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The Setting

- nonstandard set theory with ∗-mapping

(Here: HST with ∗ : WF→ S)

- some Saturation-principle

(Here: {Mi : i ∈ I}, I ∈WF, Mi ∈ I with fip,

then ∅ 6=
⋂
{Mi : i ∈ I})

- topological space (X, T ) with enlargement (∗X, ∗T )

- a set y is standard iff y = ∗x for some x ∈WF
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Some Notation

Families

Formally (Mi)i∈I with Mi ⊂ X is a mapping M : I → P(X), i 7→Mi.

So ∗(Mi)i∈I is ∗M : ∗I → ∗P(X) with ∗M(∗i) = ∗(M(i)).

Standard Elements

Given a set I ∈WF we write σ
∗I = ∗I ∩ S for the subset of standard

elements of ∗I. It holds σ
∗I = {∗i : i ∈ I}.

We use n
∗I = ∗I \ σ∗I for the subset of nonstandard elements.

Is there some order relation < on I we also use ∗I∞ =

{i ∈ ∗I : ∀i ∈ I (∗i < i)} for the elements which are larger than any

standard element.

If I is infinite we have by Saturation ∗I∞ 6= ∅. 2
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Filters and Monads

- Given a filter F, we call µF =
⋂
F∈F

∗F the filtermonad of F,

which is not empty by Saturation.

- For internal A ⊂ ∗X we have µF ⊂ A ⇐⇒ ∃F ∈ F (∗F ⊂ A).

- F = {F ⊂ X : µF ⊂ ∗F}

- For internal A ⊂ ∗X we call Fil(A) = {F ⊂ X : A ⊂ ∗F} the dis-

crete filter generated by A and its filtermonad δ(A) the discrete

monad of A.
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Special Filters

- a filter F is principal iff µF ⊂ ∗X is a standard set

(in that case we have F = Fil(∗M) = {F ⊂ X : M ⊂ F} for
∗M = µF)

- a filter F is an ultrafilter iff for every filtermonad µG we have

µF ∩ µG 6= ∅ ⇒ µF ⊂ µG

4
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Neighbourhood-Filters

From now on (X, T ) be a topological space.

- for A ⊂ ∗X we set F(A) = {V ∈ T : A ⊂ ∗V } and call its

filtermonad µT (A) the neighbourhood-monad of A

- for A = {a} we write µT (a) for the neighbourhood-monad

- we call x ∈ ∗X near-standard if x ∈ µT (∗x) for some x ∈ X and

remote otherwise

- ns(∗X) be the set of all near-standard elements of ∗X

- rmt(∗X) = ∗X \ ns(∗X) be the set of all remote points 5
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Some Topological Results

Is M the closure of M , some Transfer-principle shows for internal

A ⊂ ∗X

A = {x ∈ ∗X : ∀intV ∈ ∗T (x ∈ V⇒ V ∩ A 6= ∅)}

[Take this as definition for the closure of external sets (such as

monads).] Then

- for M ⊂ X we have M= {x ∈ X : µT (∗x) ∩ ∗M 6= ∅}

- for closed M ⊂ X we have rmt(∗M) = rmt(∗X) ∩ ∗M

- for internal A ⊂ rmt(∗X) we have A⊂ rmt(∗X)
6
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First Results on Remote Points

Under different additional conditions rmt(∗X) is closed under some

set-building processes:

- x ∈ rmt(∗X) ⇐⇒ δ(x) ⊂ rmt(∗X)

- (X, T ) regular: x ∈ rmt(∗X) ⇐⇒ µT (x) ⊂ rmt(∗X)

- (X, T ) regular: x ∈ rmt(∗X) ⇐⇒ µT (x) ⊂ rmt(∗X)

- (X, d) metric space:

x ∈ rmt(∗X) ⇐⇒ {y ∈ ∗X : ∗d(x, y) ≈ 0} ⊂ rmt(∗X)

7
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Regularity

The property x ∈ rmt(∗X) ⇐⇒ µT (x) ⊂ rmt(∗X) is even equivalent

to regularity.

Two results for (X, T ) regular:

- For A ⊂ rmt(∗X) internal we have µT (A) ⊂ rmt(∗X).

- If for all x ∈ rmt(∗X) we have µT (x) = µT (x), then (X, T ) is

even normal.

8
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Compactness

(X, T ) compact ⇐⇒ ∗X = ns(∗X) (Robinson)

So:

(X, T ) compact ⇐⇒ rmt(∗X) = ∅.

It follows that closed subsets of compact spaces are compact (see

page 6).

9
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Locally Finite Families

- Def.(standard):

(Mi)i∈I is locally finite ⇐⇒ for every x ∈ X there is a

neighbourhood U with {i ∈ I : Mi ∩ U 6= ∅} is finite.

- Nonstandard:

(Mi)i∈I is locally finite ⇐⇒
⋃

i∈ n
∗I

∗M(i) ⊂ rmt(∗X) (see page 2)

- Conclusion:

(Mi)i∈I locally finite ⇒ (M i)i∈I locally finite

10
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Paracompactness

Def. (nonstandard)

(X, T ) paracompact ⇐⇒ For every internal subset A ⊂ rmt(∗X)

there is a l.f. open covering (Ui)i∈I of X with ∗(Ui) ∩ A = ∅ for

every i ∈ I. That means

ns(∗X) ⊂
⋃
i∈I

∗(Ui) but A ∩
( ⋃
i∈I

∗(Ui)
)

= ∅

It follows: X paracompact and A ⊂ X closed then A paracompact

(see again page 6).

Also easy: X paracompact then X regular (see page 7).
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More Paracompactness

If we replace “internal subset” by “filtermonad” in the definition

on page 11 and take this as premise, we get paracompactness as

conclusion, i.e.

For every filtermonad µ ⊂ rmt(∗X) there is a l.f. open

covering (Ui)i∈I of X with ∗(Ui) ∩ µ = ∅ for every i ∈ I.

⇓
For every internal subset A ⊂ rmt(∗X) there is a l.f. open

covering (Ui)i∈I of X with ∗(Ui) ∩ A = ∅ for every i ∈ I.

In fact these statements are equivalent.
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More on l.f. Families

Let (X, T ) be regular.

- If for every filtermonad µ ⊂ rmt(∗X) there is a l.f. covering

(Ui)i∈I of X with ∗(Ui) ∩ µ = ∅ for every i ∈ I
then

for every filtermonad µ′ ⊂ rmt(∗X) there is a l.f. closed

covering (Ai)i∈I of X with ∗(Ai) ∩ µ′ = ∅ for every i ∈ I.

- If for every filtermonad µ ⊂ rmt(∗X) there is a l.f. closed

covering (Ai)i∈I of X with ∗(Ai) ∩ µ = ∅ for every i ∈ I
then

for every filtermonad µ′ ⊂ rmt(∗X) there is a l.f. open covering

(Oi)i∈I of X with ∗(Oi) ∩ µ′ = ∅ for every i ∈ I. 13
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Continuous, closed, surjective Mappings

Let (Y,S) another topological space, p : X → Y continuous,

closed, surjective and y ∈ ∗Y .

- µS(y) = ∗p(µT (∗p−1(y))

- ∗p−1(µS(y)) = µT (∗p−1(y))

- Let X additionally be paracompact, then:

∗p−1(y) ⊂ rmt(∗X)⇒ y ∈ rmt(∗Y )
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