ON THE TERMS OF UNLIMITED RANK OF LUCAS SEQUENCES

ABDELMADJID BOUDAOUD

ABSTRACT. Let P, Q be nonzero integers such that $D = P^2 - 4Q$ is different to zero. The sequences of integers defined by

 $\begin{cases} U_n = PU_{n-1} - QU_{n-2} , & U_0 = 0 \quad U_1 = 1 \\ V_n = PV_{n-1} - QV_{n-2} , & V_0 = 2 \quad V_1 = P. \end{cases}$ are called the Lucas sequences associated to the pair (P,Q) [1,5]. In this paper we prove the following result:

Theorem. If P, Q are such that D is strictly positive. Then for each unlimited n, each of integers U_n and V_n is, to a limited integer near, product of two unlimited integers.

1. INTRODUCTION & RAPPEL

This work is in the frame of the non standard analysis ([2,3]). In [1] we had asked: Is every unlimited integer equal to the sum of a limited integer and a product of two unlimited integers? i.e

 $Unlimited = s \tan dard + Unlimited \times Unlimited$

We had provided in this reference some examples affirming this question.

These examples are as follows [1]

Example 1. Definition. A pseudoprime (in base 2), also called a Poulet number, is a composite odd number n such that

$$2^{n-1} = 1 \pmod{n}$$
.

Then. Any unlimited pseudoprime n (in base 2) is the product of two unlimited natural numbers, i.e.

Date: June 02, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 11B39, 11A51, 26E35.

Key words and phrases. Lucas sequences, Non standard analysis.

$$n = \omega_1 . \omega_2$$

where $\omega_1 \cong +\infty$, $\omega_2 \cong +\infty$.

Let $a \ge 2$ be a natural number.

Example 2. Definition. A composite integer n > a that verifies

$$a^{n-1} = 1 \pmod{n} \ .$$

is called an *a*-pseudoprime.

Then. Let $a \ge 2$ be a standard integer. Any unlimited *a*-pseudoprime n is the product of two unlimited natural numbers, i.e.

$$n = \omega_1 . \omega_2$$

where $\omega_1 \cong +\infty$, $\omega_2 \cong +\infty$.

Let $a \ge 2$ be a standard natural number.

Example 3. In the base a any unlimited Euler pseudoprime n (resp. strong pseudoprime) is the product of two unlimited natural numbers, i.e.

$$n = \omega_1 . \omega_2$$

where $\omega_1 \cong +\infty$, $\omega_2 \cong +\infty$.

Example 4. Definition. A composite integer n that verifies $a^{n-1} = 1 \pmod{n}$ for every integer a, 1 < a < n, such that a is relatively prime to n, is called a Carmichael number.

Then. Any unlimited Carmichael number n is the product of two unlimited natural numbers, i.e.

$$n = \omega_1 . \omega_2$$

where $\omega_1 \cong +\infty$, $\omega_2 \cong +\infty$.

Example 5. If exists an infinity of even perfect number (n is called a perfect number if $\sigma(n) = 2n$), then we have: Any unlimited even perfect number n is the product of two unlimited natural numbers, i.e.

 $n = \omega_1 . \omega_2$

where $\omega_1 \cong +\infty$, $\omega_2 \cong +\infty$.

Example 6. Definition. Let n be a natural number. If $\sigma(n) = 2 n - 1$ then n is called almost perfect.

Then. Any unlimited almost perfect number n is the product of two unlimited natural numbers, i.e.

 $n = \omega_1 . \omega_2$

where $\omega_1 \cong +\infty$, $\omega_2 \cong +\infty$.

In this work we present another example. Let's start with a small preview on Lucas sequences associated to a pair of integers [4,5]: Let P, Q be nonzero integers. Consider the polynomial $p(x) = x^2 - Px + Q$; its discriminant is $D = P^2 - 4Q$ and the roots are

(1.1)
$$\alpha = \frac{P + \sqrt{D}}{2}, \ \beta = \frac{P - \sqrt{D}}{2}.$$

Suppose that P and Q are such that D is different of zero. The sequences of integers

(1.2)
$$\begin{cases} U_n(P,Q) = \frac{\alpha^n - \beta^n}{\alpha - \beta} , & U_0(P,Q) = 0 & U_1(P,Q) = 1 \\ V_n(P,Q) = \alpha^n + \beta^n , & V_0(P,Q) = 2 & V_1(P,Q) = P \end{cases}$$

are called the Lucas sequences associated to the pair (P, Q). We will note by U_n (resp. V_n) the element $U_n(P, Q)$ (resp. $V_n(P, Q)$). It is demonstrated that for $n \geq 2$:

(1.3)
$$U_n = PU_{n-1} - QU_{n-2} , \quad U_0 = 0 \quad U_1 = 1$$
$$V_n = PV_{n-1} - QV_{n-2} , \quad V_0 = 2 \quad V_1 = P .$$

In the particular case (P,Q) = (1,-1), the sequence $(U_n)_{n\geq 0}$ beginning as follows 0 1 1 2 3 5 8 13 ... was first considered by Fibonacci; for the same values the sequence of Lucas numbers $(V_n)_{n\geq 0}$ which is the companion sequence of Fibonacci numbers begins as follows: 2 1 3 4 7 11 18

Here are some results that are known [1, 5]:

(1.4)
$$V_{2n} = (V_n)^2 - 2Q^n.$$

Let p be a prime integer, then

(1.5)
$$\begin{cases} U_p = \left(\frac{D}{p}\right) Mod(p) &: \text{ pour } p \ge 3\\ V_p = P Mod(p) &: \text{ pour } p \ge 2 \end{cases}$$

Where $\left(\frac{D}{p}\right)$ is the Legendre symbol that is, according to the relation between p and D, one of the values -1, 0, +1. In addition if $n, k \ge 1$, then

(1.6)
$$U_n \mid U_{nk}, \quad V_n \mid V_{nk} \text{ if } k \text{ is odd}$$

Moreover

(1.7)
$$\begin{cases} U_n (-P,Q) = (-1)^{n-1} U_n (P,Q) \\ V_n (-P,Q) = (-1)^n V_n (P,Q) . \end{cases}$$

Fermat's Little Theorem. If p is a prime number and if a is an integer, then

(1.8)
$$a^p \equiv a \left[p \right].$$

In particular, if p does not divide a then $a^{p-1} \equiv 1 [p]$. External recurrence principle. For all internal or external formula F(n) we have ([2]):

(1.9)
$$[F(0) \text{ and } \forall^{st} n \ (F(n) \Longrightarrow F(n+1))] \Longrightarrow \forall^{st} n \ F(n)$$

Notations. Let x, y and a be real numbers (integers or non)

1°) $x \cong 0$ (resp. $x \cong +\infty$) signifies that x is an infinitesimal (resp. x is a positive unlimited). We have an analogous significance for $x \cong -\infty$. 2°) We say that x is equivalent to y if $x - y \approx 0$.

3°) $x \not\cong a$ signifies that x is not equivalent to a.

 4°) We say that x is appreciable if it is not an infinitesimal nor an unlimited.

5°) The inequalities $x \ge y$ (resp. $x \ge y$) mean that x is strictly superior \cong and equivalent to y (resp. that x is superior and is not equivalent to y). We have an analogous significance for \leq and \leq .

$$\leq and \leq \\ \cong \qquad \varphi$$

2. Main result

Now the example of which I spoke before is formulated by the following result.

Theorem. If P, Q are such that D > 0. Then for each unlimited n, each of integers U_n and V_n is, to a limited integer near, product of two unlimited integers.

Let P and Q be such that D > 0 and let $n \cong +\infty$. Put $\lambda = \frac{P}{\sqrt{D}}$. To prove this result, we will have need to the following lemmas.

Lemma 1.

 1^{0}) $\alpha \neq \beta$, $Max(|\alpha|, |\beta|) > 1$ and \cong

(2.1)
$$\frac{\beta}{\alpha} = \frac{\lambda - 1}{\lambda + 1}, \quad \frac{\alpha}{\beta} = \frac{\lambda + 1}{\lambda - 1}.$$

2⁰) If P > 0 then:

 $i) |\alpha| > |\beta|, ii) \frac{\beta}{\alpha} \leq 1 \iff \lambda \cong +\infty, iii) \frac{\beta}{\alpha} \geq -1 \iff \lambda \geq 0 and$

$$iv$$
) $\frac{\beta}{\alpha} \ncong \pm 1$ if and only if λ is appreciable positive.

3⁰) If P < 0 then: i) $|\alpha| < |\beta|$, ii) $\frac{\alpha}{\beta} \leq 1 \iff \lambda \cong -\infty$, iii) $\frac{\alpha}{\beta} \geq -1 \iff \lambda \leq 0$ and iv) $\frac{\alpha}{\beta} \not\cong \pm 1$ if and only if λ is appreciable negative.

Proof. 1⁰) Because $\alpha = \frac{P + \sqrt{D}}{2}$ and $\beta = \frac{P - \sqrt{D}}{2}$ we have $\alpha \neq \beta$. Let's study, according to the following cases, the different values of α and β

i) P > 1: in this case $\alpha > 1$.

ii) P = 1: In this case Q must be strictly negative and therefore $\alpha > 1$. iii) P = -1: In this case Q must be strictly negative and therefore $|\beta| > 1$. \neq

iv) P < -1: In this case $|\beta| > 1$.

Therefore:

$$Max\left(\left|\alpha\right|,\left|\beta\right|\right) \gtrsim 1$$

By (1.1), $\frac{\beta}{\alpha} = \frac{\lambda - 1}{\lambda + 1}$ and $\frac{\alpha}{\beta} = \frac{\lambda + 1}{\lambda - 1}$. 2⁰) If P > 0 then it is immediate that $|\alpha| > |\beta|$. Furthermore, $\lambda > 0$ and the rest of the proof is legible on the graph of $\frac{\beta}{\alpha}(\lambda) = \frac{\lambda - 1}{\lambda + 1}$ in the intervalle $[0, +\infty[$ where one sees the growth of this function of -1to +1. 3⁰) This is similar to 2°).

Remark. By (1.7), we make proofs of the four following lemmas only when P > 0. In this case α is positive and, according to lemma 1, $\alpha > |\beta|$; consequently by (1.2) $U_i = \alpha^{i-1} \left(\frac{1 - (\beta/\alpha)^i}{1 - (\beta/\alpha)} \right) > 0$, $V_i = \alpha^i \left(1 + \left(\frac{\beta}{\alpha} \right)^i \right) > 0$ for $i \ge 1$.

The following lemma (lemma 2) shows how the values of $|U_n|$ and $|V_n|$ increase depending on n

Lemma 2. Each of $|U_n|$ and $|V_n|$ is in the form of ω .n where ω is an unlimited.

Proof. By (1.2),

(2.2)
$$\begin{cases} U_n = \alpha^{n-1} \left(\frac{1 - (\beta/\alpha)^n}{1 - (\beta/\alpha)} \right) \\ V_n = \alpha^n \left(1 + \left(\frac{\beta}{\alpha} \right)^n \right). \end{cases}$$

Via the discution of possible values of the report $\frac{\beta}{\alpha}$ one completes the proof of the proposal in question, where $\frac{\beta}{\alpha} = 1 - \phi$ with $\phi \ge 0$ or $\frac{\beta}{\alpha} = -1 + \phi$ with $\phi \ge 0$ or $\frac{\beta}{\alpha} \ncong \pm 1$.

The following lemma (lemma 3) concerning the report of two terms of U_n and the report of two terms of V_n

Lemma 3. If n of the form n_1n_2 with $n_1 > 1$ and $n_2 > 1$. Then $\frac{|U_{n_1n_2}|}{|U_{n_1}|}$ and $\frac{|V_{n_1n_2}|}{|V_{n_1}|}$ are unlimited.

Proof. Seen that $n \cong +\infty$ at least n_1 or n_2 is an unlimited. By (1.2),

(2.3)
$$\begin{cases} \frac{U_{n_1 n_2}}{U_{n_1}} = \frac{\alpha^{n_1 n_2}}{\alpha^{n_1}} \left(\frac{1 - (\beta / \alpha)^{n_1 n_2}}{1 - (\beta / \alpha)^{n_1}} \right) \\ \frac{V_{n_1 n_2}}{V_{n_1}} = \frac{\alpha^{n_1 n_2}}{\alpha^{n_1}} \left(\frac{1 + (\beta / \alpha)^{n_1 n_2}}{1 + (\beta / \alpha)^{n_1}} \right) \end{cases}$$

Also here the proof of this lemma is done through the discution of the possible values of the report $\frac{\beta}{\alpha}$ which are $\frac{\beta}{\alpha} = 1 - \phi$ with $\phi \ge 0$ or $\frac{\beta}{\alpha} = -1 + \phi$ with $\phi \ge 0$ or $\frac{\beta}{\alpha} \ncong \pm 1$.

Now we demonstrate that the $|U_i|$ and $|V_i|$ increase with *i*.

Lemma 4. For every $i \ge 2 |U_i| < |U_{i+1}|$ & $|V_i| < |V_{i+1}|$

Finally

Lemma 5. If
$$(P,Q)$$
 is not standard then $\frac{|V_2|}{|V_1|} \cong +\infty$

Demonstration of the theorem

Case of U_n

We distinguish two cases

I) *n* **premier.** By (1.5) $U_n = \left(\frac{D}{n}\right) Mod(n)$. Hence $U_n = \pm 1 + kn$. Since, according to lemma 2, $|U_n|$ is in the form of ωn with ω is an unlimited real, the integer *k* must be unlimited. This finishes the proof for this case.

II) $n = n_1 n_2$ where $n_1 \ge n_2 > 1$. By (1.6)

 $U_n = CU_{n_1}$ where C is an integer which is, according to lemma 3, unlimited. On the other hand, seen that $n_1 \cong +\infty$ U_{n_1} is also, according to lemma 4, unlimited. So the proof is finished for the case of U_n . Case of V_n

We distinguish four cases

I) $n = p \cong +\infty$ prime. we have two cases to consider

a) P limited. By (1.5), $V_p = P \mod(p)$ i.e. $V_p = P + kp$. Since P is limited, k must be, according to lemma 2, unlimited.

b) P unlimited. In this case by (1.6), $V_1 | V_p$ i.e $V_p = V_1 N$. By lemma 4, we have

$$\begin{split} |V_2| < |V_3| < \dots < |V_n| < \dots . \\ \text{By lemma 5, } \frac{|V_2|}{|V_1|} \cong +\infty. \text{ Then } \frac{|V_2|}{|V_1|} < \frac{|V_p|}{|V_1|} \text{ and therefore } \frac{|V_p|}{|V_1|} \cong +\infty. \\ \text{This signifies that } N \text{ is unlimited and finish the demonstration for this case because } V_1 = P \text{ and } |P| \cong +\infty. \end{split}$$

II) $n = 2^{s}p$ where $s \ge 1$ limited, $p \cong +\infty$ prime

a) P and Q are all both limited. Put for every $s \ge 1$: $A(s) \equiv \ll$ For $n = 2^{s}p$: $V_n = g_1 + g_2p$ where g_1 (resp. g_2) is a limited (resp. is an unlimited) integer \gg . We have A(1); indeed: Let n = 2p. By (1.4)

$$V_n = V_{2p}$$
$$= (V_p)^2 - 2Q^p$$

The application of (1.5) and (1.8) leads to:

$$V_{2p} = (P + kp)^2 - 2(Q + lp) = P^2 - 2Q + tp .$$

Put $g_1 = P^2 - 2Q$ and $g_2 = t$. Then g_1 is limited and, according to lemma 2, g_2 is unlimited. Hence A(1). Let $s \ge 1$ be a limited integer and suppose A(s). Let's demonstrate A(s+1):

$$\begin{array}{rcl} V_{2^{s+1}p} & = & V_{2(2^{s}p)} \\ & = & \left(V_{2^{s}p}\right)^2 - 2Q^{2^{s}p} \end{array}$$

Because we have A(s) and by (1.8) we deduct

$$V_{2^{s+1},p} = (g_1 + g_2 p)^2 - 2(Q^{2^s} + fp).$$

8

Hence

$$V_{2^{s+1}.p} = g_1^2 - 2Q^{2^s} + \overline{f}p.$$

Seen that g_1 , Q and s are limited, the integer \overline{f} , according to lemma 2, must be unlimited and this means that we have A(s+1). Then by (1.9), $\forall^{st}s \geq 1 A(s)$.

b) *P* or *Q* is unlimited. In this case by (1.6) $V_{2^s} | V_{2^sp}$, i.e. $V_{2^sp} = V_{2^s.c.}$ By lemma 3, *c* is an unlimited integer. By lemma 5 $|V_2| \cong +\infty$ and by lemma 4 $|V_2| < |V_3| < |V_4| < \dots$ Hence V_{2^s} is an unlimited. this finishes the demonstration for this case.

III) $n = n_1 n_2$ where one of n_1, n_2 is odd greater or equal to 3, the other is unlimited.

Suppose $n_1 \geq 3$ odd and $n_2 \cong +\infty$. then

$$V_{n_1n_2} = V_{n_2}C$$

where by (1.6) C is an integer which, according to lemma 3, is unlimited. since $n_2 \cong +\infty$, then, by lemma $4, V_{n_2}$ is unlimited. This finishes the proof for this case.

IV)
$$n = 2^{\omega+1}$$
 with $\omega \cong +\infty$

a) Q is even $(Q = 2t, t \in \mathbb{Z}^*)$. We have $V_n = V_{2^{\omega+1}} = (V_{2^{\omega}})^2 - 2(Q)^{2^{\omega}}$. By considering $2^{\omega} = 2.2^{\omega-1}$ and by applying (1.4), we obtain $V_{2^{\omega}} = V_{2.2^{\omega-1}} = V_{2^{\omega-1}}^2 - 2Q^{2^{\omega-1}}$. Hence, by replacing $V_{2^{\omega}}$ by its value gotten in this last equality,

(2.4)
$$V_n = V_{2^{\omega+1}} = \left(V_{2^{\omega-1}}^2 - 2Q^{2^{\omega-1}}\right)^2 - 2Q^{2^{\omega}} \\ = \left(V_{2^{\omega-1}}\right)^4 Mod\left(Q^{2^{\omega-1}}\right).$$

Similarly, by considering $V_{2^{\omega-1}} = V_{2,2^{\omega-2}}$, we get

(2.5)
$$V_n = V_{2^{\omega+1}} = (V_{2^{\omega-2}})^8 Mod\left(Q^{2^{\omega-2}}\right)$$

Thus if $f \cong +\infty$ is an integer such that $\omega - f \cong +\infty$ then the process that has permitted to write V_n according to formulas (2.4) and (2.5) will, after successive iterations, permit to write

ABDELMADJID BOUDAOUD

(2.6)
$$V_n = V_{2^{\omega+1}} = (V_{2^{\omega-f}})^{2^{f+1}} Mod\left(Q^{2^{\omega-f}}\right).$$

where $V_{2^{\omega-f}}$ is an unlimited. Now if $V_{2^{\omega-f}}$ is even then

 $V_{2^{\omega+1}} = 2^{\gamma} \cdot t$

where $\gamma = \min(2^{f+1}, 2^{\omega-f})$ and t is integer. This signifies that we can put $V_{2^{\omega+1}}$ in the form of $2^{\gamma_1} \cdot 2^{\gamma_2} \cdot t$ where γ_1 and γ_2 are two unlimited integers of which the sum is γ .

If $V_{2^{\omega-f}}$ is odd, then

 $V_{2^{\omega+1}} - 1 = \left[(V_{2^{\omega-f}})^{2^{f+1}} - 1 \right] + kQ^{2^{\omega-f}}$. Since $(V_{2^{\omega-f}})^{2^{f+1}} - 1$ is a difference of two squares, then

$$V_{2^{\omega+1}} - 1 = \left[\left(V_{2^{\omega-f}} \right)^{2^f} - 1 \right] \left[\left(V_{2^{\omega-f}} \right)^{2^f} + 1 \right] + kQ^{2^{\omega-f}}.$$

Also $(V_{2^{\omega-f}})^{2^f} - 1$ is a difference of two squares, consequently

$$V_{2^{\omega+1}} - 1 = \left[\left(V_{2^{\omega-f}} \right)^{2^{f-1}} - 1 \right] \left[\left(V_{2^{\omega-f}} \right)^{2^{f-1}} + 1 \right] \left[\left(V_{2^{\omega-f}} \right)^{2^{f}} + 1 \right] + kQ^{2^{\omega-f}}.$$
By this way we appemite $V_{-j} = -1$ as follows

By this way we can write $V_{2^{\omega+1}} - 1$ as follows

$$V_{2^{\omega+1}} - 1 = \left[\left(V_{2^{\omega-f}} \right)^{2^{f-t}} - 1 \right] \left[\left(V_{2^{\omega-f}} \right)^{2^{f-t}} + 1 \right] \left[\left(V_{2^{\omega-f}} \right)^{2^{f-(t-1)}} + 1 \right] + \dots + \left[\left(V_{2^{\omega-f}} \right)^{2^{f-1}} + 1 \right] \left[\left(V_{2^{\omega-f}} \right)^{2^{f}} + 1 \right] + kQ^{2^{\omega-f}}$$

where t is an integer verifying $1 \le t < f$.

Let's take $t_0 \cong +\infty$ such that $t_0 < f$ and $t_0 + 2 < 2^{\omega - f}$. This is possible, indeed: since that $Min(f, 2^{\omega-f}) \cong +\infty$ therefore we can choose an integer $s \cong +\infty$ and $s \le Min(f, 2^{\omega-f})$. Let's take $t_0 = s - 3$. seen that $Q^{2^{\omega-f}}$ contains the factor $2^{2^{\omega-f}}$ and the product $\left[(V_{2^{\omega-f}})^{2^{f-t_0}} - 1 \right] \prod_{i=0}^{t_0} \left[(V_{2^{\omega-f}})^{2^{f-i}} + 1 \right]$ contains 2^k where $k \ge t_0 + 2$, then

$$V_{2^{\omega+1}} - 1 = 2^{t_0+2}N$$

where N is an integer. Therefore

$$V_n - 1 = V_{2^{\omega+1}} - 1 = 2^{t_1} 2^{t_2} N$$

where t_1 and t_2 are two unlimited positive integers of which the sum is $t_0 + 2$.

10

b) Q is odd $(Q = 2t + 1, t \in \mathbb{Z})$. Put $n_o = 2^{\omega}$. If $Q = \pm 1$, then by (1.4)

$$V_n = V_{2n_0} = (V_{n_0})^2 - 2Q^{n_0}$$

= $(V_{n_0})^2 - 2$

because n_o is even. This end the proof because V_{n_0} is, by lemma 2, an unlimited. Therefore we suppose $Q \neq \pm 1$ and we distinguish the following cases

1°) P is even. In this case, by induction, we show easily that the elements V_n $(n \ge 0)$ are even. Moreover $V_2 \ne 2$, because otherwise $P^2 - 2Q = 2$ and therefore $D = P^2 - 4Q = 2 - 2Q$. Hence the fact that D > 0 means 2 - 2Q > 0 i.e. Q < 0 $(Q \in \mathbb{Z}^*)$. This contradicts $P^2 - 2Q = 2$. By the same way we show that $V_2 \ne -2$.

Now we demonstrate that $V_n - 2$ equal to the product of two unlimited integers. Indeed by (1.4)

$$V_n = V_{2^{\omega+1}} = V_{2n_0} = V_{n_0}^2 - 2Q^{n_0}.$$

Then

$$V_{2n_0} - 2 = V_{n_0}^2 - 4 - 2Q^{n_0} + 2$$

= $(V_{n_0} - 2) \cdot (V_{n_0} + 2) - 2(Q^{n_0} - 1).$

Seen that $Q^{n_0} - 1$ is the difference between two squares,

(2.7)
$$V_{2n_0} - 2 = (V_{n_0} - 2)(V_{n_0} + 2) - 2(Q^{n_0/2} - 1)(Q^{n_0/2} + 1).$$

Because n_0 is divisible by 2, the application of (1.4) to $V_{n_0} - 2$ permit to write $V_{n_0} - 2 = V_{2(n_0/2)} - 2 = V_{(n_0/2)}^2 - 4 - 2(Q^{n_0/2} - 1)$. Then from this and by (2.7) we have

 $V_{2n_0} - 2 = \left[V_{(n_0/2)}^2 - 4 - 2 \left(Q^{n_0/2} - 1 \right) \right] (V_{n_0} + 2) - 2 \left(Q^{n_0/2} - 1 \right) \left(Q^{n_0/2} + 1 \right).$ Seen that $V_{(n_0/2)}^2 - 4$ and $\left(Q^{n_0/2} - 1 \right)$ are differences between squares, it ensues

(2.8)
$$V_{2n_0} - 2 = (V_{(n_0/2)} - 2) (V_{(n_0/2)} + 2) (V_{n_0} + 2) -2 (Q^{n_0/4} - 1) (Q^{n_0/4} + 1) (V_{n_0} + 2) -2 (Q^{n_0/4} - 1) (Q^{n_0/4} + 1) (Q^{n_0/2} + 1)$$

Because $n_0/2$ is divisible by 2, the application of (1.4) to $V_{n_0/2} - 2$ permit to write

$$V_{(n_0/2)} - 2 = V_{(n_0/4)}^2 - 2Q^{n_0/4} - 4 + 2$$

= $\left(V_{(n_0/4)}^2 - 4\right) - 2\left(Q^{n_0/4} - 1\right)$

By replacing $V_{(n_0/2)} - 2$ by $\left(V_{(n_0/4)}^2 - 4\right) - 2\left(Q^{n_0/4} - 1\right)$ and by observing that $V_{(n_0/4)}^2 - 4$ and $Q^{n_0/4} - 1$ are differences between squares, we get

So the process consisting, every time to apply (1.4) and to put the difference between two squares as a product of two factors, leads to the following general formulate

$$V_{n} - 2 = V_{2n_{0}} - 2 = (V_{n_{0}/2^{i-1}} - 2) (V_{n_{0}/2^{i-1}} + 2) \dots (V_{n_{0}/2} + 2) (V_{n_{0}} + 2) - 2 (Q^{n_{0}/2^{i}} - 1) (Q^{n_{0}/2^{i}} + 1) (V_{n_{0}/2^{i-2}} + 2) \dots (V_{n_{0}/2} + 2) (V_{n_{0}} + 2) - 2 (Q^{n_{0}/2^{i}} - 1) (Q^{n_{0}/2^{i}} + 1) (Q^{n_{0}/2^{i-1}} + 1) (V_{n_{0}/2^{i-3}} + 2) \dots (V_{n_{0}} + 2) - 2 (Q^{n_{0}/2^{i}} - 1) (Q^{n_{0}/2^{i}} + 1) (Q^{n_{0}/2^{i-1}} + 1) (Q^{n_{0}/2^{i-2}} + 1) (V_{n_{0}/2^{i-4}} + 2) \dots (V_{n_{0}} + 2) - 2 (Q^{n_{0}/2^{i}} - 1) (Q^{n_{0}/2^{i}} + 1) (Q^{n_{0}/2^{i-1}} + 1) \dots (Q^{n_{0}/2^{2}} + 1) (V_{n_{0}} + 2) - 2 (Q^{n_{0}/2^{i}} - 1) (Q^{n_{0}/2^{i}} + 1) (Q^{n_{0}/2^{i-1}} + 1) \dots (Q^{n_{0}/2^{2}} + 1) (V_{n_{0}} + 2) - 2 (Q^{n_{0}/2^{i}} - 1) (Q^{n_{0}/2^{i}} + 1) (Q^{n_{0}/2^{i-1}} + 1) \dots (Q^{n_{0}/2^{2}} + 1) (Q^{n_{0}/2} + 1).$$

(2.10)

This formula is general in the following sense: If we replace i by 1 we recover (2.7) and by 2 we recover (2.8) etc....

Take $i_0 \cong +\infty$ such that $\frac{n_0}{2^{i_0}} \ge 1$. The formula (2.10) is formed by $i_0 + 1$ terms where each term is a product of $i_0 + 1$ nonzero factors of which each is a multiple of 2. This because on the one hand the integers $V_{n_0/2^j}$ ($0 \le j \le i_0 - 1$) appearing in the formula is even and, according to lemme 4, different of ± 2 following the fact that V_2 is different from these values. On the other hand Q is odd different of ± 1 . Then in (2.10), we can put 2^{i_0+1} as a common factor between terms constituting $V_{2n_0} - 2$. From this

$$V_n - 2 = V_{2n_0} - 2 = 2^{t_1} 2^{t_2} t$$

where t_1 and t_2 are two unlimited positive integers of which the sum is $i_0 + 1$ and t is an integer.

2°) P is odd. In this case we demonstrate by induction that V_{2^n} $(n \ge 1)$ is odd; indeed: $V_{2^1} = V_2 = P^2 - 2Q$ this signifies that V_2 is odd. Suppose that V_{2^n} , $n \ge 1$ is odd. $V_{2^{n+1}} = (V_{2^n})^2 - 2Q^{2^n}$ then $V_{2^{n+1}}$ is also odd. On the other hand $V_2 \ne 1$ because otherwise $P^2 - 2Q = 1$, then the fact that $D = P^2 - 4Q = 1 - 2Q > 0$ signifies Q < 0 and this contradicts $P^2 - 2Q = 1$. By the same way $V_2 \ne -1$.

By (1.4)

$$\begin{array}{rcl} V_n = V_{2^{\omega+1}} & = & V_{2n_0} \\ & = & V_{n_0}^2 - 2Q^{n_0} \end{array}$$

Then $V_{2^{\omega+1}} + 1 = V_{n_0}^2 - 1 + 2 - 2Q^{n_0}$

$$V_{2^{\omega+1}} + 1 = V_{n_0}^2 - 1 + 2 - 2Q^{n_0}$$

= $(V_{n_0} - 1)(V_{n_0} + 1) + 2(1 - Q^{n_0})$

 So

(2.11)
$$V_{2^{\omega+1}} + 1 = (V_{n_0} + 1) (V_{n_0} - 1) + 2 (1 - Q^{n_0/2}) (1 + Q^{n_0/2}).$$

Let's calculate, with (1.4),
$$V_{n_0} + 1$$
:
 $V_{n_0} + 1 = V_{2(n_0/2)} + 1$
 $= \left[V_{(n_0/2)}^2 - 1 + 2 - 2Q^{(n_0/2)} \right]$
 $= \left[(V_{(n_0/2)} - 1) \left(V_{(n_0/2)} + 1 \right) + 2 \left(1 - Q^{(n_0/2)} \right) \right]$.
Now by replacing in (2.11) by the value of $V_{n_0} + 1$ we get
 $V_{2^{\omega+1}} + 1 = \left[(V_{(n_0/2)} - 1) \left(V_{(n_0/2)} + 1 \right) + 2 \left(1 - Q^{(n_0/2)} \right) \right] (V_{n_0} - 1)$
 $+ 2 \left(1 - Q^{n_0/2} \right) \left(1 + Q^{n_0/2} \right)$
 $= \left(V_{(n_0/2)} - 1 \right) \left(V_{(n_0/2)} + 1 \right) (V_{n_0} - 1)$
 $+ 2 \left(1 - Q^{(n_0/2)} \right) (V_{n_0} - 1)$
 $+ 2 \left(1 - Q^{(n_0/2)} \right) (1 + Q^{(n_0/2)})$.

Then

$$(2.12) \quad V_{2^{\omega+1}} + 1 = \begin{pmatrix} V_{(n_0/2)} - 1 \end{pmatrix} \begin{pmatrix} V_{(n_0/2)} + 1 \end{pmatrix} \begin{pmatrix} V_{n_0} - 1 \end{pmatrix} \\ +2 \begin{pmatrix} 1 - Q^{(n_0/4)} \end{pmatrix} \begin{pmatrix} 1 + Q^{(n_0/4)} \end{pmatrix} \begin{pmatrix} V_{n_0} - 1 \end{pmatrix} \\ +2 \begin{pmatrix} 1 - Q^{(n_0/4)} \end{pmatrix} \begin{pmatrix} 1 + Q^{(n_0/4)} \end{pmatrix} \begin{pmatrix} 1 + Q^{(n_0/2)} \end{pmatrix}.$$

So for $i \ge 0$, the general formulates is

$$\begin{split} V_{n} + 1 &= V_{2^{\omega+1}} + 1 = \\ \left(V_{n_{0}/2^{i}} + 1\right) \left(V_{n_{0}/2^{i}} - 1\right) \left(V_{n_{0}/2^{i-1}} - 1\right) \dots \left(V_{n_{0}/2} - 1\right) \left(V_{n_{0}} - 1\right) \\ &+ 2 \left(1 - Q^{n_{0}/2^{i+1}}\right) \left(1 + Q^{n_{0}/2^{i+1}}\right) \left(1 + Q^{n_{0}/2^{i}}\right) \left(V_{n_{0}/2^{i-2}} - 1\right) \dots \left(V_{n_{0}} - 1\right) \\ &+ 2 \left(1 - Q^{n_{0}/2^{i+1}}\right) \left(1 + Q^{\frac{n_{0}}{2^{i+1}}}\right) \left(1 + Q^{\frac{n_{0}}{2^{i}}}\right) \left(1 + Q^{\frac{n_{0}}{2^{i-1}}}\right) \left(V_{n_{0}/2^{i-2}} - 1\right) \dots \left(V_{n_{0}} - 1\right) \\ &+ 2 \left(1 - Q^{\frac{n_{0}}{2^{i+1}}}\right) \left(1 + Q^{\frac{n_{0}}{2^{i+1}}}\right) \left(1 + Q^{\frac{n_{0}}{2^{i}}}\right) \left(1 + Q^{\frac{n_{0}}{2^{i-1}}}\right) \left(V_{\frac{n_{0}}{2^{i-3}}} - 1\right) \dots \left(V_{n_{0}} - 1\right) \\ &+ \dots \\ &+ 2 \left(1 - Q^{n_{0}/2^{i+1}}\right) \left(1 + Q^{n_{0}/2^{i+1}}\right) \left(1 + Q^{n_{0}/2^{i}}\right) \left(1 + Q^{n_{0}/2^{i-1}}\right) \dots \left(1 + Q^{n_{0}/2^{2}}\right) \\ \left(V_{n_{0}} - 1\right) \\ &+ 2 \left(1 - Q^{n_{0}/2^{i+1}}\right) \left(1 + Q^{n_{0}/2^{i+1}}\right) \left(1 + Q^{n_{0}/2^{i}}\right) \left(1 + Q^{n_{0}/2^{i-1}}\right) \dots \left(1 + Q^{n_{0}/2}\right). \end{split}$$

This formula is general in the following sense: where if we replace i by 0 we recover (2.11) and by 1 we recover (2.12) etc....

Take $i_0 \cong +\infty$ such that $\frac{n_0}{2^{i_0}} \ge 2$. The formula (2.13) is formed by i_0+2 terms where each term is a product of $i_0 + 2$ nonzero factors of which each is a multiple of 2. This because on the one hand the integers $V_{n_0/2^j}$ $(0 \le j \le i_0)$ appearing in the formula is odd and, according to lemme 4, different of ± 1 following the fact that V_2 is different from these values. On the other hand Q is odd different of ± 1 . Then in (2.13), we can put 2^{i_0+2} as a common factor between terms constituting $V_{2n_0} + 1$. From this

$$V_n + 1 = V_{2n_0} + 1 = 2^{t_1} \cdot 2^{t_2} \cdot t$$

where t_1 and t_2 are two unlimited positive integers of which the sum is $i_0 + 2$ and t is an integer.

Références

[1] A. Boudaoud, La conjecture de Dickson et classes particulières d'entiers, Annales Mathématiques Blaise Pascal 13, 103-109 (2006).

[2] F. Diener et G. Reeb, *Analyse non standard*, Hermann, éditeurs des Sciences et des Arts. 1989.

[3] E. Nelson, Internal set theory: A new approach to non standard analysis, bull. Amer. Math. Soc. 83(1977) 1165-1198.

[4] Paulo Ribenboim, Nombres premiers: mystères et records, PUF, 1994, page 214.

[5] Paulo Ribenboim, *The Little Book of Big Primes*, Springer-Verlag (1991).

Département de Mathématiques, Université de M'sila, Algérie E-mail address: boudaoudab@yahoo.fr