Topology from a Remote Point of View

Ulf Leonard Clotz

Pisa, June 2008

Remote-Talk	Pisa,	June	2008
The Setting			
- nonstandard set theory with $*$ -mapping (Here: HST with $*: \mathbb{WF} \to \mathbb{S}$)			
- some Saturation-principle (Here: $\{\mathfrak{M}_i: i \in I\}$, $I \in \mathbb{WF}$, $\mathfrak{M}_i \in \mathbb{I}$ with fip, then $\emptyset \neq \cap \{\mathfrak{M}_i: i \in I\}$)			
- topological space (X,\mathcal{T}) with enlargement (*2	$(K, {}^*\mathcal{T})$		
- a set y is <i>standard</i> iff $y = *x$ for some $x \in \mathbb{WF}$			
			1

Some Notation

Families

Formally $(M_i)_{i \in I}$ with $M_i \subset X$ is a mapping $M \colon I \to \mathfrak{P}(X)$, $i \mapsto M_i$. So $^*(M_i)_{i \in I}$ is $^*M \colon ^*I \to ^*\mathfrak{P}(X)$ with $^*M(*i) = ^*(M(i))$.

Standard Elements

Given a set $I \in WF$ we write $[{}^*_{\sigma}I = {}^*I \cap S]$ for the subset of standard elements of *I . It holds ${}^*_{\sigma}I = \{*i : i \in I\}$.

We use $\begin{vmatrix} * \\ n I = *I \setminus \sigma^* I \end{vmatrix}$ for the subset of nonstandard elements.

Is there some order relation < on I we also use ${}^*I_{\infty} = {i \in {}^*I : \forall i \in I (*i < i)}$ for the elements which are larger than any standard element.

If *I* is infinite we have by Saturation ${}^*I_{\infty} \neq \emptyset$.

Filters and Monads

Remote-Talk

- Given a filter \mathcal{F} , we call $\mu_{\mathcal{F}} = \bigcap_{F \in \mathcal{F}} {}^*F$ the *filtermonad* of \mathcal{F} , which is not empty by Saturation.
- For internal $\mathfrak{A} \subset {}^*X$ we have $\mu_{\mathcal{F}} \subset \mathfrak{A} \iff \exists F \in \mathcal{F} ({}^*F \subset \mathfrak{A}).$

-
$$\mathcal{F} = \{F \subset X : \mu_{\mathcal{F}} \subset {}^*F\}$$

- For internal $\mathfrak{A} \subset {}^*X$ we call $\operatorname{Fil}(\mathfrak{A}) = \{F \subset X : \mathfrak{A} \subset {}^*F\}$ the *discrete filter* generated by \mathfrak{A} and its filtermonad $\delta(\mathfrak{A})$ the *discrete monad* of \mathfrak{A} .

Remote-Talk	Pisa,	June	2008
Special Filters			
- a filter \mathcal{F} is <i>principal</i> iff $\mu_{\mathcal{F}} \subset {}^*X$ is a standard (in that case we have $\mathcal{F} = \operatorname{Fil}({}^*M) = \{F \subset {}^*M = \mu_{\mathcal{F}}\}$		$I \subset F$	} for

- a filter \mathcal{F} is an ultrafilter iff for every filtermonad $\mu_{\mathcal{G}}$ we have $\mu_{\mathcal{F}} \cap \mu_{\mathcal{G}} \neq \emptyset \Rightarrow \mu_{\mathcal{F}} \subset \mu_{\mathcal{G}}$

Neighbourhood-Filters

Remote-Talk

From now on (X, \mathcal{T}) be a topological space.

- for $\mathfrak{A} \subset {}^*X$ we set $\mathcal{F}(\mathfrak{A}) = \{V \in \mathcal{T} : \mathfrak{A} \subset {}^*V\}$ and call its filtermonad $\mu_{\mathcal{T}}(\mathfrak{A})$ the *neighbourhood-monad* of \mathfrak{A}
- for $\mathfrak{A} = \{\mathfrak{a}\}$ we write $\mu_{\mathcal{T}}(\mathfrak{a})$ for the neighbourhood-monad
- we call $\mathfrak{x} \in {}^*X$ near-standard if $\mathfrak{x} \in \mu_T(*x)$ for some $x \in X$ and remote otherwise
- $ns(^*X)$ be the set of all near-standard elements of *X
- $rmt(^*X) = ^*X \setminus ns(^*X)$ be the set of all remote points

Some Topological Results

Is \overline{M} the closure of M, some Transfer-principle shows for internal $\mathfrak{A}\subset {}^{*}\!X$

$$\overline{\mathfrak{A}} = \{ \mathfrak{x} \in {}^{*}\!X : \forall^{int} \mathfrak{V} \in {}^{*}\!\mathcal{T} \, (\mathfrak{x} \in \mathfrak{V} \Rightarrow \mathfrak{V} \cap \mathfrak{A} \neq \emptyset) \}$$

[Take this as definition for the closure of external sets (such as monads).] Then

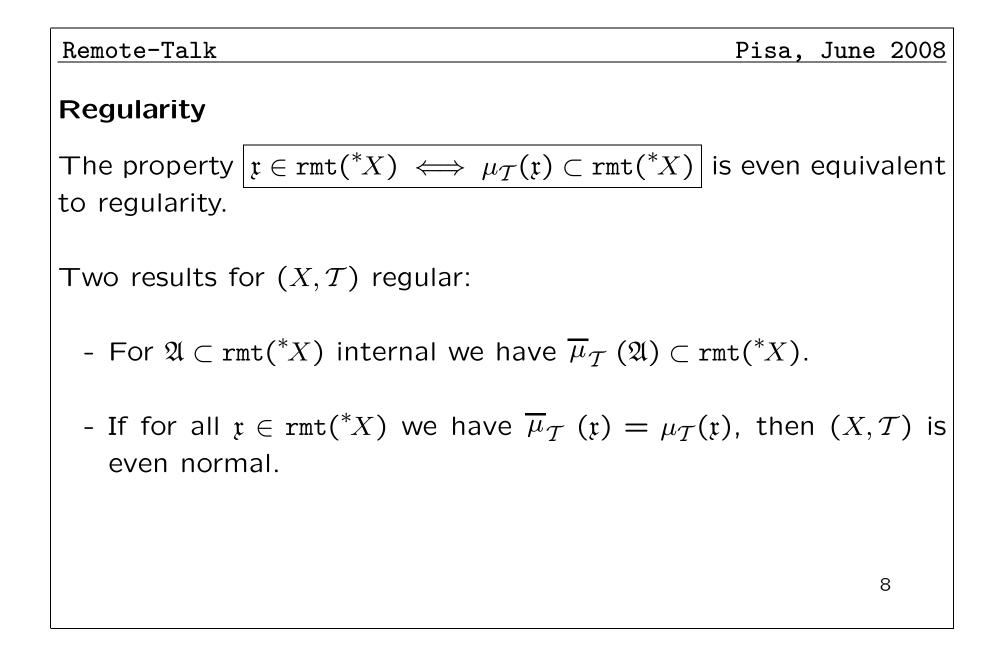
- for $M \subset X$ we have $\overline{M} = \{x \in X : \mu_{\mathcal{T}}(*x) \cap {}^*M \neq \emptyset\}$
- for closed $M \subset X$ we have $\operatorname{rmt}(^*M) = \operatorname{rmt}(^*X) \cap ^*M$
- for internal $\mathfrak{A} \subset \operatorname{rmt}(^*X)$ we have $\overline{\mathfrak{A}} \subset \operatorname{rmt}(^*X)$

First Results on Remote Points

Under different additional conditions $rmt(^*X)$ is closed under some set-building processes:

- $\mathfrak{x} \in \mathrm{rmt}(^*\!X) \iff \delta(\mathfrak{x}) \subset \mathrm{rmt}(^*\!X)$
- (X, \mathcal{T}) regular: $\mathfrak{x} \in \operatorname{rmt}(^*X) \iff \mu_{\mathcal{T}}(\mathfrak{x}) \subset \operatorname{rmt}(^*X)$
- (X,\mathcal{T}) regular: $\mathfrak{x} \in \mathrm{rmt}(^*X) \iff \overline{\mu}_{\mathcal{T}}(\mathfrak{x}) \subset \mathrm{rmt}(^*X)$
- (X, d) metric space:

$$\mathfrak{x} \in \mathrm{rmt}(^*X) \iff \{\mathfrak{y} \in {}^*X: \; {}^*d(\mathfrak{x},\mathfrak{y}) pprox \mathsf{O}\} \subset \mathrm{rmt}(^*X)$$



Remote-Talk Pisa, June 2008 Compactness (X, \mathcal{T}) compact $\iff {}^{*}X = ns({}^{*}X)$ (Robinson) So: (X, \mathcal{T}) compact \iff rmt $(^*X) = \emptyset$. It follows that closed subsets of compact spaces are compact (see page 6). 9

Remote-Talk Pisa, June 2008 **Locally Finite Families** - Def.(standard): $(M_i)_{i \in I}$ is locally finite \iff for every $x \in X$ there is a neighbourhood U with $\{i \in I : M_i \cap U \neq \emptyset\}$ is finite. - Nonstandard: $(M_i)_{i \in I}$ is locally finite $\iff \bigcup {}^*M(\mathfrak{i}) \subset \operatorname{rmt}({}^*X)$ (see page 2) $i \in {}^*_n I$ - Conclusion: $(M_i)_{i \in I}$ locally finite $\Rightarrow (\overline{M}_i)_{i \in I}$ locally finite 10

Paracompactness

Remote-Talk

Def. (nonstandard) (X,T) paracompact \iff For every internal subset $\mathfrak{A} \subset \operatorname{rmt}(^*X)$ there is a l.f. open covering $(U_i)_{i \in I}$ of X with $^*(U_i) \cap \mathfrak{A} = \emptyset$ for every $i \in I$. That means

$$\operatorname{ns}(^{*}X) \subset \bigcup_{i \in I} ^{*}(U_{i}) \quad \text{but} \quad \mathfrak{A} \cap \left(\bigcup_{i \in I} ^{*}(U_{i})\right) = \emptyset$$

It follows: X paracompact and $A \subset X$ closed then A paracompact (see again page 6).

Also easy: X paracompact then X regular (see page 7).

More Paracompactness

Remote-Talk

If we replace "internal subset" by "filtermonad" in the definition on page 11 and take this as premise, we get paracompactness as conclusion, i.e.

For every filtermonad $\mu \subset \operatorname{rmt}(^*X)$ there is a l.f. open covering $(U_i)_{i \in I}$ of X with $^*(U_i) \cap \mu = \emptyset$ for every $i \in I$. \Downarrow For every internal subset $\mathfrak{A} \subset \operatorname{rmt}(^*X)$ there is a l.f. open

covering $(U_i)_{i \in I}$ of X with $^*(U_i) \cap \mathfrak{A} = \emptyset$ for every $i \in I$.

In fact these statements are equivalent.

More on I.f. Families

Remote-Talk

Let (X, \mathcal{T}) be regular.

- If for every filtermonad $\mu \subset \operatorname{rmt}(^*X)$ there is a l.f. covering $(U_i)_{i \in I}$ of X with $^*(U_i) \cap \mu = \emptyset$ for every $i \in I$ then

for every filtermonad $\mu' \subset \operatorname{rmt}(^*X)$ there is a l.f. closed covering $(A_i)_{i \in I}$ of X with $^*(A_i) \cap \mu' = \emptyset$ for every $i \in I$.

- If for every filtermonad $\mu \subset \operatorname{rmt}(^*X)$ there is a l.f. closed covering $(A_i)_{i\in I}$ of X with $^*(A_i)\cap\mu=\emptyset$ for every $i\in I$ then

for every filtermonad $\mu' \subset \operatorname{rmt}(^*X)$ there is a l.f. open covering $(O_i)_{i \in I}$ of X with $^*(O_i) \cap \mu' = \emptyset$ for every $i \in I$. 13

Remote-Talk

Continuous, closed, surjective Mappings

Let (Y, \mathcal{S}) another topological space, $p: X \to Y$ continuous, closed, surjective and $\mathfrak{y} \in {}^*Y$.

-
$$\mu_{\mathcal{S}}(\mathfrak{y}) = *p(\mu_{\mathcal{T}}(*p^{-1}(\mathfrak{y})))$$

-
$$p^{-1}(\mu_{\mathcal{S}}(\mathfrak{y})) = \mu_{\mathcal{T}}(p^{-1}(\mathfrak{y}))$$

- Let \boldsymbol{X} additionally be paracompact, then:

$$p^{-1}(\mathfrak{y}) \subset \operatorname{rmt}(^*X) \Rightarrow \mathfrak{y} \in \operatorname{rmt}(^*Y)$$