
ON THE TERMS OF UNLIMITED RANK OF LUCAS
SEQUENCES

ABDELMADJID BOUDAOUD

Abstract. Let P , Q be nonzero integers such that D = P 2− 4Q
is different to zero. The sequences of integers defined by½

Un = PUn−1 −QUn−2 , U0 = 0 U1 = 1
Vn = PVn−1 −QVn−2 , V0 = 2 V1 = P .

are called the Lucas sequences associated to the pair (P,Q) [1,5].
In this paper we prove the following result:

Theorem. If P , Q are such that D is strictly positive. Then for
each unlimited n, each of integers Un and Vn is, to a limited integer
near, product of two unlimited integers.

1. Introduction & Rappel

This work is in the frame of the non standard analysis ([2, 3]). In [1]
we had asked: Is every unlimited integer equal to the sum of a limited
integer and a product of two unlimited integers ? i.e

Unlimited = s tan dard+ Unlimited× Unlimited

We had provided in this reference some examples affirming this ques-
tion.

These examples are as follows [1]

Example 1. Definition. A pseudoprime (in base 2), also called a
Poulet number, is a composite odd number n such that

2n−1 = 1 (mod n) .

Then. Any unlimited pseudoprime n (in base 2) is the product of two
unlimited natural numbers, i.e.
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n = ω1.ω2

where ω1 ∼= +∞ , ω2 ∼= +∞.

Let a ≥ 2 be a natural number.

Example 2. Definition. A composite integer n > a that verifies

an−1 = 1 (mod n) .

is called an a-pseudoprime.
Then. Let a ≥ 2 be a standard integer. Any unlimited a-pseudoprime
n is the product of two unlimited natural numbers, i.e.

n = ω1.ω2

where ω1 ∼= +∞ , ω2 ∼= +∞.

Let a ≥ 2 be a standard natural number.

Example 3. In the base a any unlimited Euler pseudoprime n (resp.
strong pseudoprime) is the product of two unlimited natural numbers,
i.e.

n = ω1.ω2

where ω1 ∼= +∞ , ω2 ∼= +∞.

Example 4. Definition. A composite integer n that verifies an−1 =
1 (mod n) for every integer a, 1 < a < n, such that a is relatively
prime to n, is called a Carmichael number.
Then. Any unlimited Carmichael number n is the product of two
unlimited natural numbers, i.e.

n = ω1.ω2

where ω1 ∼= +∞ , ω2 ∼= +∞.

Example 5. If exists an infinity of even perfect number ( n is called
a perfect number if σ (n) = 2n ), then we have: Any unlimited even
perfect number n is the product of two unlimited natural numbers, i.e.

n = ω1.ω2
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where ω1 ∼= +∞ , ω2 ∼= +∞ .

Example 6. Definition. Let n be a natural number. If σ (n) = 2 n−1
then n is called almost perfect.
Then. Any unlimited almost perfect number n is the product of two
unlimited natural numbers, i.e.

n = ω1.ω2

where ω1 ∼= +∞ , ω2 ∼= +∞ .

In this work we present another example. Let’s start with a small
preview on Lucas sequences associated to a pair of integers [4, 5]:
Let P , Q be nonzero integers. Consider the polynomial p (x) = x2 −
Px+Q; its discriminant is D = P 2 − 4Q and the roots are

(1.1) α =
P +
√
D

2
, β =

P −
√
D

2
.

Suppose that P and Q are such that D is different of zero. The se-
quences of integers

(1.2)

⎧⎨⎩ Un (P,Q) =
αn − βn

α− β
, U0 (P,Q) = 0 U1 (P,Q) = 1

Vn (P,Q) = αn + βn , V0 (P,Q) = 2 V1 (P,Q) = P

are called the Lucas sequences associated to the pair (P,Q). We will
note by Un (resp. Vn ) the element Un (P,Q) (resp. Vn (P,Q)).
It is demonstrated that for n ≥ 2 :

(1.3)
Un = PUn−1 −QUn−2 , U0 = 0 U1 = 1
Vn = PVn−1 −QVn−2 , V0 = 2 V1 = P .

In the particular case (P,Q) = (1,−1), the sequence (Un)n≥0 begin-
ning as follows 0 1 1 2 3 5 8 13 ... was first considered by Fibonacci;
for the same values the sequence of Lucas numbers (Vn)n≥0 which is
the companion sequence of Fibonacci numbers begins as follows: 2 1
3 4 7 11 18 ... .
Here are some results that are known [1, 5] :

(1.4) V2n = (Vn)
2 − 2Qn.

Let p be a prime integer, then
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(1.5)

⎧⎨⎩ Up =

µ
D

p

¶
Mod (p) : pour p ≥ 3

Vp = P Mod (p) : pour p ≥ 2

Where
µ
D

p

¶
is the Legendre symbol that is, according to the relation

between p and D, one of the values −1, 0, +1. In addition if n, k ≥ 1,
then

(1.6) Un | Unk, Vn | Vnk if k is odd.

Moreover

(1.7)
½

Un (−P,Q) = (−1)n−1 Un (P,Q)
Vn (−P,Q) = (−1)n Vn (P,Q) .

Fermat’s Little Theorem. If p is a prime number and if a is an
integer, then

(1.8) ap ≡ a [p] .

In particular, if p does not divide a then ap−1 ≡ 1 [p].
External recurrence principle. For all internal or external formula
F (n) we have ([2]):

(1.9)
£
F (0) and ∀stn (F (n) =⇒ F (n+ 1))

¤
=⇒ ∀stn F (n)

Notations. Let x, y and a be real numbers (integers or non)
1◦) x ∼= 0 ( resp. x ∼= +∞) signifies that x is an infinitesimal ( resp. x is
a positive unlimited). We have an analogous significance for x ∼= −∞.
2◦) We say that x is equivalent to y if x− y ∼= 0.
3◦) x À a signifies that x is not equivalent to a.
4◦) We say that x is appreciable if it is not an infinitesimal nor an
unlimited.
5◦) The inequalities x >∼=

y (resp. x >
À
y) mean that x is strictly superior

and equivalent to y (resp. that x is superior and is not equivalent to
y). We have an analogous significance for <∼=

and <
À
.
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2. Main result

Now the example of which I spoke before is formulated by the fol-
lowing result.

Theorem. If P , Q are such that D > 0. Then for each unlimited n,
each of integers Un and Vn is, to a limited integer near, product of two
unlimited integers.

Let P and Q be such that D > 0 and let n ∼= +∞. Put λ = P√
D
.

To prove this result, we will have need to the following lemmas.

Lemma 1.
10) α 6= β , Max (|α| , |β|) >

À
1 and

(2.1)
β

α
=

λ− 1
λ+ 1

,
α

β
=

λ+ 1

λ− 1 .

20) If P > 0 then:

i) |α| > |β|, ii) β

α
<∼=
1 ⇐⇒ λ ∼= +∞, iii) β

α
>∼=
−1 ⇐⇒ λ >∼=

0 and

iv)
β

α
À ±1 if and only if λ is appreciable positive.

30) If P < 0 then:
i) |α| < |β|, ii) α

β
<∼=
1 ⇐⇒ λ ∼= −∞, iii) α

β
>∼=
−1 ⇐⇒ λ <∼=

0 and

iv)
α

β
À ±1 if and only if λ is appreciable negative.

Proof. 10) Because α =
P +
√
D

2
and β =

P −
√
D

2
we have α 6= β.

Let’s study, according to the following cases, the different values of α
and β
i) P > 1: in this case α >

À
1.

ii) P = 1: In this case Q must be strictly negative and therefore α >
À
1.

iii) P = −1: In this case Q must be strictly negative and therefore
|β| >

À
1.

iv) P < −1: In this case |β| >
À
1.

Therefore:
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Max (|α| , |β|) >
À
1.

By (1.1),
β

α
=

λ− 1
λ+ 1

and
α

β
=

λ+ 1

λ− 1 .
20) If P > 0 then it is immediate that |α| > |β|. Furthermore, λ > 0

and the rest of the proof is legible on the graph of
β

α
(λ) =

λ− 1
λ+ 1

in

the intervalle [0,+∞[ where one sees the growth of this function of −1
to +1.
30) This is similar to 2◦). ¤

Remark. By (1.7), we make proofs of the four following lemmas
only when P > 0. In this case α is positive and, according to lemma

1, α > |β|; consequently by (1.2) Ui = αi−1

Ã
1− (β /α)i

1− (β /α)

!
> 0,

Vi = αi

Ã
1 +

µ
β

α

¶i
!

> 0 for i ≥ 1.

The following lemma (lemma 2) shows how the values of |Un| and
|Vn| increase depending on n

Lemma 2. Each of |Un| and |Vn| is in the form of ω.n where ω is an
unlimited.

Proof. By (1.2),

(2.2)

⎧⎪⎪⎨⎪⎪⎩
Un = αn−1

µ
1− (β /α)n

1− (β /α)

¶
Vn = αn

µ
1 +

µ
β

α

¶n¶
.

Via the discution of possible values of the report
β

α
one completes the

proof of the proposal in question, where
β

α
= 1 − φ with φ >∼=

0 or

β

α
= −1 + φ with φ >∼=

0 or
β

α
À ±1.

The following lemma (lemma 3) concerning the report of two terms
of Un and the report of two terms of Vn
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Lemma 3. If n of the form n1n2 with n1 > 1 and n2 > 1. Then
|Un1n2 |
|Un1 |

and
|Vn1n2|
|Vn1|

are unlimited.

Proof. Seen that n ∼= +∞ at least n1 or n2 is an unlimited. By (1.2),

(2.3)

⎧⎪⎪⎨⎪⎪⎩
Un1n2

Un1

=
αn1n2

αn1

µ
1− (β /α)n1n2
1− (β /α)n1

¶
Vn1n2
Vn1

=
αn1n2

αn1

µ
1 + (β /α)n1n2

1 + (β /α)n1

¶
.

Also here the proof of this lemma is done through the discution of the

possible values of the report
β

α
which are

β

α
= 1 − φ with φ >∼=

0 or

β

α
= −1 + φ with φ >∼=

0 or
β

α
À ±1.

Now we demonstrate that the |Ui| and |Vi | increase with i.

Lemma 4. For every i ≥ 2 |Ui|< |Ui+1 | & |Vi |< |Vi+1|

Finally

Lemma 5. If (P,Q) is not standard then
|V2|
|V1|
∼= +∞.

Demonstration of the theorem
Case of Un

We distinguish two cases

I) n premier. By (1.5) Un =

µ
D

n

¶
Mod (n). Hence Un = ±1 + kn

. Since, according to lemma 2, |Un| is in the form of ωn with ω is an
unlimited real, the integer k must be unlimited. This finishes the proof
for this case.

II) n = n1n2 where n1 ≥ n2 > 1. By (1.6)
Un = CUn1 where C is an integer which is, according to lemma 3, un-
limited. On the other hand, seen that n1 ∼= +∞ Un1is also, according
to lemma 4, unlimited. So the proof is finished for the case of Un.
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Case of Vn

We distinguish four cases

I) n = p ∼= +∞ prime. we have two cases to consider

a) P limited. By (1.5), Vp = P Mod(p) i.e.Vp = P + kp. Since P is
limited, k must be, according to lemma 2, unlimited.

b) P unlimited. In this case by (1.6), V1 | Vp i.e Vp = V1N . By lemma
4, we have

|V2| < |V3| < ... < |Vn| < ... .

By lemma 5,
|V2|
|V1|
∼= +∞. Then |V2||V1|

<
|Vp|
|V1|

and therefore
|Vp|
|V1|
∼= +∞.

This signifies that N is unlimited and finish the demonstration for this
case because V1 = P and |P | ∼= +∞.

II) n = 2sp where s ≥ 1 limited, p ∼= +∞ prime

a) P and Q are all both limited. Put for every s ≥ 1 :
A (s) ≡ ¿ For n = 2sp : Vn = g1 + g2p where g1(resp. g2) is a limited
(resp. is an unlimited) integer À.
We have A (1); indeed:
Let n = 2p. By (1.4)

Vn = V2p
= (Vp)

2 − 2Qp .

The application of (1.5) and (1.8) leads to:

V2p = (P + kp)2 − 2 (Q+ lp)
= P 2 − 2Q+ tp .

Put g1 = P 2 − 2Q and g2 = t. Then g1 is limited and, according to
lemma 2, g2 is unlimited. Hence A (1). Let s ≥ 1 be a limited integer
and suppose A (s). Let’s demonstrate A (s+ 1):

V2s+1p = V2(2sp)
= (V2sp)

2 − 2Q2sp.

Because we have A(s) and by (1.8) we deduct

V2s+1.p = (g1 + g2p)
2 − 2

¡
Q2s + fp

¢
.
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Hence

V2s+1.p = g21 − 2Q2s + fp.

Seen that g1, Q and s are limited, the integer f , according to lemma
2, must be unlimited and this means that we have A(s+ 1). Then by
(1.9), ∀sts ≥ 1 A (s).

b) P or Q is unlimited. In this case by (1.6) V2s | V2sp, i.e. V2sp = V2s.c.
By lemma 3, c is an unlimited integer. By lemma 5 |V2| ∼= +∞ and
by lemma 4 |V2| < |V3| < |V4| < .... Hence V2s is an unlimited. this
finishes the demonstration for this case.

III) n = n1n2 where one of n1,n2 is odd greater or equal to 3,
the other is unlimited.
Suppose n1 ≥ 3 odd and n2 ∼= +∞. then

Vn1n2 = Vn2C

where by (1.6) C is an integer which, according to lemma 3, is unlim-
ited. since n2 ∼= +∞, then, by lemma 4,Vn2 is unlimited. This finishes
the proof for this case.

IV) n = 2ω+1 with ω ∼= +∞

a) Q is even (Q = 2t, t ∈ Z∗). We have Vn = V2ω+1 = (V2ω)
2− 2 (Q)2ω .

By considering 2ω = 2.2ω−1 and by applying (1.4), we obtain V2ω =
V2.2ω−1 = V 2

2ω−1 − 2Q2ω−1. Hence, by replacing V2ω by its value gotten
in this last equality,

(2.4)
Vn = V2ω+1 =

³
V 2
2ω−1 − 2Q2ω−1

´2
− 2Q2ω

= (V2ω−1)
4Mod

³
Q2ω−1

´
.

Similarly, by considering V2ω−1 = V2.2ω−2 , we get

(2.5) Vn = V2ω+1 = (V2ω−2)
8Mod

³
Q2ω−2

´
.

Thus if f ∼= +∞ is an integer such that ω− f ∼= +∞ then the process
that has permitted to write Vn according to formulas (2.4) and (2.5)
will, after successive iterations, permit to write
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(2.6) Vn = V2ω+1 = (V2ω−f )
2f+1 Mod

³
Q2ω−f

´
.

where V2ω−f is an unlimited. Now if V2ω−f is even then

V2ω+1 = 2
γ.t

where γ = min
¡
2f+1,2ω−f

¢
and t is integer. This signifies that we can

put V2ω+1 in the form of 2γ1.2γ2 .t where γ1 and γ2 are two unlimited
integers of which the sum is γ.
If V2ω−f is odd, then
V2ω+1 − 1 =

h
(V2ω−f )

2f+1 − 1
i
+ kQ2ω−f . Since (V2ω−f )

2f+1 − 1 is a
difference of two squares, then

V2ω+1 − 1 =
h
(V2ω−f )

2f − 1
i h
(V2ω−f )

2f + 1
i
+ kQ2ω−f .

Also (V2ω−f )
2f − 1 is a difference of two squares, consequently

V2ω+1−1 =
h
(V2ω−f )

2f−1 − 1
i h
(V2ω−f )

2f−1 + 1
i h
(V2ω−f )

2f + 1
i
+kQ2ω−f .

By this way we can write V2ω+1 − 1 as follows

V2ω+1 − 1 =
h
(V2ω−f )

2f−t − 1
i h
(V2ω−f )

2f−t + 1
i h
(V2ω−f )

2f−(t−1) + 1
i
+ ...

.......+
h
(V2ω−f )

2f−1 + 1
i h
(V2ω−f )

2f + 1
i
+ kQ2ω−f

where t is an integer verifying 1 ≤ t < f .
Let’s take t0 ∼= +∞ such that t0 < f and t0 + 2 < 2ω−f . This

is possible, indeed: since that Min
¡
f, 2ω−f

¢ ∼= +∞ therefore we can
choose an integer s ∼= +∞ and s ≤ Min

¡
f, 2ω−f

¢
. Let’s take t0 =

s − 3. seen that Q2ω−f contains the factor 22
ω−f

and the producth
(V2ω−f )

2f−t0 − 1
i t0Y
i=0

h
(V2ω−f )

2f−i + 1
i
contains 2k where k ≥ t0 + 2,

then

V2ω+1 − 1 = 2t0+2N
where N is an integer. Therefore

Vn − 1 = V2ω+1 − 1 = 2t12t2N .
where t1 and t2 are two unlimited positive integers of which the sum is
t0 + 2.
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b) Q is odd (Q = 2t +1, t ∈ Z).
Put no = 2ω. If Q = ±1, then by (1.4)

Vn = V2n0 = (Vn0)
2 −2Qn0

= (Vn0)
2 − 2

because no is even. This end the proof because Vn0 is, by lemma 2,
an unlimited. Therefore we suppose Q 6= ±1 and we distinguish the
following cases

1◦) P is even. In this case, by induction, we show easily that the
elements Vn (n ≥ 0) are even. Moreover V2 6= 2, because otherwise
P 2 − 2Q = 2 and therefore D = P 2 − 4Q = 2 − 2Q. Hence the fact
that D > 0 means 2− 2Q > 0 i.e. Q < 0 (Q ∈ Z∗). This contradicts
P 2 − 2Q = 2. By the same way we show that V2 6= −2.

Now we demonstrate that Vn− 2 equal to the product of two unlim-
ited integers. Indeed by (1.4)

Vn = V2ω+1 = V2n0
= V 2

n0
− 2Qn0 .

Then
V2n0 − 2 = V 2

n0
− 4− 2Qn0 + 2

= (Vn0 − 2) . (Vn0 + 2)− 2 (Qn0 − 1) .
Seen that Qn0 − 1 is the difference between two squares,

(2.7) V2n0 − 2 = (Vn0 − 2) (Vn0 + 2)− 2
¡
Qn0/2 − 1

¢ ¡
Qn0/2 + 1

¢
.

Because n0 is divisible by 2, the application of (1.4) to Vn0 − 2 permit
to write Vn0 − 2 = V2(n0/2) − 2 = V 2

(n0/2)
− 4 − 2

¡
Qn0/2 − 1

¢
. Then

from this and by (2.7) we have

V2n0 −2 =
h
V 2
(n0/2)

− 4− 2
¡
Qn0/2 − 1

¢i
(Vn0 + 2)−2

¡
Qn0/2 − 1

¢ ¡
Qn0/2 + 1

¢
.

Seen that V 2
(n0/2)

− 4 and
¡
Qn0/2 − 1

¢
are differences between squares,

it ensues

(2.8)
V2n0 − 2 =

¡
V(n0/2) − 2

¢ ¡
V(n0/2) + 2

¢
(Vn0 + 2)

−2
¡
Qn0/4 − 1

¢ ¡
Qn0/4 + 1

¢
(Vn0 + 2)

−2
¡
Qn0/4 − 1

¢ ¡
Qn0/4 + 1

¢ ¡
Qn0/2 + 1

¢
.

Because n0/2 is divisible by 2, the application of (1.4) to Vn0/2 − 2
permit to write
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V(n0/2) − 2 = V 2
(n0/4)

− 2Qn0/4 − 4 + 2
=

³
V 2
(n0/4)

− 4
´
− 2

¡
Qn0/4 − 1

¢
.

By replacing V(n0/2)−2 by
³
V 2
(n0/4)

− 4
´
−2

¡
Qn0/4 − 1

¢
and by observ-

ing that V 2
(n0/4)

− 4 and Qn0/4 − 1 are differences between squares, we
get

(2.9)
V2n0 − 2 =

¡
V(n0/4) − 2

¢ ¡
V(n0/4) + 2

¢ ¡
V(n0/2) + 2

¢
(Vn0 + 2)

−2
¡
Qn0/8 − 1

¢ ¡
Qn0/8 + 1

¢ ¡
V(n0/2) + 2

¢
(Vn0 + 2)

−2
¡
Qn0/8 − 1

¢ ¡
Qn0/8 + 1

¢ ¡
Qn0/4 + 1

¢
(Vn0 + 2)

−2
¡
Qn0/8 − 1

¢ ¡
Qn0/8 + 1

¢ ¡
Qn0/4 + 1

¢ ¡
Qn0/2 + 1

¢
.

So the process consisting, every time to apply (1.4) and to put the
difference between two squares as a product of two factors, leads to the
following general formulate
Vn − 2 = V2n0 − 2 =¡
Vn0/2i−1 − 2

¢ ¡
Vn0/2i−1 + 2

¢
...
¡
Vn0/2 + 2

¢
(Vn0 + 2)

−2
³
Qn0/2i − 1

´³
Qn0/2i + 1

´ ¡
Vn0/2i−2 + 2

¢
...
¡
Vn0/2 + 2

¢
(Vn0 + 2)

−2
³
Qn0/2i − 1

´³
Qn0/2i + 1

´³
Qn0/2i−1 + 1

´ ¡
Vn0/2i−3 + 2

¢
.. (Vn0 + 2)

−2
³
Qn0/2i − 1

´³
Qn0/2i + 1

´³
Qn0/2i−1 + 1

´³
Qn0/2i−2 + 1

´ ¡
Vn0/2i−4 + 2

¢
... (Vn0 + 2)
..................................................
−2
³
Qn0/2i − 1

´³
Qn0/2i + 1

´³
Qn0/2i−1 + 1

´
...
³
Qn0/22 + 1

´
(Vn0 + 2)

−2
³
Qn0/2i − 1

´³
Qn0/2i + 1

´³
Qn0/2i−1 + 1

´
...
³
Qn0/22 + 1

´ ¡
Qn0/2 + 1

¢
.

(2.10)

This formula is general in the following sense: If we replace i by 1 we
recover (2.7) and by 2 we recover (2.8) etc... .
Take i0 ∼= +∞ such that

n0
2i0
≥ 1. The formula (2.10) is formed by

i0 + 1 terms where each term is a product of i0 + 1 nonzero factors
of which each is a multiple of 2. This because on the one hand the
integers Vn0/2j (0 ≤ j ≤ i0 − 1) appearing in the formula is even and,
according to lemme 4, different of ±2 following the fact that V2 is
different from these values. On the other hand Q is odd different of
±1. Then in (2.10), we can put 2i0+1 as a common factor between
terms constituting V2n0 − 2. From this



13

Vn − 2 = V2n0 − 2 = 2t12t2t
where t1 and t2 are two unlimited positive integers of which the sum is
i0 + 1 and t is an integer.

2◦) P is odd. In this case we demonstrate by induction that V2n (n ≥ 1)
is odd; indeed: V21 = V2 = P 2 − 2Q this signifies that V2 is odd. Sup-
pose thatV2n, n ≥ 1 is odd. V2n+1 = (V2n)2 − 2Q2n then V2n+1 is also
odd. On the other handV2 6= 1 because otherwise P 2 − 2Q = 1, then
the fact that D = P 2 − 4Q = 1 − 2Q > 0 signifies Q < 0 and this
contradicts P 2 − 2Q = 1. By the same way V2 6= −1.

By (1.4)

Vn = V2ω+1 = V2n0
= V 2

n0
− 2Qn0 .

Then V2ω+1 + 1 = V 2
n0
− 1 + 2− 2Qn0

V2ω+1 + 1 = V 2
n0
− 1 + 2− 2Qn0

= (Vn0 − 1) (Vn0 + 1) + 2 (1−Qn0)

So

(2.11)
V2ω+1 + 1 = (Vn0 + 1) (Vn0 − 1)

+2
¡
1−Qn0/2

¢ ¡
1 +Qn0/2

¢
.

Let’s calculate, with (1.4),Vn0 + 1:
Vn0 + 1 = V2(n0/2) + 1

=
h
V 2
(n0/2)

− 1 + 2− 2Q(n0/2)
i

=
£¡
V(n0/2) − 1

¢ ¡
V(n0/2) + 1

¢
+ 2

¡
1−Q(n0/2)

¢¤
.

Now by replacing in (2.11) by the value of Vn0 + 1 we get
V2ω+1 + 1 =

£¡
V(n0/2) − 1

¢ ¡
V(n0/2) + 1

¢
+ 2

¡
1−Q(n0/2)

¢¤
(Vn0 − 1)

+2
¡
1−Qn0/2

¢ ¡
1 +Qn0/2

¢
=

¡
V(n0/2) − 1

¢ ¡
V(n0/2) + 1

¢
(Vn0 − 1)

+2
¡
1−Q(n0/2)

¢
(Vn0 − 1)

+2
¡
1−Q(n0/2)

¢ ¡
1 +Q(n0/2)

¢
.

Then

(2.12)
V2ω+1 + 1 =

¡
V(n0/2) − 1

¢ ¡
V(n0/2) + 1

¢
(Vn0 − 1)

+2
¡
1−Q(n0/4)

¢ ¡
1 +Q(n0/4)

¢
(Vn0 − 1)

+2
¡
1−Q(n0/4)

¢ ¡
1 +Q(n0/4)

¢ ¡
1 +Q(n0/2)

¢
.

So for i ≥ 0, the general formulates is
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Vn + 1 = V2ω+1 + 1 =¡
Vn0/2i + 1

¢ ¡
Vn0/2i − 1

¢ ¡
Vn0/2i−1 − 1

¢
...
¡
Vn0/2 − 1

¢
(Vn0 − 1)

+2
³
1−Qn0/2i+1

´³
1 +Qn0/2i+1

´ ¡
Vn0/2i−1 − 1

¢ ¡
Vn0/2i−2 − 1

¢
... (Vn0 − 1)

+2
³
1−Qn0/2i+1

´³
1 +Qn0/2i+1

´³
1 +Qn0/2i

´ ¡
Vn0/2i−2 − 1

¢
... (Vn0 − 1)

+2
³
1−Q

n0
2i+1

´³
1 +Q

n0
2i+1

´³
1 +Q

n0
2i

´³
1 +Q

n0
2i−1
´³

V n0
2i−3
− 1
´
.. (Vn0 − 1)

+....................................

+2
³
1−Qn0/2i+1

´³
1 +Qn0/2i+1

´³
1 +Qn0/2i

´³
1 +Qn0/2i−1

´
...
³
1 +Qn0/22

´
(Vn0 − 1)
+2
³
1−Qn0/2i+1

´³
1 +Qn0/2i+1

´³
1 +Qn0/2i

´³
1 +Qn0/2i−1

´
...
¡
1 +Qn0/2

¢
.

(2.13)

This formula is general in the following sense: where if we replace i by
0 we recover (2.11) and by 1 we recover (2.12) etc... .

Take i0 ∼= +∞ such that
n0
2i0
≥ 2. The formula (2.13) is formed by i0+2

terms where each term is a product of i0 + 2 nonzero factors of which
each is a multiple of 2. This because on the one hand the integers Vn0/2j
(0 ≤ j ≤ i0) appearing in the formula is odd and, according to lemme 4,
different of ±1 following the fact that V2 is different from these values.
On the other hand Q is odd different of ±1. Then in (2.13), we can put
2i0+2 as a common factor between terms constituting V2n0 + 1. From
this

Vn + 1 = V2n0 + 1 = 2
t1 .2t2.t

where t1 and t2 are two unlimited positive integers of which the sum is
i0 + 2 and t is an integer.¤
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