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The STOCHASTIC NAVIER STOKES EQUATIONS (sNSe) in a bounded
domain D ⊂ Rd (d = 2, 3) with multiplicative noise:{

du =
[
ν∆u − 〈u,∇〉u + f (t, u)−∇p

]
dt + g(t, u)dwt

div u = 0

u(t, x , ω) =(random) velocity of the �uid at the location x ∈ D at time t:

u : [0,∞)× D × Ω → Rd

Ω = domain of an underlying probability space.

Initial condition u(0) = u0 (may be random); boundary condition is either
u(t, x) = 0 for x ∈ ∂D (or sometimes periodic for d = 2).
First solutions in d = 3: Capi«ski & NJC (1991) using Loeb space methods.
Methods extend to give results on:

� attractors for sNSe
� optimal control theory for sNSe
� nonhomogeneous (i.e. non-constant density) sNSe.

Aim of the talk: to sketch informally the Loeb space approach and what can
be achieved in these areas.
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Mathematical Formulation - Hilbert space setting

Set H = {u ∈ C∞
0

(D, Rd): div u = 0} with norms |u| and ‖u‖ derived from

(u, v) =
d∑
j=1

∫
D

uj(x)v j(x)dx , ((u, v)) =
d∑
j=1

(
∂u

∂xj
,

∂v

∂xj

)

H = closure of H in the norm |u| and V is the closure in norm |u|+ ‖u‖.

H and V are Hilbert spaces with scalar products (·, ·) and ((·, ·)) resp.
A = self adjoint extension of the projection of −∆ in H; A has an orthonormal
basis {ek} of eigenfunctions with eigenvalues 0 < λk ↗∞.
Hm = span{e1, . . . , em} ⊂ V.
The operator B(u) is de�ned by B(u)w = (〈u,∇〉u,w).
The sNSe are now formulated as a stochastic di�erential equation in H:

du = [−νAu − B(u) + f (t, u)]dt + g(t, u)dwt

Initially regard this as an equation in V′ (the dual of V) although it turns out
that solutions live in H (and in fact in V for almost all times).
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du = [−νAu − B(u) + f (t, u)]dt + g(t, u)dwt (1)

The equation is understood as a weak integral equation :

u(t) = u0 +

∫ t

0

[νAu(s)− B(u(s)) + f (s, u(s))]ds +

∫ t

0

g(s, u(s))dws

the �rst
∫
= Bochner integral; the second

∫
= Ichikawa's extension of the Itô

integral to Hilbert spaces; evaluated by testing against functions in V.

The noise w : [0,∞)× Ω → H is a Wiener process with trace class covariance.
The coe�cients

g : [0,∞)× V→ L(H,H) and f : [0,∞)× V→ V′.

can be quite general - we only need appropriate continuity and growth
conditions. (The restriction to V in the domains is su�cient because solutions
will lie in V for almost all times.)
Note The pressure has disappeared, because ∇p = 0 in V′.
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Basic Existence Theorem

Theorem
For any u0 ∈ H and given f , g there is an adapted probability space ΩΩ carrying
an H-valued Wiener process w and a (weak) solution of the stochastic
Navier�Stokes equations.

That is, an adapted stochastic process u : [0,∞)× Ω → H such that for a.a. ω

(i) u(·, ω) ∈ L2(0,T ;V ) ∩ L∞(0,T ;H) ∩ C (0,T ;Hweak) for all T < ∞ ,

(ii) for all t ≥ 0

u(t) = u0 +

∫ t

0

[νAu(s)− B(u(s)) + f (s, u(s))]ds +

∫ t

0
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The classical approach to solving

u(t) = u0 +

∫ t

0

[νAu(s)− B(u(s)) + f (s, u(s))]ds +

∫ t

0

g(s, u(s))dws

(1) solve an approximate version (the Galerkin approximation) in each �nite
dimensional space Hn on a probability space ΩΩn with Wiener process wn

(2) pass to the limit as n→∞
This needs specialized compactness theorems and ways to enlarge the spaces ΩΩn

to a �limit� probability space (which may depend on the solution).
Loeb space methods provide a single space ΩΩ (a Loeb space) and a Wiener
process w carrying solutions for all (random) initial conditions and all f , g .
This makes them powerful for discussing attractors and optimal control theory
for sNSe. Loeb spaces are saturated and homogeneous.
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LOEB SPACE METHODS FOR sNSe

NONSTANDARD ANALYSIS The hyperreals or nonstandard reals ∗R ⊃R is
a �eld such that ∗R contains non-zero in�nitesimal numbers; and positive and
negative in�nite numbers using the following de�nitions:

Let x ∈ ∗R. We say that
(i) x is in�nitesimal if |x | < ε for all ε > 0, ε ∈ R;
(ii) x is �nite if |x | < r for some r ∈ R;
(iii) x is in�nite if |x | > r for all r ∈ R.
(iv) x and y are in�nitely close, denoted by x ≈ y , if x − y is in�nitesimal. (So
x ≈ 0 means that x is in�nitesimal)
One way to construct ∗R is as an ultrapower of the reals

∗R = RNU

where U is a nonprincipal ultra�lter (or maximal �lter) on N.
An example of a non-zero in�nitesimal is given by (1, 1

2
, 1
3
, . . .)U .
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De�ne addition and multiplication on ∗R pointwise (this is safe) and it is then
easy to see that

(∗R,+,×, <) is an ordered �eld.

A good way to picture ∗R is as follows (note that some features in the diagram
are yet to be explained).
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Now extend all sets A, functions f and relations R on R to ∗R pointwise � with
the extensions denoted by ∗A, ∗f and ∗R.

Examples: ∗N, ∗Z and ∗Q, the sets of hypernatural numbers, hyperintegers
and hyperrationals respectively We can talk about an in�nite (hyper)natural
number N.



Properties of ∗R are given systematically by the following:

Theorem (Transfer Principle)
Let ϕ be any �rst order statement. Then

ϕ holds in R ⇐⇒ ∗ϕ holds in ∗R

A �rst order statement ϕ (respectively ∗ϕ): refers to elements of R
(respectively ∗R), both �xed and variable, and to �xed relations and functions
f ,R (respectively ∗f , ∗R), with quanti�cation (∀x , ∃y) only for elements.
To get back to R from ∗R:

Theorem (Standard Part Theorem)
If x ∈ ∗R is �nite, then there is a unique r ∈ R such that x ≈ r ; i.e. any �nite
hyperreal x is uniquely expressible as x = r + δ with r a standard real and δ
in�nitesimal.

De�nition (Standard Part)
If x is a �nite hyperreal the unique real r ≈ x is called the standard part of x ,
written r = ◦x = st(x).
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A NONSTANDARD UNIVERSE
Repeat the above construction to give ∗A for any mathematical object or
structure A; e.g. ∗M for a metric space with ∗d :∗M × ∗M →∗R.

The most economical way to do this is for a whole mathematical universe V
with A ∈ V for each object A that might be needed. Information about the
resulting nonstandard universe ∗V is given by:

Theorem (The Transfer Principle)
Suppose that ϕ is a bounded quanti�er statement. Then ϕ holds in V if and
only if ∗ϕ holds in ∗V.

Elements (objects) belonging to the nonstandard universe ∗V are called internal.

Remark The standard part mapping extends to the �nearstandard� elements of
any extension metric (or topological) space ∗M - in particular the space ∗H. It
is easy to show that elements U in ∗H with |U| �nite are nearstandard in the
weak topology.
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LOEB MEASURES
A Loeb measure space is a measure constructed from a nonstandard (i.e.
internal) measure (essentially it is an ultraproduct of measures).

Suppose that an internal set Ω and an internal algebra A of subsets of
Ω, are given, µ is a �nite internal �nitely additive measure on A;

that is

µ : A → ∗[0,∞)

with µ(A ∪ B) = µ(A) + µ(B) for disjoint A, B ∈ A, and µ(Ω) is �nite. De�ne
the mapping

◦µ : A → [0,∞)

by ◦µ(A) =◦(µ(A)). Then (Ω,A,◦µ) is a standard �nitely additive measure
space but A is not σ-additive in general.

Theorem (Loeb 1975)
There is a unique σ-additive extension of ◦µ to the σ-algebra σ(A) generated
by A. The completion of this measure is the Loeb measure corresponding to
µ, denoted µL and the completion of σ(A) is the Loeb σ -algebra, denoted by
L(A).
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Loeb measures are very rich, even though the internal measures they come from
may be very simple (eg.counting probabilities).

Loeb integration theory relates nonstandard integrals and Loeb integrals.
Let F : Ω → ∗R be S-integrable. Then ◦F : Ω → R and

◦
∫

Ω

Fdµ =

∫
Ω

◦FdµL

Similar relationships connect internal (i.e. nonstandard) stochastic integrals to
standard stochastic integrals on the Loeb space.
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LOEB SPACE SOLUTIONS TO STOCHASTIC NSe
(1) Use standard SDE methods + Transfer to solve the Galerkin approximation
to the sNSe in dimension N (N ∈ ∗N in�nite)

dU(τ) = [−ν∗AU(τ) + ∗BN(U) + ∗fN(τ,U(τ))]dτ + ∗gN(τ,U(τ))dWτ

U is an internal stochastic processes U : ∗[0,T ]× Ω → HN ⊂ ∗H on an
internal space ΩΩ0 = (Ω,A,P) with internal Wiener process W in HN

(2) Establish an energy estimate. There is a �nite constant E (independent of
N) such that

E

 sup
τ≤T

|U(τ)|2 + ν

T∫
0

||U(σ)||2 dσ

 < E (Energy)

(3) The energy estimate means that for a.a. ω, |U(τ)| is �nite for all τ ≤ T
and hence weakly nearstandard. The integral equation for U gives that for a.a.
ω, if σ ≈ τ then U(σ) ≈ U(τ). Hence
(4) De�ne a standard weakly continuous process u : [0,T ]× Ω → H by

u(t, ω) = ◦U(t, ω)

(5) Show that this u solves the sNSe on the Loeb space corresponding to ΩΩ0

i.e. ΩΩ = (Ω, L (A) ,PL) with �ltration derived from that on ΩΩ0
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internal space ΩΩ0 = (Ω,A,P) with internal Wiener process W in HN

(2) Establish an energy estimate. There is a �nite constant E (independent of
N) such that

E

 sup
τ≤T

|U(τ)|2 + ν

T∫
0

||U(σ)||2 dσ

 < E (Energy)

(3) The energy estimate means that for a.a. ω, |U(τ)| is �nite for all τ ≤ T
and hence weakly nearstandard. The integral equation for U gives that for a.a.
ω, if σ ≈ τ then U(σ) ≈ U(τ). Hence
(4) De�ne a standard weakly continuous process u : [0,T ]× Ω → H by

u(t, ω) = ◦U(t, ω)

(5) Show that this u solves the sNSe on the Loeb space corresponding to ΩΩ0

i.e. ΩΩ = (Ω, L (A) ,PL) with �ltration derived from that on ΩΩ0
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Hence

Theorem (Capi«ski & NJC (1991))
There is an adapted probability space ΩΩ carrying an H-valued Wiener process w
such that for any (L2-random) u0 ∈ H and f , g (continuous with linear growth)
there is a (weak) solution of the stochastic Navier�Stokes equations.

That is, an adapted stochastic process u : [0,∞)× Ω → H such that for a.a. ω

(i) u ∈ L2(0,T ;V ) ∩ L∞(0,T ;H) ∩ C (0,T ;Hweak) for all T < ∞ ,

(ii) for all t ≥ 0

u(t) = u0 +

∫ t

0

[νAu(s)− B(u(s)) + f (s, u(s))]ds +

∫ t

0

g(s, u(s))dws
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Application 1: ATTRACTORS FOR STOCHASTIC NAVIER�STOKES
EQUATIONS

For a deterministic dynamical system with uniqueness write Stv = value at
time t of the solution with u(0) = v .
An attractor is a compact set A ⊆ H such that StA = A and for any open set
G ⊃ A and bounded set B ⊂ H, eventually we have StB ⊆ G .
Intuitively an attractor is given by

A = {∗SτV : V ∈ B and τ an in�nite time}

where B ⊆HN is a chosen bounded set (an absorbing set). This can be made
precise using the ideas of NSA.
For stochastic systems there is a variety of notions including
(1) measure attractors - limiting behaviour of the measure induced on path
space (Schmallfuÿ and others).
(2) stochastic attractors (Crauel & Flandoli)
(3) process attractors (NJC & Keisler)
(4) neo-attractors (NJC & Keisler)
Loeb space methods give new results for each of (2) - (4) for sNSe for drift
and noise of the form f (u) and g(u)
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Stochastic attractors for sNSe

For sNSe this only makes sense for d = 2 (where we have uniqueness). Crauel
& Flandoli's idea: a stochastic attractor is a random compact set A(ω) that, at
time 0, attracts trajectories �starting at −∞� (compared to the usual idea of an
attractor being a set �at time ∞� that attracts trajectories starting at time 0).
The Loeb space approach to solving the sNSe can be modi�ed by starting the
solutions at any given negative time - including in�nite negative time; then
intuitively a random attractor A(ω) =points in H that can be reached at time
t = 0 starting at some in�nite negative time.
Making this precise gives:

Theorem
(Capi«ski & NJC 1999) For special forms of the noise term g(u) in the 2D
sNSe there is a stochastic attractor A(ω) (compact in the strong topology of H).

Precise de�nition and proof - too long and complicated!
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Process attractors for sNSe

For d = 3 uniqueness is unknown. To overcome this for the deterministic NSe,
Sell replaced the phase space H by W = all solution paths for the deterministic
Navier�Stokes equations. The semigroup action St on W is time translation: if
u = u(·) ∈W then Stu = v ∈W is given by

(Stu)(s) = u(t + s).

This has the crucial semi-�ow property St1 ◦ St2 = St1+t2 along with S0u = u.

Theorem (Sell (1996))
There is global attractor A ⊆W for the 3-dimensional (deterministic)
Navier�Stokes equations.
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Extension of Sell's idea to the stochastic NS-equations.
Basic idea. Let X be a set of solutions to the sNSe on a space ΩΩ with Wiener
process w .

Assume that Ω has measure preserving maps θt : Ω → Ω for t ≥ 0
that �shift the noise to the right�. That is:
(θ1) θ0 =identity and θt ◦ θs = θt+s ;
(θ2) θtFs = Ft+s for all s, t ≥ 0, where (Ft) is the �ltration on ΩΩ;
(θ3) w(t + s, θtω)− w(t, θtω) = w(s, ω) for all s ≥ 0

De�nition
(Semi�ow of Processes) For a stochastic process u = u(t, ω) de�ne a process
v = Sru by

v(t, ω) = u(r + t, θrω)
Sr is a semigroup, and if u is adapted so is Stu.
Suppose now that X is closed under St . Then a natural de�nition of a
process attractor for the class X is A ⊆ X such that
(i) StA = A for all t ≥ 0
(ii) A is compact in some sense
(iii) A attracts bounded subsets of the class X
This turns out to be asking too much. We need a weaker de�nition. In the
following, if u is a stochastic process then Law(u) is de�ned to be the
probability law (on path space) of the coupled process (u,w).



Extension of Sell's idea to the stochastic NS-equations.
Basic idea. Let X be a set of solutions to the sNSe on a space ΩΩ with Wiener
process w . Assume that Ω has measure preserving maps θt : Ω → Ω for t ≥ 0
that �shift the noise to the right�.

That is:
(θ1) θ0 =identity and θt ◦ θs = θt+s ;
(θ2) θtFs = Ft+s for all s, t ≥ 0, where (Ft) is the �ltration on ΩΩ;
(θ3) w(t + s, θtω)− w(t, θtω) = w(s, ω) for all s ≥ 0

De�nition
(Semi�ow of Processes) For a stochastic process u = u(t, ω) de�ne a process
v = Sru by

v(t, ω) = u(r + t, θrω)
Sr is a semigroup, and if u is adapted so is Stu.
Suppose now that X is closed under St . Then a natural de�nition of a
process attractor for the class X is A ⊆ X such that
(i) StA = A for all t ≥ 0
(ii) A is compact in some sense
(iii) A attracts bounded subsets of the class X
This turns out to be asking too much. We need a weaker de�nition. In the
following, if u is a stochastic process then Law(u) is de�ned to be the
probability law (on path space) of the coupled process (u,w).



Extension of Sell's idea to the stochastic NS-equations.
Basic idea. Let X be a set of solutions to the sNSe on a space ΩΩ with Wiener
process w . Assume that Ω has measure preserving maps θt : Ω → Ω for t ≥ 0
that �shift the noise to the right�. That is:
(θ1) θ0 =identity and θt ◦ θs = θt+s ;

(θ2) θtFs = Ft+s for all s, t ≥ 0, where (Ft) is the �ltration on ΩΩ;
(θ3) w(t + s, θtω)− w(t, θtω) = w(s, ω) for all s ≥ 0

De�nition
(Semi�ow of Processes) For a stochastic process u = u(t, ω) de�ne a process
v = Sru by

v(t, ω) = u(r + t, θrω)
Sr is a semigroup, and if u is adapted so is Stu.
Suppose now that X is closed under St . Then a natural de�nition of a
process attractor for the class X is A ⊆ X such that
(i) StA = A for all t ≥ 0
(ii) A is compact in some sense
(iii) A attracts bounded subsets of the class X
This turns out to be asking too much. We need a weaker de�nition. In the
following, if u is a stochastic process then Law(u) is de�ned to be the
probability law (on path space) of the coupled process (u,w).



Extension of Sell's idea to the stochastic NS-equations.
Basic idea. Let X be a set of solutions to the sNSe on a space ΩΩ with Wiener
process w . Assume that Ω has measure preserving maps θt : Ω → Ω for t ≥ 0
that �shift the noise to the right�. That is:
(θ1) θ0 =identity and θt ◦ θs = θt+s ;
(θ2) θtFs = Ft+s for all s, t ≥ 0, where (Ft) is the �ltration on ΩΩ;

(θ3) w(t + s, θtω)− w(t, θtω) = w(s, ω) for all s ≥ 0

De�nition
(Semi�ow of Processes) For a stochastic process u = u(t, ω) de�ne a process
v = Sru by

v(t, ω) = u(r + t, θrω)
Sr is a semigroup, and if u is adapted so is Stu.
Suppose now that X is closed under St . Then a natural de�nition of a
process attractor for the class X is A ⊆ X such that
(i) StA = A for all t ≥ 0
(ii) A is compact in some sense
(iii) A attracts bounded subsets of the class X
This turns out to be asking too much. We need a weaker de�nition. In the
following, if u is a stochastic process then Law(u) is de�ned to be the
probability law (on path space) of the coupled process (u,w).



Extension of Sell's idea to the stochastic NS-equations.
Basic idea. Let X be a set of solutions to the sNSe on a space ΩΩ with Wiener
process w . Assume that Ω has measure preserving maps θt : Ω → Ω for t ≥ 0
that �shift the noise to the right�. That is:
(θ1) θ0 =identity and θt ◦ θs = θt+s ;
(θ2) θtFs = Ft+s for all s, t ≥ 0, where (Ft) is the �ltration on ΩΩ;
(θ3) w(t + s, θtω)− w(t, θtω) = w(s, ω) for all s ≥ 0

De�nition
(Semi�ow of Processes) For a stochastic process u = u(t, ω) de�ne a process
v = Sru by

v(t, ω) = u(r + t, θrω)
Sr is a semigroup, and if u is adapted so is Stu.
Suppose now that X is closed under St . Then a natural de�nition of a
process attractor for the class X is A ⊆ X such that
(i) StA = A for all t ≥ 0
(ii) A is compact in some sense
(iii) A attracts bounded subsets of the class X
This turns out to be asking too much. We need a weaker de�nition. In the
following, if u is a stochastic process then Law(u) is de�ned to be the
probability law (on path space) of the coupled process (u,w).



Extension of Sell's idea to the stochastic NS-equations.
Basic idea. Let X be a set of solutions to the sNSe on a space ΩΩ with Wiener
process w . Assume that Ω has measure preserving maps θt : Ω → Ω for t ≥ 0
that �shift the noise to the right�. That is:
(θ1) θ0 =identity and θt ◦ θs = θt+s ;
(θ2) θtFs = Ft+s for all s, t ≥ 0, where (Ft) is the �ltration on ΩΩ;
(θ3) w(t + s, θtω)− w(t, θtω) = w(s, ω) for all s ≥ 0

De�nition
(Semi�ow of Processes) For a stochastic process u = u(t, ω) de�ne a process
v = Sru by

v(t, ω) = u(r + t, θrω)

Sr is a semigroup, and if u is adapted so is Stu.
Suppose now that X is closed under St . Then a natural de�nition of a
process attractor for the class X is A ⊆ X such that
(i) StA = A for all t ≥ 0
(ii) A is compact in some sense
(iii) A attracts bounded subsets of the class X
This turns out to be asking too much. We need a weaker de�nition. In the
following, if u is a stochastic process then Law(u) is de�ned to be the
probability law (on path space) of the coupled process (u,w).



Extension of Sell's idea to the stochastic NS-equations.
Basic idea. Let X be a set of solutions to the sNSe on a space ΩΩ with Wiener
process w . Assume that Ω has measure preserving maps θt : Ω → Ω for t ≥ 0
that �shift the noise to the right�. That is:
(θ1) θ0 =identity and θt ◦ θs = θt+s ;
(θ2) θtFs = Ft+s for all s, t ≥ 0, where (Ft) is the �ltration on ΩΩ;
(θ3) w(t + s, θtω)− w(t, θtω) = w(s, ω) for all s ≥ 0

De�nition
(Semi�ow of Processes) For a stochastic process u = u(t, ω) de�ne a process
v = Sru by

v(t, ω) = u(r + t, θrω)
Sr is a semigroup, and if u is adapted so is Stu.

Suppose now that X is closed under St . Then a natural de�nition of a
process attractor for the class X is A ⊆ X such that
(i) StA = A for all t ≥ 0
(ii) A is compact in some sense
(iii) A attracts bounded subsets of the class X
This turns out to be asking too much. We need a weaker de�nition. In the
following, if u is a stochastic process then Law(u) is de�ned to be the
probability law (on path space) of the coupled process (u,w).



Extension of Sell's idea to the stochastic NS-equations.
Basic idea. Let X be a set of solutions to the sNSe on a space ΩΩ with Wiener
process w . Assume that Ω has measure preserving maps θt : Ω → Ω for t ≥ 0
that �shift the noise to the right�. That is:
(θ1) θ0 =identity and θt ◦ θs = θt+s ;
(θ2) θtFs = Ft+s for all s, t ≥ 0, where (Ft) is the �ltration on ΩΩ;
(θ3) w(t + s, θtω)− w(t, θtω) = w(s, ω) for all s ≥ 0

De�nition
(Semi�ow of Processes) For a stochastic process u = u(t, ω) de�ne a process
v = Sru by

v(t, ω) = u(r + t, θrω)
Sr is a semigroup, and if u is adapted so is Stu.
Suppose now that X is closed under St . Then a natural de�nition of a
process attractor for the class X is A ⊆ X such that

(i) StA = A for all t ≥ 0
(ii) A is compact in some sense
(iii) A attracts bounded subsets of the class X
This turns out to be asking too much. We need a weaker de�nition. In the
following, if u is a stochastic process then Law(u) is de�ned to be the
probability law (on path space) of the coupled process (u,w).



Extension of Sell's idea to the stochastic NS-equations.
Basic idea. Let X be a set of solutions to the sNSe on a space ΩΩ with Wiener
process w . Assume that Ω has measure preserving maps θt : Ω → Ω for t ≥ 0
that �shift the noise to the right�. That is:
(θ1) θ0 =identity and θt ◦ θs = θt+s ;
(θ2) θtFs = Ft+s for all s, t ≥ 0, where (Ft) is the �ltration on ΩΩ;
(θ3) w(t + s, θtω)− w(t, θtω) = w(s, ω) for all s ≥ 0

De�nition
(Semi�ow of Processes) For a stochastic process u = u(t, ω) de�ne a process
v = Sru by

v(t, ω) = u(r + t, θrω)
Sr is a semigroup, and if u is adapted so is Stu.
Suppose now that X is closed under St . Then a natural de�nition of a
process attractor for the class X is A ⊆ X such that
(i) StA = A for all t ≥ 0

(ii) A is compact in some sense
(iii) A attracts bounded subsets of the class X
This turns out to be asking too much. We need a weaker de�nition. In the
following, if u is a stochastic process then Law(u) is de�ned to be the
probability law (on path space) of the coupled process (u,w).



Extension of Sell's idea to the stochastic NS-equations.
Basic idea. Let X be a set of solutions to the sNSe on a space ΩΩ with Wiener
process w . Assume that Ω has measure preserving maps θt : Ω → Ω for t ≥ 0
that �shift the noise to the right�. That is:
(θ1) θ0 =identity and θt ◦ θs = θt+s ;
(θ2) θtFs = Ft+s for all s, t ≥ 0, where (Ft) is the �ltration on ΩΩ;
(θ3) w(t + s, θtω)− w(t, θtω) = w(s, ω) for all s ≥ 0

De�nition
(Semi�ow of Processes) For a stochastic process u = u(t, ω) de�ne a process
v = Sru by

v(t, ω) = u(r + t, θrω)
Sr is a semigroup, and if u is adapted so is Stu.
Suppose now that X is closed under St . Then a natural de�nition of a
process attractor for the class X is A ⊆ X such that
(i) StA = A for all t ≥ 0
(ii) A is compact in some sense

(iii) A attracts bounded subsets of the class X
This turns out to be asking too much. We need a weaker de�nition. In the
following, if u is a stochastic process then Law(u) is de�ned to be the
probability law (on path space) of the coupled process (u,w).



Extension of Sell's idea to the stochastic NS-equations.
Basic idea. Let X be a set of solutions to the sNSe on a space ΩΩ with Wiener
process w . Assume that Ω has measure preserving maps θt : Ω → Ω for t ≥ 0
that �shift the noise to the right�. That is:
(θ1) θ0 =identity and θt ◦ θs = θt+s ;
(θ2) θtFs = Ft+s for all s, t ≥ 0, where (Ft) is the �ltration on ΩΩ;
(θ3) w(t + s, θtω)− w(t, θtω) = w(s, ω) for all s ≥ 0

De�nition
(Semi�ow of Processes) For a stochastic process u = u(t, ω) de�ne a process
v = Sru by

v(t, ω) = u(r + t, θrω)
Sr is a semigroup, and if u is adapted so is Stu.
Suppose now that X is closed under St . Then a natural de�nition of a
process attractor for the class X is A ⊆ X such that
(i) StA = A for all t ≥ 0
(ii) A is compact in some sense
(iii) A attracts bounded subsets of the class X

This turns out to be asking too much. We need a weaker de�nition. In the
following, if u is a stochastic process then Law(u) is de�ned to be the
probability law (on path space) of the coupled process (u,w).



Extension of Sell's idea to the stochastic NS-equations.
Basic idea. Let X be a set of solutions to the sNSe on a space ΩΩ with Wiener
process w . Assume that Ω has measure preserving maps θt : Ω → Ω for t ≥ 0
that �shift the noise to the right�. That is:
(θ1) θ0 =identity and θt ◦ θs = θt+s ;
(θ2) θtFs = Ft+s for all s, t ≥ 0, where (Ft) is the �ltration on ΩΩ;
(θ3) w(t + s, θtω)− w(t, θtω) = w(s, ω) for all s ≥ 0

De�nition
(Semi�ow of Processes) For a stochastic process u = u(t, ω) de�ne a process
v = Sru by

v(t, ω) = u(r + t, θrω)
Sr is a semigroup, and if u is adapted so is Stu.
Suppose now that X is closed under St . Then a natural de�nition of a
process attractor for the class X is A ⊆ X such that
(i) StA = A for all t ≥ 0
(ii) A is compact in some sense
(iii) A attracts bounded subsets of the class X
This turns out to be asking too much. We need a weaker de�nition. In the
following, if u is a stochastic process then Law(u) is de�ned to be the
probability law (on path space) of the coupled process (u,w).



De�nition
(a) A set of laws A ⊂ Law(X ) is a law-attractor if

(i) (Invariance) ŜtA = A for all t ≥ 0, where Ŝt is the mapping of laws
induced by the semigroup St .
(ii) (Attraction) For any open set O ⊃ A and bounded Z ⊂ Law(X ),

ŜtZ ⊆ O

eventually (i.e. this holds for all t ≥ t0(O,Z)).
(iii) (Compactness) A is compact
(b) A (process) attractor for the semi�ow St on X is a set of processes A ⊆ X
such that
(i) Law(A) is a law-attractor (so Law(A) is compact and A is bounded);
(ii) (Invariance) StA = A for all t ≥ 0;
(iii) (Attraction) For bounded Z ⊂ X and compact K with O = (K≤ε)c ⊃ A,
for su�ciently large t

StZ ⊆ O.

(iv) A is closed.

Even for this weaker de�nition, existence requires a rather large probability space
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Theorem
(NJC & H.J.Keisler,2004)There is a Loeb space ΩΩ and a natural class of
solutions X that has a process attractor A. The class X contains solutions to
the sNSe for all L2 random initial conditions.
A is the restriction to nonnegative times of a corresponding class X̂ of two sided
solutions to the sNSe.

Remark It can be shown that if ΩΩ is any su�ciently rich space (for example if
ΩΩ is a Loeb space) then any process attractor A is not compact.
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NEO-ATTRACTORS

The de�nition of a process attractor is somewhat unsatisfactory and does not
capture the full strength of what was proved above. This is fully captured by
the notion of a neo-attractor.
Keisler's theory of neo-metric spaces involves notions of neo-open, neo-compact
and neo-continuous. These arise very naturally for metric spaces that are
constructed using nonstandard analysis - such as the class of solutions X in the
above theorem.
Neo-compact is weaker than compact in general; neo-open is weaker than open,
but neo-continuous is stronger than continuous.

Theorem
(NJC & H.J.Keisler, 2005) The attractor A of the above theorem is a
neo-attractor; that is
(1) (Invariance) StA = A for all t ≥ 0;
(2) A is neocompact;
(3) for any neo-open set G ⊃ A and bounded set B ⊂ X , eventually StB ⊆ G .
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Application 2: OPTIMAL CONTROL THEORY (NJC & Katarzyna
Grzesiak)

Using NSA for optimal control problems
Suppose we have a minimizing sequence of controls θn : [0,T ] → M (M a
metric space) for a given optimal control problem, say . That is

Cost of using control θn = J(θn) ↘ J0

where J0 is the in�mum of all costs for controls for the given system.
Then NSA allows us to speak of the nonstandard control θN for any in�nite N.
We can usually make sense of J(θN) and we will have J(θN) ≈ J0. In many
circumstances we can then �take standard parts� to produce an optimal control

θ = ◦θN

This idea has been applied to the sNSe in a variety of settings, always involving
a Loeb space so that solutions for all controls live on the same probability space.
Results have been obtained for 2D systems of the form

u(t) = u0 +

∫ t

0

{−νAu(s)− B (u(s)) + f (s, u, θ(s, u))} ds +

∫ t

0

g (s, u) dw(s)

with θ Hölder continuous, or with θ having no feedback in u, or with the
feedback consisting of cumulative digital observations of the solution at a �xed
�nite number of times.
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For the 3D equations results are only for systems with no feedback: i.e.
θ = θ(t). The possible non-uniqueness of solutions requires a large space to
work in - one containing all possible solutions for a given control to allow
initially the existence of an optimal solution for a given control.

A typical situation in either 2D or 3D is that we have a nonstandard control Θ
(possibly θN) and a nonstandard solution for it:

U(τ) = U0 +

∫ τ

0

{−ν∗AU(s)− ∗B (U(s)) + ∗f (s,U,Θ(U))} ds

+

∫ τ

0

∗g (s,U) dW (s)

where U : ∗[0,T ] →∗H or HN . Then we �standardise� the control to give
θ = ◦Θ and as in the basic existence proof show that it is possible to take
u(t, ω) = ◦U(t,ω) It remains to prove that u is a solution for control θ and
J(θ) = ◦J(Θ) to give optimality.

Details: NJC & K.Grzesiak: Stochastics (2005) and AMO (2007).
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Application 3: NON-HOMOGENEOUS (i.e. non-constant density)
STOCHASTIC NSe with multiplicative noise
These model the velocity u and density ρ of a mixture of viscous incompressible
�uids of varying density in a bounded domain D ⊂ Rd (d = 2, 3)

(Velocity) ρdu = [ν∆u− < ρu,∇ > u −∇p + ρf (t, u)] dt + ρg(t, u)dwt

div u = 0

(Density)
∂ρ

∂t
+ < u,∇ > ρ = 0

with boundary and initial conditions u|∂D = 0, u|t=0 = u0, ρ|t=0 = ρ0.
(1)the deterministic nonhomogeneous equations: solved by Kazhikhov (1974) -
assuming M ≥ ρ0 ≥ m > 0
(2) The stochastic equations with additive noise (i.e. dG = gdw does not
depend on u) - Yashima (1992) assuming M ≥ ρ0 ≥ m > 0. Solved essentially
pathwise.
(3) Loeb space methods (NJC & Brendan Enright): solve the stochastic
equations with general multiplicative noise for d = 2, 3 assuming
M ≥ ρ0 ≥ m > 0.
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De�nition of a weak solution The velocity and the density will be stochastic
processes living on an adapted probability space ΩΩ.

De�nition
Given u0 ∈ H, ρ0 ∈ L∞(D), f : [0,T ]×H→ H and g : [0,T ]×H→L(H,H) a
pair of stochastic processes (ρ, u) is a weak solution to the stochastic
nonhomogeneous Navier-Stokes equations if

(i) u ∈ L2([0,T ]× Ω,V) and for a.a. ω

u(·, ω) ∈ L∞(0,T ;H) ∩ L2(0,T ;V)

(ii) ρ ∈ L∞([0,T ]× D × Ω)
(iii) (Velocity) for almost all T0 ≤ T , for all Φ ∈ C 1(0,T ;V)

(ρ(T0)u(T0),Φ(T0))− (ρ0u0,Φ(0))

=
∫ T0

0
[(ρu,Φ′ + 〈u,∇〉Φ)− ν((u,Φ)) + (ρf ,Φ)] dt +

∫ T0

0
(Φ, ρg)dw

(iv) (Density) for all ϕ ∈ C 1(0,T ;H1(D)), for all T0 ≤ T

(ρ(T0), ϕ(T0))− (ρ0, ϕ(0)) =
∫ T0

0
(ρ, ϕ′ + 〈u,∇〉ϕ)dt

(v) ρ(0) = ρ0 and u(0) = u0

Note. g = 0 gives Kazhikhov's de�nition for the deterministic equations.
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Theorem (NJC & Brendan Enright, JDE 2006) Suppose that u0 ∈ H and
ρ0 ∈ L∞(D) with 0 < m ≤ ρ0(x) ≤ M, and f , g satisfy natural continuity and
growth conditions. Then there is a weak solution (ρ, u) to the stochastic
nonhomogeneous Navier-Stokes equations with

E

sup
t≤T

|u(t)|2 + ν

T∫
0

||u(t)||2 dt

 < ∞

and for almost all ω, for all t

m ≤ ρ(t, x) ≤ M for almost all x



Main idea of the proof (Broadly similar to the homogeneous case.)

1. Solve a modi�ed hyper�nite dimensional approximation of the equations with
velocity �eld U(τ, ω) with values in HN , using the transfer of �nite dimensional
SDE theory. This will live on an internal adapted probability space
ΩΩ0 = (Ω,A, (Aτ )τ≥0,Π ) carrying an internal Wiener process W (τ, ω) also
with values in HN . The density will take the form R(τ, ω) with values in
∗C 1(D) ⊂ ∗L∞(D).

2. Prove an �energy estimate� showing that for almost all (τ, ω) the �eld
U(τ, ω) is nearstandard.

3. Show that for almost all (τ, ω) the density R(τ, ω) is nearstandard

4. Establish appropriate S-continuity in the time variable τ

5. Take standard parts u(◦τ, ω) = ◦U(τ, ω) and ρ(◦τ, ω) = ◦R(τ, ω)

6. Show that the pair (u, ρ) is a solution to the stochastic nonhomogeneous
Navier-Stokes equations on the adapted Loeb space

ΩΩ = (Ω,F , (Ft)t≥0,P )

where P = ΠL, F = L(A) and (Ft)t≥0 is the �ltration obtained from (Aτ )τ≥0.
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Regularity in dimension 2
In the 2D setting (i.e. a �uid moving in a bounded domain in the plane) there is
more regularity to the solution, provided g has a little more regularity.

Theorem
Suppose that d = 2 and the initial condition u0 ∈ V and (ρ, u) is the solution
to the stochastic non-homogeneous Navier-Stokes equations constructed above.
Suppose further that g : [0, t]× V→L(H,V) and
|g(t, u)|

H,V ≤ a(t)(1 + ||u||). Then almost surely:

(a) sup
t∈[0,T ]

||u(t)||+
∫ T

0
|Au(t)|2dt < ∞ where A = −∆;

(b) u(t) is strongly continuous in H and weakly continuous in V;
(c) the equation for u(t, ω) holds for all T0 ≤ T.
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Concluding remarks - what makes nonstandard methods useful in the
study of Navier-Stokes equations?

1. No need for limiting arguments and specialized compactness theorems to get
a convergent subsequence from a sequence of �nite dimensional Galerkin
approximations. In fact the specialized compactness theorems (and the
appropriate topology) are discovered as by-products.
2. The richness of Loeb spaces means that all activity can take place in a single
underlying probability space - not only convenient but essential for formulating
some ideas - eg process attractors and optimal controls in 3D.
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