ON THE TERMS OF UNLIMITED RANK OF LUCAS SEQUENCES

ABDELMADJID BOUDAOUD

Abstract

Let P, Q be nonzero integers such that $D=P^{2}-4 Q$ is different to zero. The sequences of integers defined by $\left\{\begin{array}{llll}U_{n}=P U_{n-1}-Q U_{n-2} & , & U_{0}=0 & U_{1}=1 \\ V_{n}=P V_{n-1}-Q V_{n-2} & , \quad V_{0}=2 & V_{1}=P .\end{array}\right.$ are called the Lucas sequences associated to the pair $(P, Q)[1,5]$. In this paper we prove the following result: Theorem. If P, Q are such that D is strictly positive. Then for each unlimited n, each of integers U_{n} and V_{n} is, to a limited integer near, product of two unlimited integers.

1. Introduction \& Rappel

This work is in the frame of the non standard analysis ([2, 3]). In [1] we had asked: Is every unlimited integer equal to the sum of a limited integer and a product of two unlimited integers? i.e

$$
\text { Unlimited }=s \tan d \text { ard }+ \text { Unlimited } \times \text { Unlimited }
$$

We had provided in this reference some examples affirming this question.

These examples are as follows [1]

Example 1. Definition. A pseudoprime (in base 2), also called a Poulet number, is a composite odd number n such that

$$
2^{n-1}=1(\bmod n) .
$$

Then. Any unlimited pseudoprime n (in base 2) is the product of two unlimited natural numbers, i.e.

[^0]$$
n=\omega_{1} \cdot \omega_{2}
$$
where $\omega_{1} \cong+\infty, \omega_{2} \cong+\infty$.
Let $a \geq 2$ be a natural number.
Example 2. Definition. A composite integer $n>a$ that verifies
$$
a^{n-1}=1(\bmod n) .
$$
is called an a-pseudoprime.
Then. Let $a \geq 2$ be a standard integer. Any unlimited a-pseudoprime n is the product of two unlimited natural numbers, i.e.
$$
n=\omega_{1} \cdot \omega_{2}
$$
where $\omega_{1} \cong+\infty, \omega_{2} \cong+\infty$.
Let $a \geq 2$ be a standard natural number.
Example 3. In the base a any unlimited Euler pseudoprime n (resp. strong pseudoprime) is the product of two unlimited natural numbers, i.e.
$$
n=\omega_{1} \cdot \omega_{2}
$$
where $\omega_{1} \cong+\infty, \omega_{2} \cong+\infty$.
Example 4. Definition. A composite integer n that verifies $a^{n-1}=$ $1(\bmod n)$ for every integer $a, 1<a<n$, such that a is relatively prime to n, is called a Carmichael number.
Then. Any unlimited Carmichael number n is the product of two unlimited natural numbers, i.e.
$$
n=\omega_{1} \cdot \omega_{2}
$$
where $\omega_{1} \cong+\infty, \omega_{2} \cong+\infty$.
Example 5. If exists an infinity of even perfect number (n is called a perfect number if $\sigma(n)=2 n$), then we have: Any unlimited even perfect number n is the product of two unlimited natural numbers, i.e.
$$
n=\omega_{1} \cdot \omega_{2}
$$
where $\omega_{1} \cong+\infty, \omega_{2} \cong+\infty$.
Example 6. Definition. Let n be a natural number. If $\sigma(n)=2 n-1$ then n is called almost perfect.
Then. Any unlimited almost perfect number n is the product of two unlimited natural numbers, i.e.
$$
n=\omega_{1} \cdot \omega_{2}
$$
where $\omega_{1} \cong+\infty, \omega_{2} \cong+\infty$.
In this work we present another example. Let's start with a small preview on Lucas sequences associated to a pair of integers $[4,5]$:
Let P, Q be nonzero integers. Consider the polynomial $p(x)=x^{2}-$ $P x+Q$; its discriminant is $D=P^{2}-4 Q$ and the roots are
\[

$$
\begin{equation*}
\alpha=\frac{P+\sqrt{D}}{2}, \beta=\frac{P-\sqrt{D}}{2} . \tag{1.1}
\end{equation*}
$$

\]

Suppose that P and Q are such that D is different of zero. The sequences of integers

$$
\left\{\begin{array}{lll}
U_{n}(P, Q)=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, & U_{0}(P, Q)=0 & U_{1}(P, Q)=1 \tag{1.2}\\
V_{n}(P, Q)=\alpha^{n}+\beta^{n} & , & V_{0}(P, Q)=2
\end{array} V_{1}(P, Q)=P\right.
$$

are called the Lucas sequences associated to the pair (P, Q). We will note by $U_{n}\left(\right.$ resp. $\left.V_{n}\right)$ the element $U_{n}(P, Q)\left(\right.$ resp. $\left.V_{n}(P, Q)\right)$.
It is demonstrated that for $n \geq 2$:

$$
\begin{array}{llll}
U_{n}=P U_{n-1}-Q U_{n-2} \quad, \quad U_{0}=0 & U_{1}=1 \\
V_{n}=P V_{n-1}-Q V_{n-2} \quad, \quad V_{0}=2 & V_{1}=P . \tag{1.3}
\end{array}
$$

In the particular case $(P, Q)=(1,-1)$, the sequence $\left(U_{n}\right)_{n \geq 0}$ beginning as follows $011 \begin{array}{llllll}1 & 2 & 3 & 5 & 13 \ldots \text { was first considered by Fibonacci; }\end{array}$ for the same values the sequence of Lucas numbers $\left(V_{n}\right)_{n \geq 0}$ which is the companion sequence of Fibonacci numbers begins as follows: 21 $3471118 \ldots$.

Here are some results that are known $[1,5]$:

$$
\begin{equation*}
V_{2 n}=\left(V_{n}\right)^{2}-2 Q^{n} . \tag{1.4}
\end{equation*}
$$

Let p be a prime integer, then

$$
\left\{\begin{array}{cl}
U_{p}=\left(\frac{D}{p}\right) \operatorname{Mod}(p) & : \quad \text { pour } p \geq 3 \tag{1.5}\\
V_{p}=P \operatorname{Mod}(p) & : \quad \text { pour } p \geq 2
\end{array}\right.
$$

Where $\left(\frac{D}{p}\right)$ is the Legendre symbol that is, according to the relation between p and D, one of the values $-1,0,+1$. In addition if $n, k \geq 1$, then

$$
\begin{equation*}
U_{n}\left|U_{n k}, \quad V_{n}\right| V_{n k} \text { if } k \text { is odd. } \tag{1.6}
\end{equation*}
$$

Moreover

$$
\left\{\begin{array}{l}
U_{n}(-P, Q)=(-1)^{n-1} U_{n}(P, Q) \tag{1.7}\\
V_{n}(-P, Q)=(-1)^{n} V_{n}(P, Q)
\end{array}\right.
$$

Fermat's Little Theorem. If p is a prime number and if a is an integer, then

$$
\begin{equation*}
a^{p} \equiv a[p] \tag{1.8}
\end{equation*}
$$

In particular, if p does not divide a then $a^{p-1} \equiv 1[p]$.
External recurrence principle. For all internal or external formula $F(n)$ we have ([2]):

$$
\begin{equation*}
\left[F(0) \quad \text { and } \quad \forall^{s t} n(F(n) \Longrightarrow F(n+1))\right] \Longrightarrow \forall^{s t} n F(n) \tag{1.9}
\end{equation*}
$$

Notations. Let x, y and a be real numbers (integers or non) $\left.1^{\circ}\right) x \cong 0($ resp. $x \cong+\infty)$ signifies that x is an infinitesimal (resp. x is a positive unlimited). We have an analogous significance for $x \cong-\infty$. 2°) We say that x is equivalent to y if $x-y \cong 0$.
$\left.3^{\circ}\right) x \not \equiv a$ signifies that x is not equivalent to a.
4°) We say that x is appreciable if it is not an infinitesimal nor an unlimited.
5°) The inequalities $x \geqq y$ (resp. $x \nsupseteq y$) mean that x is strictly superior and equivalent to y (resp. that x is superior and is not equivalent to y). We have an analogous significance for \leqq and $\underset{\nsupseteq}{<}$.

2. Main Result

Now the example of which I spoke before is formulated by the following result.

Theorem. If P, Q are such that $D>0$. Then for each unlimited n, each of integers U_{n} and V_{n} is, to a limited integer near, product of two unlimited integers.

Let P and Q be such that $D>0$ and let $n \cong+\infty$. Put $\lambda=\frac{P}{\sqrt{D}}$. To prove this result, we will have need to the following lemmas.

Lemma 1

$\left.\mathbf{1}^{0}\right) \alpha \neq \beta, \operatorname{Max}(|\alpha|,|\beta|) \nRightarrow 1$ and

$$
\begin{equation*}
\frac{\beta}{\alpha}=\frac{\lambda-1}{\lambda+1}, \quad \frac{\alpha}{\beta}=\frac{\lambda+1}{\lambda-1} . \tag{2.1}
\end{equation*}
$$

$\mathbf{2}^{0}$) If $P>0$ then:
i) $|\alpha|>|\beta|$, ii) $\frac{\beta}{\alpha} \leqq 1 \Longleftrightarrow \lambda \cong+\infty$, iii) $\frac{\beta}{\alpha} \geqq-1 \Longleftrightarrow \lambda \gtrsim 0$ and
iv) $\frac{\beta}{\alpha} \not \not \pm 1$ if and only if λ is appreciable positive.
$\mathbf{3}^{0}$) If $P<0$ then:
i) $|\alpha|<|\beta|$, ii) $\frac{\alpha}{\beta} \cong 1 \Longleftrightarrow \lambda \cong-\infty$, iii) $\frac{\alpha}{\beta} \geqq-1 \Longleftrightarrow \lambda \lesssim 0$ and iv) $\frac{\alpha}{\beta} \not \equiv \pm 1$ if and only if λ is appreciable negative.

Proof. 1^{0}) Because $\alpha=\frac{P+\sqrt{D}}{2}$ and $\beta=\frac{P-\sqrt{D}}{2}$ we have $\alpha \neq \beta$.
Let's study, according to the following cases, the different values of α and β
i) $P>1$: in this case $\alpha \not \equiv 1$.
ii) $P=1$: In this case Q must be strictly negative and therefore $\alpha>1$.
iii) $P=-1$: In this case Q must be strictly negative and therefore $|\beta|>1$.
iv) $P<-1$: In this case $|\beta| \ngtr 1$.

Therefore:

$$
\operatorname{Max}(|\alpha|,|\beta|) \underset{\neq}{>} 1 .
$$

$\operatorname{By}(1.1), \frac{\beta}{\alpha}=\frac{\lambda-1}{\lambda+1}$ and $\frac{\alpha}{\beta}=\frac{\lambda+1}{\lambda-1}$.
2^{0}) If $P>0$ then it is immediate that $|\alpha|>|\beta|$. Furthermore, $\lambda>0$ and the rest of the proof is legible on the graph of $\frac{\beta}{\alpha}(\lambda)=\frac{\lambda-1}{\lambda+1}$ in the intervalle $[0,+\infty[$ where one sees the growth of this function of -1 to +1 .
3^{0}) This is similar to 2°).
Remark. By (1.7), we make proofs of the four following lemmas only when $P>0$. In this case α is positive and, according to lemma $1, \alpha>|\beta|$; consequently by (1.2) $U_{i}=\alpha^{i-1}\left(\frac{1-(\beta / \alpha)^{i}}{1-(\beta / \alpha)}\right)>0$, $V_{i}=\alpha^{i}\left(1+\left(\frac{\beta}{\alpha}\right)^{i}\right)>0 \quad$ for $i \geq 1$.

The following lemma (lemma 2) shows how the values of $\left|U_{n}\right|$ and $\left|V_{n}\right|$ increase depending on n

Lemma 2. Each of $\left|U_{n}\right|$ and $\left|V_{n}\right|$ is in the form of $\omega . n$ where ω is an unlimited.

Proof. By (1.2),

$$
\left\{\begin{align*}
U_{n} & =\alpha^{n-1}\left(\frac{1-(\beta / \alpha)^{n}}{1-(\beta / \alpha)}\right) \tag{2.2}\\
V_{n} & =\alpha^{n}\left(1+\left(\frac{\beta}{\alpha}\right)^{n}\right)
\end{align*}\right.
$$

Via the discution of possible values of the report $\frac{\beta}{\alpha}$ one completes the proof of the proposal in question, where $\frac{\beta}{\alpha}=1-\phi$ with $\phi \geqq 0$ or $\frac{\beta}{\alpha}=-1+\phi$ with $\phi \geqq 0$ or $\frac{\beta}{\alpha} \not \neq \pm 1$.

The following lemma (lemma 3) concerning the report of two terms of U_{n} and the report of two terms of V_{n}

Lemma 3. If n of the form $n_{1} n_{2}$ with $n_{1}>1$ and $n_{2}>1$. Then $\frac{\left|U_{n_{1} n_{2}}\right|}{\left|U_{n_{1}}\right|}$ and $\frac{\left|V_{n_{1} n_{2}}\right|}{\left|V_{n_{1}}\right|}$ are unlimited.
Proof. Seen that $n \cong+\infty$ at least n_{1} or n_{2} is an unlimited. By (1.2),

$$
\left\{\begin{array}{l}
\frac{U_{n_{1} n_{2}}}{U_{n_{1}}}=\frac{\alpha^{n_{1} n_{2}}}{\alpha^{n_{1}}}\left(\frac{1-(\beta / \alpha)^{n_{1} n_{2}}}{1-(\beta / \alpha)^{n_{1}}}\right) \tag{2.3}\\
\frac{V_{n_{1} n_{2}}}{V_{n_{1}}}=\frac{\alpha^{n_{1} n_{2}}}{\alpha^{n_{1}}}\left(\frac{1+(\beta / \alpha)^{n_{1} n_{2}}}{1+(\beta / \alpha)^{n_{1}}}\right)
\end{array}\right.
$$

Also here the proof of this lemma is done through the discution of the possible values of the report $\frac{\beta}{\alpha}$ which are $\frac{\beta}{\alpha}=1-\phi$ with $\phi \geqq 0$ or $\frac{\beta}{\alpha}=-1+\phi$ with $\phi \geqq 0$ or $\frac{\beta}{\alpha} \not \neq \pm 1$.

Now we demonstrate that the $\left|U_{i}\right|$ and $\left|V_{i}\right|$ increase with i.
Lemma 4. For every $i \geq 2\left|U_{i}\right|<\left|U_{i+1}\right| \quad \& \quad\left|V_{i}\right|<\left|V_{i+1}\right|$
Finally
Lemma 5. If (P, Q) is not standard then $\frac{\left|V_{2}\right|}{\left|V_{1}\right|} \cong+\infty$.

Demonstration of the theorem

Case of U_{n}
We distinguish two cases
I) n premier. By (1.5) $U_{n}=\left(\frac{D}{n}\right) \operatorname{Mod}(n)$. Hence $U_{n}= \pm 1+k n$. Since, according to lemma $2,\left|U_{n}\right|$ is in the form of ωn with ω is an unlimited real, the integer k must be unlimited. This finishes the proof for this case.
II) $n=n_{1} n_{2}$ where $n_{1} \geq n_{2}>1$. By (1.6)
$U_{n}=C U_{n_{1}}$ where C is an integer which is, according to lemma 3, unlimited. On the other hand, seen that $n_{1} \cong+\infty \quad U_{n_{1}}$ is also, according to lemma 4, unlimited. So the proof is finished for the case of U_{n}.

Case of V_{n}

We distinguish four cases
I) $n=p \cong+\infty$ prime. we have two cases to consider
a) P limited. $\mathrm{By}(1.5), V_{p}=P \operatorname{Mod}(p)$ i.e. $V_{p}=P+k p$. Since P is limited, k must be, according to lemma 2 , unlimited.
b) P unlimited. In this case by (1.6), $V_{1} \mid V_{p}$ i.e $V_{p}=V_{1} N$. By lemma 4, we have

$$
\left|V_{2}\right|<\left|V_{3}\right|<\ldots<\left|V_{n}\right|<\ldots .
$$

By lemma $5, \frac{\left|V_{2}\right|}{\left|V_{1}\right|} \cong+\infty$. Then $\frac{\left|V_{2}\right|}{\left|V_{1}\right|}<\frac{\left|V_{p}\right|}{\left|V_{1}\right|}$ and therefore $\frac{\left|V_{p}\right|}{\left|V_{1}\right|} \cong+\infty$. This signifies that N is unlimited and finish the demonstration for this case because $V_{1}=P$ and $|P| \cong+\infty$.
II) $n=2^{s} p$ where $s \geq 1$ limited, $p \cong+\infty$ prime
a) P and Q are all both limited. Put for every $s \geq 1$: $A(s) \equiv \ll$ For $n=2^{s} p: V_{n}=g_{1}+g_{2} p$ where $g_{1}\left(\right.$ resp. $\left.g_{2}\right)$ is a limited (resp. is an unlimited) integer \gg.
We have $A(1)$; indeed:
Let $n=2 p$. By (1.4)

$$
\begin{array}{rlc}
V_{n} & = & V_{2 p} \\
& =\left(V_{p}\right)^{2}-2 Q^{p} .
\end{array}
$$

The application of (1.5) and (1.8) leads to:

$$
\begin{aligned}
V_{2 p} & =(P+k p)^{2}-2(Q+l p) \\
& =P^{2}-2 Q+t p
\end{aligned}
$$

Put $g_{1}=P^{2}-2 Q$ and $g_{2}=t$. Then g_{1} is limited and, according to lemma 2, g_{2} is unlimited. Hence $A(1)$. Let $s \geq 1$ be a limited integer and suppose $A(s)$. Let's demonstrate $A(s+1)$:

$$
\begin{array}{rlc}
V_{2^{s+1} p} & = & V_{2\left(2^{s} p\right)} \\
& =\left(V_{2^{s} p}\right)^{2}-2 Q^{2^{s} p} .
\end{array}
$$

Because we have $A(s)$ and by (1.8) we deduct

$$
V_{2^{s+1} . p}=\left(g_{1}+g_{2} p\right)^{2}-2\left(Q^{2^{s}}+f p\right) .
$$

Hence

$$
V_{2^{s+1} \cdot p}=g_{1}^{2}-2 Q^{2^{s}}+\bar{f} p
$$

Seen that g_{1}, Q and s are limited, the integer \bar{f}, according to lemma 2 , must be unlimited and this means that we have $A(s+1)$. Then by (1.9), $\forall^{s t} s \geq 1 A(s)$.
b) P or Q is unlimited. In this case by (1.6) $V_{2^{s}} \mid V_{2^{s} p}$, i.e. $V_{2^{s} p}=V_{2^{s} . c .}$. By lemma $3, c$ is an unlimited integer. By lemma $5 \quad\left|V_{2}\right| \cong+\infty$ and by lemma $4 \quad\left|V_{2}\right|<\left|V_{3}\right|<\left|V_{4}\right|<\ldots$. Hence $V_{2^{s}}$ is an unlimited. this finishes the demonstration for this case.
III) $n=n_{1} n_{2}$ where one of n_{1}, n_{2} is odd greater or equal to 3 , the other is unlimited.
Suppose $n_{1} \geq 3$ odd and $n_{2} \cong+\infty$. then

$$
V_{n_{1} n_{2}}=V_{n_{2}} C
$$

where by (1.6) C is an integer which, according to lemma 3, is unlimited. since $n_{2} \cong+\infty$, then, by lemma $4, V_{n_{2}}$ is unlimited. This finishes the proof for this case.
IV) $n=2^{\omega+1}$ with $\omega \cong+\infty$
a) Q is even $\left(Q=2 t, t \in \mathbb{Z}^{*}\right)$. We have $V_{n}=V_{2^{\omega+1}}=\left(V_{2^{\omega}}\right)^{2}-2(Q)^{2^{\omega}}$. By considering $2^{\omega}=2.2^{\omega-1}$ and by applying (1.4), we obtain $V_{2^{\omega}}=$ $V_{2.2^{\omega-1}}=V_{2^{\omega-1}}^{2}-2 Q^{2^{\omega-1}}$. Hence, by replacing $V_{2^{\omega}}$ by its value gotten in this last equality,

$$
\begin{align*}
V_{n}=V_{2^{\omega+1}} & =\left(V_{2^{\omega-1}}^{2}-2 Q^{2 \omega-1}\right)^{2}-2 Q^{2^{\omega}} \tag{2.4}\\
& =\left(V_{2 \omega-1}\right)^{4} \operatorname{Mod}\left(Q^{2^{\omega-1}}\right)
\end{align*}
$$

Similarly, by considering $V_{2^{\omega-1}}=V_{2.2^{\omega-2}}$, we get

$$
\begin{equation*}
V_{n}=V_{2^{\omega+1}}=\left(V_{2^{\omega-2}}\right)^{8} \operatorname{Mod}\left(Q^{2^{\omega-2}}\right) \tag{2.5}
\end{equation*}
$$

Thus if $f \cong+\infty$ is an integer such that $\omega-f \cong+\infty$ then the process that has permitted to write V_{n} according to formulas (2.4) and (2.5) will, after successive iterations, permit to write

$$
\begin{equation*}
V_{n}=V_{2^{\omega+1}}=\left(V_{2^{\omega-f}}\right)^{2^{f+1}} \operatorname{Mod}\left(Q^{2^{\omega-f}}\right) . \tag{2.6}
\end{equation*}
$$

where $V_{2^{\omega-f}}$ is an unlimited. Now if $V_{2^{\omega-f}}$ is even then

$$
V_{2^{\omega+1}}=2^{\gamma} . t
$$

where $\gamma=\min \left(2^{f+1}, 2^{\omega-f}\right)$ and t is integer. This signifies that we can put $V_{2^{\omega+1}}$ in the form of $2^{\gamma_{1}} .2^{\gamma_{2}}$.t where γ_{1} and γ_{2} are two unlimited integers of which the sum is γ.
If $V_{2 \omega-f}$ is odd, then
$V_{2^{\omega+1}}-1=\left[\left(V_{2^{\omega-f}}\right)^{2^{f+1}}-1\right]+k Q^{2^{\omega-f}}$. Since $\left(V_{2^{\omega-f}}\right)^{2^{f+1}}-1$ is a difference of two squares, then

$$
V_{2^{\omega+1}}-1=\left[\left(V_{2^{\omega-f}}\right)^{2^{f}}-1\right]\left[\left(V_{2^{\omega-f}}\right)^{2^{f}}+1\right]+k Q^{2^{\omega-f}} .
$$

Also $\left(V_{2 \omega-f}\right)^{2^{f}}-1$ is a difference of two squares, consequently
$V_{2^{\omega+1}}-1=\left[\left(V_{2^{\omega-f}}\right)^{2^{f-1}}-1\right]\left[\left(V_{2^{\omega-f}}\right)^{2^{f-1}}+1\right]\left[\left(V_{2^{\omega-f}}\right)^{2^{f}}+1\right]+k Q^{2^{\omega-f}}$.
By this way we can write $V_{2^{\omega+1}}-1$ as follows

$$
\begin{aligned}
V_{2^{\omega+1}}-1= & {\left[\left(V_{2^{\omega-f}}\right)^{2^{f-t}}-1\right]\left[\left(V_{2^{\omega-f}}\right)^{2^{f-t}}+1\right]\left[\left(V_{2^{\omega-f}}\right)^{2^{f-(t-1)}}+1\right]+\ldots } \\
& \ldots \ldots .+\left[\left(V_{2^{\omega-f}}\right)^{f^{f-1}}+1\right]\left[\left(V_{2^{\omega-f}}\right)^{2^{f}}+1\right]+k Q^{2^{\omega-f}}
\end{aligned}
$$

where t is an integer verifying $1 \leq t<f$.
Let's take $t_{0} \cong+\infty$ such that $t_{0}<f$ and $t_{0}+2<2^{\omega-f}$. This is possible, indeed: since that $\operatorname{Min}\left(f, 2^{\omega-f}\right) \cong+\infty$ therefore we can choose an integer $s \cong+\infty$ and $s \leq \operatorname{Min}\left(f, 2^{\omega-f}\right)$. Let's take $t_{0}=$ $s-3$. seen that $Q^{2^{\omega-f}}$ contains the factor $2^{2^{\omega-f}}$ and the product $\left[\left(V_{2^{\omega-f}}\right)^{2^{f-t_{0}}}-1\right] \prod_{i=0}^{t_{0}}\left[\left(V_{2^{\omega-f}}\right)^{2^{f-i}}+1\right]$ contains 2^{k} where $k \geq t_{0}+2$, then

$$
V_{2^{\omega+1}}-1=2^{t_{0}+2} N
$$

where N is an integer. Therefore

$$
V_{n}-1=V_{2^{\omega+1}}-1=2^{t_{1}} 2^{t_{2}} N .
$$

where t_{1} and t_{2} are two unlimited positive integers of which the sum is $t_{0}+2$.
b) Q is odd $(Q=2 t+1, t \in \mathbb{Z})$.

Put $n_{o}=2^{\omega}$. If $Q= \pm 1$, then by (1.4)

$$
\begin{aligned}
V_{n}=V_{2 n_{0}} & =\left(V_{n_{0}}\right)^{2}-2 Q^{n_{0}} \\
& =\left(V_{n_{0}}\right)^{2}-2
\end{aligned}
$$

because n_{o} is even. This end the proof because $V_{n_{0}}$ is, by lemma 2, an unlimited. Therefore we suppose $Q \neq \pm 1$ and we distinguish the following cases
$\left.1^{\circ}\right) P$ is even. In this case, by induction, we show easily that the elements $V_{n}(n \geq 0)$ are even. Moreover $V_{2} \neq 2$, because otherwise $P^{2}-2 Q=2$ and therefore $D=P^{2}-4 Q=2-2 Q$. Hence the fact that $D>0$ means $2-2 Q>0$ i.e. $Q<0\left(Q \in \mathbb{Z}^{*}\right)$. This contradicts $P^{2}-2 Q=2$. By the same way we show that $V_{2} \neq-2$.

Now we demonstrate that $V_{n}-2$ equal to the product of two unlimited integers. Indeed by (1.4)

$$
\begin{array}{rlc}
V_{n}=V_{2^{\omega+1}} & =\quad V_{2 n_{0}} \\
& =V_{n_{0}}^{2}-2 Q^{n_{0}}
\end{array}
$$

Then

$$
\begin{array}{rlc}
V_{2 n_{0}}-2 & = & V_{n_{0}}^{2}-4-2 Q^{n_{0}}+2 \\
& = & \left(V_{n_{0}}-2\right) \cdot\left(V_{n_{0}}+2\right)-2\left(Q^{n_{0}}-1\right) .
\end{array}
$$

Seen that $Q^{n_{0}}-1$ is the difference between two squares,

$$
\begin{equation*}
V_{2 n_{0}}-2=\left(V_{n_{0}}-2\right)\left(V_{n_{0}}+2\right)-2\left(Q^{n_{0} / 2}-1\right)\left(Q^{n_{0} / 2}+1\right) \tag{2.7}
\end{equation*}
$$

Because n_{0} is divisible by 2 , the application of (1.4) to $V_{n_{0}}-2$ permit to write $V_{n_{0}}-2=V_{2\left(n_{0} / 2\right)}-2=V_{\left(n_{0} / 2\right)}^{2}-4-2\left(Q^{n_{0} / 2}-1\right)$. Then from this and by (2.7) we have
$V_{2 n_{0}}-2=\left[V_{\left(n_{0} / 2\right)}^{2}-4-2\left(Q^{n_{0} / 2}-1\right)\right]\left(V_{n_{0}}+2\right)-2\left(Q^{n_{0} / 2}-1\right)\left(Q^{n_{0} / 2}+1\right)$.
Seen that $V_{\left(n_{0} / 2\right)}^{2}-4$ and $\left(Q^{n_{0} / 2}-1\right)$ are differences between squares, it ensues

$$
\begin{align*}
V_{2 n_{0}}-2= & \left(V_{\left(n_{0} / 2\right)}-2\right)\left(V_{\left(n_{0} / 2\right)}+2\right)\left(V_{n_{0}}+2\right) \\
& -2\left(Q^{n_{0} / 4}-1\right)\left(Q^{n_{0} / 4}+1\right)\left(V_{n_{0}}+2\right) \tag{2.8}\\
& -2\left(Q^{n_{0} / 4}-1\right)\left(Q^{n_{0} / 4}+1\right)\left(Q^{n_{0} / 2}+1\right) .
\end{align*}
$$

Because $n_{0} / 2$ is divisible by 2 , the application of (1.4) to $V_{n_{0} / 2}-2$ permit to write

$$
\begin{aligned}
V_{\left(n_{0} / 2\right)}-2 & =\quad V_{\left(n_{0} / 4\right)}^{2}-2 Q^{n_{0} / 4}-4+2 \\
& =\left(V_{\left(n_{0} / 4\right)}^{2}-4\right)-2\left(Q^{n_{0} / 4}-1\right) .
\end{aligned}
$$

By replacing $V_{\left(n_{0} / 2\right)}-2$ by $\left(V_{\left(n_{0} / 4\right)}^{2}-4\right)-2\left(Q^{n_{0} / 4}-1\right)$ and by observing that $V_{\left(n_{0} / 4\right)}^{2}-4$ and $Q^{n_{0} / 4}-1$ are differences between squares, we get

$$
\begin{align*}
V_{2 n_{0}}-2= & \left(V_{\left(n_{0} / 4\right)}-2\right)\left(V_{\left(n_{0} / 4\right)}+2\right)\left(V_{\left(n_{0} / 2\right)}+2\right)\left(V_{n_{0}}+2\right) \tag{2.9}\\
& -2\left(Q^{n_{0} / 8}-1\right)\left(Q^{n_{0} / 8}+1\right)\left(V_{\left(n_{0} / 2\right)}+2\right)\left(V_{n_{0}}+2\right) \\
& -2\left(Q^{n_{0} / 8}-1\right)\left(Q^{n_{0} / 8}+1\right)\left(Q^{n_{0} / 4}+1\right)\left(V_{n_{0}}+2\right) \\
& -2\left(Q^{n_{0} / 8}-1\right)\left(Q^{n_{0} / 8}+1\right)\left(Q^{n_{0} / 4}+1\right)\left(Q^{n_{0} / 2}+1\right) .
\end{align*}
$$

So the process consisting, every time to apply (1.4) and to put the difference between two squares as a product of two factors, leads to the following general formulate

$$
\begin{align*}
& V_{n}-2=V_{2 n_{0}}-2= \\
& \left(V_{n_{0} / 2^{i-1}}-2\right)\left(V_{n_{0} / 2^{i-1}}+2\right) \ldots\left(V_{n_{0} / 2}+2\right)\left(V_{n_{0}}+2\right) \\
& -2\left(Q^{n_{0} / 2^{i}}-1\right)\left(Q^{n_{0} / 2^{i}}+1\right)\left(V_{n_{0} / 2^{i-2}}+2\right) \ldots\left(V_{n_{0} / 2}+2\right)\left(V_{n_{0}}+2\right) \\
& -2\left(Q^{n_{0} / 2^{i}}-1\right)\left(Q^{n_{0} / 2^{i}}+1\right)\left(Q^{n_{0} / 2^{i-1}}+1\right)\left(V_{n_{0} / 2^{i-3}}+2\right) . .\left(V_{n_{0}}+2\right) \\
& -2\left(Q^{n_{0} / 2^{i}}-1\right)\left(Q^{n_{0} / 2^{i}}+1\right)\left(Q^{n_{0} / 2^{i-1}}+1\right)\left(Q^{n_{0} / 2^{i-2}}+1\right)\left(V_{n_{0} / 2^{i-4}}+2\right) \\
& \quad \ldots\left(V_{n_{0}}+2\right) \\
& \ldots \\
& -2\left(Q^{n_{0} / 2^{i}}-1\right)\left(Q^{n_{0} / 2^{i}}+1\right)\left(Q^{n_{0} / 2^{i-1}}+1\right) \ldots\left(Q^{n_{0} / 2^{2}}+1\right)\left(V_{n_{0}}+2\right) \tag{2.10}\\
& -2\left(Q^{n_{0} / 2^{i}}-1\right)\left(Q^{n_{0} / 2^{i}}+1\right)\left(Q^{n_{0} / 2^{i-1}}+1\right) \ldots\left(Q^{n_{0} / 2^{2}}+1\right)\left(Q^{n_{0} / 2}+1\right) .
\end{align*}
$$

This formula is general in the following sense: If we replace i by 1 we recover (2.7) and by 2 we recover (2.8) etc... .
Take $i_{0} \cong+\infty$ such that $\frac{n_{0}}{2^{i_{0}}} \geq 1$. The formula (2.10) is formed by $i_{0}+1$ terms where each term is a product of $i_{0}+1$ nonzero factors of which each is a multiple of 2 . This because on the one hand the integers $V_{n_{0} / 2^{j}}\left(0 \leq j \leq i_{0}-1\right)$ appearing in the formula is even and, according to lemme 4 , different of ± 2 following the fact that V_{2} is different from these values. On the other hand Q is odd different of ± 1. Then in (2.10), we can put $2^{i_{0}+1}$ as a common factor between terms constituting $V_{2 n_{0}}-2$. From this

$$
V_{n}-2=V_{2 n_{0}}-2=2^{t_{1}} 2^{t_{2}} t
$$

where t_{1} and t_{2} are two unlimited positive integers of which the sum is $i_{0}+1$ and t is an integer.
$\left.\mathbf{2}^{\circ}\right) P$ is odd. In this case we demonstrate by induction that $V_{2^{n}}(n \geq 1)$ is odd; indeed: $V_{2^{1}}=V_{2}=P^{2}-2 Q$ this signifies that V_{2} is odd. Suppose that $V_{2^{n}}, n \geq 1$ is odd. $V_{2^{n+1}}=\left(V_{2^{n}}\right)^{2}-2 Q^{2^{n}}$ then $V_{2^{n+1}}$ is also odd. On the other hand $V_{2} \neq 1$ because otherwise $P^{2}-2 Q=1$, then the fact that $D=P^{2}-4 Q=1-2 Q>0$ signifies $Q<0$ and this contradicts $P^{2}-2 Q=1$. By the same way $V_{2} \neq-1$.

By (1.4)

$$
\begin{array}{rlc}
V_{n}=V_{2^{\omega+1}} & =\quad V_{2 n_{0}} \\
& =V_{n_{0}}^{2}-2 Q^{n_{0}}
\end{array}
$$

Then $V_{2^{\omega+1}}+1=V_{n_{0}}^{2}-1+2-2 Q^{n_{0}}$

$$
\begin{array}{rlc}
V_{2^{\omega+1}}+1 & = & V_{n_{0}}^{2}-1+2-2 Q^{n_{0}} \\
& = & \left(V_{n_{0}}-1\right)^{(}\left(V_{n_{0}}+1\right)+2\left(1-Q^{n_{0}}\right)
\end{array}
$$

So

$$
\begin{align*}
V_{2^{\omega+1}}+1= & \left(V_{n_{0}}+1\right)\left(V_{n_{0}}-1\right) \tag{2.11}\\
& +2\left(1-Q^{n_{0} / 2}\right)\left(1+Q^{n_{0} / 2}\right) .
\end{align*}
$$

Let's calculate, with (1.4), $V_{n_{0}}+1$:

$$
\begin{array}{rlc}
V_{n_{0}}+1 & = & V_{2\left(n_{0} / 2\right)}+1 \\
& = & {\left[V_{\left(n_{0} / 2\right)}^{2}-1+2-2 Q^{\left(n_{0} / 2\right)}\right]} \\
& = & {\left[\left(V_{\left(n_{0} / 2\right)}-1\right)\left(V_{\left(n_{0} / 2\right)}+1\right)+2\left(1-Q^{\left(n_{0} / 2\right)}\right)\right] .}
\end{array}
$$

Now by replacing in (2.11) by the value of $V_{n_{0}}+1$ we get

$$
\begin{aligned}
& V_{2^{\omega+1}}+1=\left[\left(V_{\left(n_{0} / 2\right)}-1\right)\left(V_{\left(n_{0} / 2\right)}+1\right)+2\left(1-Q^{\left(n_{0} / 2\right)}\right)\right]\left(V_{n_{0}}-1\right) \\
& +2\left(1-Q^{n_{0} / 2}\right)\left(1+Q^{n_{0} / 2}\right) \\
& =\quad\left(V_{\left(n_{0} / 2\right)}-1\right)\left(V_{\left(n_{0} / 2\right)}+1\right)\left(V_{n_{0}}-1\right) \\
& +2\left(1-Q^{\left(n_{0} / 2\right)}\right)\left(V_{n_{0}}-1\right) \\
& +2\left(1-Q^{\left(n_{0} / 2\right)}\right)\left(1+Q^{\left(n_{0} / 2\right)}\right) \text {. }
\end{aligned}
$$

Then

$$
\begin{align*}
V_{2^{\omega+1}}+1= & \left(V_{\left(n_{0} / 2\right)}-1\right)\left(V_{\left(n_{0} / 2\right)}+1\right)\left(V_{n_{0}}-1\right) \\
& +2\left(1-Q^{\left(n_{0} / 4\right)}\right)\left(1+Q^{\left(n_{0} / 4\right)}\right)\left(V_{n_{0}}-1\right) \tag{2.12}\\
& +2\left(1-Q^{\left(n_{0} / 4\right)}\right)\left(1+Q^{\left(n_{0} / 4\right)}\right)\left(1+Q^{\left(n_{0} / 2\right)}\right) .
\end{align*}
$$

So for $i \geq 0$, the general formulates is

$$
\begin{aligned}
& V_{n}+1=V_{2^{\omega+1}}+1= \\
& \left(V_{n_{0} / 2^{i}}+1\right)\left(V_{n_{0} / 2^{i}}-1\right)\left(V_{n_{0} / 2^{i-1}}-1\right) \ldots\left(V_{n_{0} / 2}-1\right)\left(V_{n_{0}}-1\right) \\
& +2\left(1-Q^{n_{0} / 2^{i+1}}\right)\left(1+Q^{n_{0} / 2^{i+1}}\right)\left(V_{n_{0} / 2^{i-1}}-1\right)\left(V_{n_{0} / 2^{i-2}}-1\right) \ldots\left(V_{n_{0}}-1\right) \\
& +2\left(1-Q^{n_{0} / 2^{i+1}}\right)\left(1+Q^{n_{0} / 2^{i+1}}\right)\left(1+Q^{n_{0} / 2^{i}}\right)\left(V_{n_{0} / 2^{i-2}}-1\right) \ldots\left(V_{n_{0}}-1\right) \\
& +2\left(1-Q^{\frac{n_{0}}{2^{2+1}}}\right)\left(1+Q^{\frac{n_{0}}{2^{2+1}}}\right)\left(1+Q^{\frac{n_{0}}{2^{2}}}\right)\left(1+Q^{\frac{n_{0}}{2^{2-1}}}\right)\left(V_{2_{0}}^{2^{2-3}}-1\right) . .\left(V_{n_{0}}-1\right) \\
& +2\left(1-Q^{n_{0} / 2^{i+1}}\right)\left(1+Q^{n_{0} / 2^{i+1}}\right)\left(1+Q^{n_{0} / 2^{i}}\right)\left(1+Q^{n_{0} / 2^{i-1}}\right) \ldots\left(1+Q^{n_{0} / 2^{2}}\right) \\
& \text { (} V_{n_{0}}-1 \text {) } \\
& +2\left(1-Q^{n_{0} / 2^{i+1}}\right)\left(1+Q^{n_{0} / 2^{i+1}}\right)\left(1+Q^{n_{0} / 2^{i}}\right)\left(1+Q^{n_{0} / 2^{i-1}}\right) \ldots\left(1+Q^{n_{0} / 2}\right) .
\end{aligned}
$$

This formula is general in the following sense: where if we replace i by 0 we recover (2.11) and by 1 we recover (2.12) etc... .

Take $i_{0} \cong+\infty$ such that $\frac{n_{0}}{2^{i_{0}}} \geq 2$. The formula (2.13) is formed by $i_{0}+2$ terms where each term is a product of $i_{0}+2$ nonzero factors of which each is a multiple of 2 . This because on the one hand the integers $V_{n_{0} / 2^{j}}$ ($0 \leq j \leq i_{0}$) appearing in the formula is odd and, according to lemme 4, different of ± 1 following the fact that V_{2} is different from these values. On the other hand Q is odd different of ± 1. Then in (2.13), we can put $2^{i_{0}+2}$ as a common factor between terms constituting $V_{2 n_{0}}+1$. From this

$$
V_{n}+1=V_{2 n_{0}}+1=2^{t_{1}} \cdot 2^{t_{2}} \cdot t
$$

where t_{1} and t_{2} are two unlimited positive integers of which the sum is $i_{0}+2$ and t is an integer.

Références

[1] A. Boudaoud, La conjecture de Dickson et classes particulières d'entiers, Annales Mathématiques Blaise Pascal 13, 103-109 (2006).
[2] F. Diener et G. Reeb, Analyse non standard, Hermann, éditeurs des Sciences et des Arts. 1989.
[3] E. Nelson, Internal set theory: A new approach to non standard analysis, bull. Amer. Math. Soc. 83(1977) 1165-1198.
[4] Paulo Ribenboim, Nombres premiers: mystères et records, PUF, 1994, page 214.
[5] Paulo Ribenboim, The Little Book of Big Primes, Springer-Verlag (1991).

Département de Mathématiques, Université de M'sila, Algérie
E-mail address: boudaoudab@yahoo.fr

[^0]: Date: June 02, 2008.
 2000 Mathematics Subject Classification. 11B39, 11A51, 26 E 35.
 Key words and phrases. Lucas sequences, Non standard analysis.

