$\mathbb{E}\left(\sup_{t\leq T}\left|u(t)\right|^{2}+\nu\int\limits_{0}^{T}\left|\left|u(t)\right|\right|^{2}dt\right)<\infty$$

and for almost all ω , for all t

$$m \leq
ho(t, x) \leq M$$
 for almost all x

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

(ロト (個) (E) (E) (E) (の)(C)

1. Solve a modified hyperfinite dimensional approximation of the equations with velocity field $U(\tau, \omega)$ with values in \mathbf{H}_N , using the transfer of finite dimensional SDE theory. This will live on an internal adapted probability space $\Omega_0 = (\Omega, \mathcal{A}, (\mathcal{A}_\tau)_{\tau \ge 0}, \Pi)$ carrying an internal Wiener process $W(\tau, \omega)$ also with values in \mathbf{H}_N . The density will take the form $R(\tau, \omega)$ with values in ${}^*C^1(D) \subset {}^*L^{\infty}(D)$.

1. Solve a modified hyperfinite dimensional approximation of the equations with velocity field $U(\tau, \omega)$ with values in \mathbf{H}_N , using the transfer of finite dimensional SDE theory. This will live on an internal adapted probability space $\mathbf{\Omega}_0 = (\Omega, \mathcal{A}, (\mathcal{A}_\tau)_{\tau \ge 0}, \Pi)$ carrying an internal Wiener process $W(\tau, \omega)$ also with values in \mathbf{H}_N . The density will take the form $R(\tau, \omega)$ with values in ${}^*\mathcal{C}^1(D) \subset {}^*\mathcal{L}^{\infty}(D)$.

2. Prove an "energy estimate" showing that for almost all (τ, ω) the field $U(\tau, \omega)$ is nearstandard.

1. Solve a modified hyperfinite dimensional approximation of the equations with velocity field $U(\tau, \omega)$ with values in \mathbf{H}_N , using the transfer of finite dimensional SDE theory. This will live on an internal adapted probability space $\Omega_0 = (\Omega, \mathcal{A}, (\mathcal{A}_\tau)_{\tau \ge 0}, \Pi)$ carrying an internal Wiener process $W(\tau, \omega)$ also with values in \mathbf{H}_N . The density will take the form $R(\tau, \omega)$ with values in ${}^*C^1(D) \subset {}^*L^{\infty}(D)$.

2. Prove an "energy estimate" showing that for almost all (τ, ω) the field $U(\tau, \omega)$ is nearstandard.

3. Show that for almost all (τ, ω) the density $R(\tau, \omega)$ is nearstandard

1. Solve a modified hyperfinite dimensional approximation of the equations with velocity field $U(\tau, \omega)$ with values in \mathbf{H}_N , using the transfer of finite dimensional SDE theory. This will live on an internal adapted probability space $\Omega_0 = (\Omega, \mathcal{A}, (\mathcal{A}_{\tau})_{\tau \ge 0}, \Pi)$ carrying an internal Wiener process $W(\tau, \omega)$ also with values in \mathbf{H}_N . The density will take the form $R(\tau, \omega)$ with values in ${}^*C^1(D) \subset {}^*L^{\infty}(D)$.

2. Prove an "energy estimate" showing that for almost all (τ, ω) the field $U(\tau, \omega)$ is nearstandard.

- 3. Show that for almost all (τ, ω) the density $R(\tau, \omega)$ is nearstandard
- 4. Establish appropriate S-continuity in the time variable au

1. Solve a modified hyperfinite dimensional approximation of the equations with velocity field $U(\tau, \omega)$ with values in \mathbf{H}_N , using the transfer of finite dimensional SDE theory. This will live on an internal adapted probability space $\Omega_0 = (\Omega, \mathcal{A}, (\mathcal{A}_{\tau})_{\tau \ge 0}, \Pi)$ carrying an internal Wiener process $W(\tau, \omega)$ also with values in \mathbf{H}_N . The density will take the form $R(\tau, \omega)$ with values in ${}^*C^1(D) \subset {}^*L^{\infty}(D)$.

2. Prove an "energy estimate" showing that for almost all (τ, ω) the field $U(\tau, \omega)$ is nearstandard.

- 3. Show that for almost all (τ, ω) the density $R(\tau, \omega)$ is nearstandard
- 4. Establish appropriate S-continuity in the time variable au
- 5. Take standard parts $u(\circ \tau, \omega) = \circ U(\tau, \omega)$ and $\rho(\circ \tau, \omega) = \circ R(\tau, \omega)$

1. Solve a modified hyperfinite dimensional approximation of the equations with velocity field $U(\tau, \omega)$ with values in \mathbf{H}_N , using the transfer of finite dimensional SDE theory. This will live on an internal adapted probability space $\Omega_0 = (\Omega, \mathcal{A}, (\mathcal{A}_{\tau})_{\tau \ge 0}, \Pi)$ carrying an internal Wiener process $W(\tau, \omega)$ also with values in \mathbf{H}_N . The density will take the form $R(\tau, \omega)$ with values in ${}^*C^1(D) \subset {}^*L^{\infty}(D)$.

2. Prove an "energy estimate" showing that for almost all (τ, ω) the field $U(\tau, \omega)$ is nearstandard.

- 3. Show that for almost all (au, ω) the density $R(au, \omega)$ is nearstandard
- 4. Establish appropriate S-continuity in the time variable au
- 5. Take standard parts $u(\circ \tau, \omega) = \circ U(\tau, \omega)$ and $\rho(\circ \tau, \omega) = \circ R(\tau, \omega)$

6. Show that the pair (u, ρ) is a solution to the stochastic nonhomogeneous Navier-Stokes equations on the adapted Loeb space

$$\mathbf{\Omega} = (\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)$$

where $P = \prod_{L}$, $\mathcal{F} = L(\mathcal{A})$ and $(\mathcal{F}_t)_{t \geq 0}$ is the filtration obtained from $(\mathcal{A}_{\tau})_{\tau \geq 0}$.

In the 2D setting (i.e. a fluid moving in a bounded domain in the plane) there is more regularity to the solution, provided g has a little more regularity.

In the 2D setting (i.e. a fluid moving in a bounded domain in the plane) there is more regularity to the solution, provided g has a little more regularity.

Theorem

Suppose that d = 2 and the initial condition $u_0 \in V$ and (ρ, u) is the solution to the stochastic non-homogeneous Navier-Stokes equations constructed above. Suppose further that $g : [0, t] \times V \rightarrow L(H, V)$ and $|g(t, u)|_{H,V} \leq a(t)(1 + ||u||)$. Then almost surely:

うして ふゆう ふほう ふほう うらう

In the 2D setting (i.e. a fluid moving in a bounded domain in the plane) there is more regularity to the solution, provided g has a little more regularity.

Theorem

Suppose that d = 2 and the initial condition $u_0 \in V$ and (ρ, u) is the solution to the stochastic non-homogeneous Navier-Stokes equations constructed above. Suppose further that $g : [0, t] \times V \to L(H, V)$ and $|g(t, u)|_{H,V} \leq a(t)(1 + ||u||)$. Then almost surely: (a) $\sup_{t \in [0,T]} ||u(t)|| + \int_0^T |Au(t)|^2 dt < \infty$ where $A = -\Delta$;

うして ふゆう ふほう ふほう うらう

In the 2D setting (i.e. a fluid moving in a bounded domain in the plane) there is more regularity to the solution, provided g has a little more regularity.

Theorem

Suppose that d = 2 and the initial condition $u_0 \in \mathbf{V}$ and (ρ, u) is the solution to the stochastic non-homogeneous Navier-Stokes equations constructed above. Suppose further that $g : [0, t] \times \mathbf{V} \rightarrow L(\mathbf{H}, \mathbf{V})$ and $|g(t, u)|_{\mathbf{H}, \mathbf{V}} \leq a(t)(1 + ||u||)$. Then almost surely: (a) $\sup_{t \in [0, T]} ||u(t)|| + \int_0^T |Au(t)|^2 dt < \infty$ where $A = -\Delta$;

(日) (伊) (日) (日) (日) (0) (0)

(b) u(t) is strongly continuous in **H** and weakly continuous in **V**;

In the 2D setting (i.e. a fluid moving in a bounded domain in the plane) there is more regularity to the solution, provided g has a little more regularity.

Theorem

Suppose that d = 2 and the initial condition $u_0 \in V$ and (ρ, u) is the solution to the stochastic non-homogeneous Navier-Stokes equations constructed above. Suppose further that $g : [0, t] \times V \rightarrow L(H, V)$ and $|g(t, u)|_{H,V} \leq a(t)(1 + ||u||)$. Then almost surely:

(日) (伊) (日) (日) (日) (0) (0)

- (a) $\sup_{t \in [0,T]} ||u(t)|| + \int_0^T |Au(t)|^2 dt < \infty$ where $A = -\Delta$;
- (b) u(t) is strongly continuous in **H** and weakly continuous in **V**;
- (c) the equation for $u(t,\omega)$ holds for **all** $T_0 \leq T$.

Concluding remarks - what makes nonstandard methods useful in the study of Navier-Stokes equations?

(ロ)、(型)、(E)、(E)、 E のQで

Concluding remarks - what makes nonstandard methods useful in the study of Navier-Stokes equations?

1. No need for limiting arguments and specialized compactness theorems to get a convergent subsequence from a sequence of finite dimensional Galerkin approximations. In fact the specialized compactness theorems (and the appropriate topology) are discovered as by-products.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Concluding remarks - what makes nonstandard methods useful in the study of Navier-Stokes equations?

1. No need for limiting arguments and specialized compactness theorems to get a convergent subsequence from a sequence of finite dimensional Galerkin approximations. In fact the specialized compactness theorems (and the appropriate topology) are discovered as by-products.

2. The richness of Loeb spaces means that all activity can take place in a single underlying probability space - not only convenient but essential for formulating some ideas - eg process attractors and optimal controls in 3D.