ON THE TERMS OF UNLIMITED RANK OF LUCAS
SEQUENCES

ABDELMADJID BOUDAOUD

ABSTRACT. Let P, ) be nonzero integers such that D = P? — 4Q
is different to zero. The sequences of integers defined by

Un = PUn—lfQUn—Q s UOZO Up=1

Voo = PVp1-— QVn72 ’ Ww=2 Vi=P.
are called the Lucas sequences associated to the pair (P, Q) [1,5].
In this paper we prove the following result:

Theorem. If P, Q are such that D is strictly positive. Then for
each unlimited n, each of integers U,, and V,, is, to a limited integer
near, product of two unlimited integers.

1. INTRODUCTION & RAPPEL

This work is in the frame of the non standard analysis ([2, 3]). In [1]
we had asked: Is every unlimited integer equal to the sum of a limited
integer and a product of two unlimited integers 7 i.e

Unlimited = standard + Unlimaited x Unlimited

We had provided in this reference some examples affirming this ques-
tion.

These examples are as follows [1]

Example 1. Definition. A pseudoprime (in base 2), also called a
Poulet number, is a composite odd number n such that

2! =1 (mod n).

Then. Any unlimited pseudoprime n (in base 2) is the product of two
unlimited natural numbers, i.e.
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n=wi.wWs

where wy = 400 , wy = +o00.
Let a > 2 be a natural number.

Example 2. Definition. A composite integer n > a that verifies

a" ' =1(mod n) .

is called an a-pseudoprime.
Then. Let a > 2 be a standard integer. Any unlimited a-pseudoprime
n is the product of two unlimited natural numbers, i.e.

n = wi.wWs

where w; = 400, wy = 4.
Let a > 2 be a standard natural number.

Example 3. In the base a any unlimited Euler pseudoprime n (resp.
strong pseudoprime) is the product of two unlimited natural numbers,
i.e.

n=wi.wy

where w; = 400 , wy = +o00.

Example 4. Definition. A composite integer n that verifies a" ! =
1 (mod n) for every integer a, 1 < a < n, such that a is relatively
prime to n, is called a Carmichael number.

Then. Any unlimited Carmichael number n is the product of two
unlimited natural numbers, i.e.

n —=wi.wWs
where w; & 400, wy = 4.
Example 5. If exists an infinity of even perfect number ( n is called

a perfect number if o (n) = 2n ), then we have: Any unlimited even
perfect number n is the product of two unlimited natural numbers, i.e.

n=wi.wsy



where wy = 400, wy = 400 .

Example 6. Definition. Let n be a natural number. If 0 (n) =2n—1
then n is called almost perfect.
Then. Any unlimited almost perfect number n is the product of two
unlimited natural numbers, i.e.

n = wi.wWs

where wy = 400, wy = 400 .

In this work we present another example. Let’s start with a small
preview on Lucas sequences associated to a pair of integers [4, 5]:
Let P, @ be nonzero integers. Consider the polynomial p (z) = 2? —
Pz + Q; its discriminant is D = P? — 4(@Q and the roots are

(1.1) o= P+‘/_,5— P_2‘/E.

Suppose that P and ) are such that D is different of zero. The se-
quences of integers

an_ﬁn
12 | BPQ = ——F . hPQ=0 0i(PQ =1

Va(PQ) = oa"+8" , W(PQ)=2 Vi(PQ)=P

are called the Lucas sequences associated to the pair (P, Q). We will
note by U,, (resp. V,, ) the element U, (P, Q) (resp. V,, (P, Q)).
It is demonstrated that for n > 2 :

Un = PUnfl_QUn72 ) UvOZ0 Ulzl

(13) Vi = PVyy—QVis . Vo=2 Vi=P.

In the particular case (P, Q) = (1, —1), the sequence (U,), -, begin-
ning as follows 0 11 2 3 5 8 13 ... was first considered by Fibonacci;
for the same values the sequence of Lucas numbers (V},),., which is
the companion sequence of Fibonacci numbers begins as follows: 2 1
347 11 18 ...

Here are some results that are known [1, 5] :

(1.4) Vo = (V)? —2Q™
Let p be a prime integer, then
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D
(1.5) Up:(;) Mod (p) : pour p >3
=P Mod(p) : pourp =2

D
Where | — | is the Legendre symbol that is, according to the relation

p
between p and D, one of the values —1, 0, +1. In addition if n, £ > 1,
then

(1.6) Un | Uk, Vi | Vg if k is odd.

Moreover

(1 7) { Un (_Pa Q) = (_1)n71 Un (P’ Q)
' Vo (—P,Q) = (-1)"V,(P,Q) .

Fermat’s Little Theorem. If p is a prime number and if a is an
integer, then

(1.8) a’? =alp|.

In particular, if p does not divide a then a?~! = 1 [p].
External recurrence principle. For all internal or external formula
F (n) we have ([2]):

(1.9)  [F(0) and V¥n (F(n)= F(n+1))] = ¥"'n F(n)

Notations. Let z, y and a be real numbers (integers or non)

1°) 2 =2 0 ( resp. & = +00) signifies that x is an infinitesimal ( resp. z is

a positive unlimited). We have an analogous significance for x = —oo.

2°) We say that z is equivalent to y if x — y = 0.

3°) x 2 a signifies that = is not equivalent to a.

4°) We say that = is appreciable if it is not an infinitesimal nor an

unlimited.

5°) The inequalities x > y (resp. ¥ > y) mean that x is strictly superior
= Z

and equivalent to y (resp. that x is superior and is not equivalent to

y). We have an analogous significance for < and <.
> 2



2. MAIN RESULT
Now the example of which I spoke before is formulated by the fol-

lowing result.

Theorem. If P, Q) are such that D > 0. Then for each unlimited n,
each of integers U, and V,, is, to a limited integer near, product of two
unlimited integers.

P
Let P and @ be such that D > 0 and let n = +o00. Put A = Wik

To prove this result, we will have need to the following lemmas.

Lemma 1.
19) a# 3, Maz(|a],|8]) > 1 and
Z

(2.1)

el
>

I
—_

20) If P >0 then:
i)\a\>]ﬁ|,ii)é<1 = )\%+oo,iii)é>—1 < A >0 and
o = o S

0y s 2 +1 if and only if ) is appreciable positive.
a

3%) If P <0 then:
i) |a| < |1, iz’)%gl = \= —o0, m’)%z—l < A<0and
i) % 2 +1 if and only if A is appreciable negative.
P D P—~D
+—\/_ andﬁ:waehavea#ﬁ.

Let’s study, according to the following cases, the different values of «
and (3
i) P > 1: in this case a > 1.

Proof. 1°) Because o =

Z
ii) P = 1: In this case () must be strictly negative and therefore o > 1.
Z
iii) P = —1: In this case () must be strictly negative and therefore
15 > L

iv) P < —1: In this case || > 1.
&z

Therefore:
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Maz (|, 18]) > 1.
Z

B A—1 a  A+1
By(l.l),a—)\+1and6—)\_1.

20) If P > 0 then it is immediate that |«| > |3]. Furthermore, A > 0
—-1

B

the intervalle [0, +o0o[ where one sees the growth of this function of —1

to +1.

3°) This is similar to 2°). O

and the rest of the proof is legible on the graph of g (\)

Remark. By (1.7), we make proofs of the four following lemmas
only when P > 0. In this case « is positive and, according to lemma

1, a > |B]; consequently by (1.2) U; = o't (M> > 0,

| 1—(8/a)
V; =a' <1+<§>) >0 fori>1.

The following lemma (lemma 2) shows how the values of |U,| and
|V,,| increase depending on n

Lemma 2. Fach of |Uy,| and |V,| is in the form of w.n where w is an
unlimited.

Proof. By (1.2),

- ()

> i - a1+ (2)).

o
Via the discution of possible values of the report g one completes the
proof of the proposal in question, where g = 1— ¢ with ¢ > 0 or
gz—l—i-qbwithqﬁz()org;’_ﬁ:tl.

The following lemma (lemma 3) concerning the report of two terms
of U,, and the report of two terms of V,,
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Lemma 3. If n of the form niny with n;y > 1 and ny > 1. Then
’Un1n2 ‘ and |Vn1n2 ’
Un, | Vol

Proof. Seen that n = 400 at least n; or ny is an unlimited. By (1.2),

are unlimited.

Unlnz o Qe 11— (6 /a)nan
U,  am Ja
(23) Vnﬂlz B Q™2 1 + 6/ 2un2
Vo,  am 14+ (8 /a)™
Also here the proof of this lemma is done through the discution of the
possible values of the report é which are é =1—¢ with ¢ > 0 or
Q e ~
p

—:—1+¢With¢>00ré9_f:|:1.
a = a
Now we demonstrate that the |U;| and | V;| increase with .

Lemma 4. For every i > 2 |U;| <|Uiss| & | Vi| <|Vig4]

Finally
Lemma 5. If (P,Q) is not standard then H = +oo
1
Demonstration of the theorem
Case of U,

We distinguish two cases

D
I) n premier. By (1.5) U, = (ﬁ) Mod (n). Hence U, = +1 + kn

. Since, according to lemma 2, |U,| is in the form of wn with w is an
unlimited real, the integer k£ must be unlimited. This finishes the proof
for this case.

IT) n = nyny where n; > ny > 1. By (1.6)

U, = CU,, where C is an integer which is, according to lemma 3, un-
limited. On the other hand, seen that ny = 400 U,,is also, according
to lemma 4, unlimited. So the proof is finished for the case of U,.
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Case of V,,
We distinguish four cases

I) n = p = +o0 prime. we have two cases to consider

a) P limited. By (1.5), V, = P Mod(p) i.e.V,, = P + kp. Since P is
limited, & must be, according to lemma 2, unlimited.

b) P unlimited. In this case by (1.6), Vi | V, i.e V, = V1 N. By lemma
4, we have

Vol < V5| < . < [Viu| < ...
1Val Val Vil V|

By lemma 5, 2 +00. Then — < — and therefore — = +o0.
’ Vil Vil = v Vi

This signifies that N is unlimited and finish the demonstration for this
case because V) = P and |P| & +oc.

IT) n = 2°p where s > 1 limited, p = +oco prime

a) P and @ are all both limited. Put for every s > 1 :

A(s) =< Forn=2% :V, =g + gop where g;(resp. go) is a limited
(resp. is an unlimited) integer >.

We have A (1); indeed:

Let n = 2p. By (1.4)

Vn - Vv2p
= () —20r.
The application of (1.5) and (1.8) leads to:
Vayy = (P+kp)* —2(Q+1p)
= P2-2Q+1p.

Put g1 = P? —2Q and g, = t. Then ¢ is limited and, according to
lemma 2, go is unlimited. Hence A (1). Let s > 1 be a limited integer
and suppose A (s). Let’s demonstrate A (s + 1):

Vastr, = Va(asp)
= (Vasp)? — 2%
Because we have A(s) and by (1.8) we deduct

Vastiy, = (g1 + g20)° — 2 (Q* + fp) -



Hence
2 2 | 7
V25+1.p = 9] — 2Q + fp.

Seen that ¢, @ and s are limited, the integer f, according to lemma
2, must be unlimited and this means that we have A(s + 1). Then by
(1.9), V¥'s > 1 A(s).

b) P or () is unlimited. In this case by (1.6) Vas | Vasp, i.e. Voo, = Vas.c.
By lemma 3, ¢ is an unlimited integer. By lemma 5 |V5| = +o0 and
by lemma 4 |V, < |V3] < |V4| < .... Hence Vas is an unlimited. this
finishes the demonstration for this case.

III) n = nyny, where one of n;,n, is odd greater or equal to 3,
the other is unlimited.
Suppose n; > 3 odd and ny = +o00. then

Viang = Vi, C

where by (1.6) C'is an integer which, according to lemma 3, is unlim-
ited. since ng = +o00, then, by lemma 4,V,,,is unlimited. This finishes
the proof for this case.

IV) n = 2¢* with w & +o00

a) Q is even (Q = 2t, t € Z*). We have V,, = Vaurr = (Va)? —2(Q)*".
By considering 2¥ = 2.2°7! and by applying (1.4), we obtain V5. =
Vagor = V21 —2Q% . Hence, by replacing Vo by its value gotten
in this last equality,

_ 2 w
—  (Var)" Mod QW*I).

Similarly, by considering Vow—1 = V5 9u—2, we get

(2.5) V, = Vaerr = (Vaooo)® Mod (QQ“”).

Thus if f = 400 is an integer such that w — f = 400 then the process
that has permitted to write V}, according to formulas (2.4) and (2.5)
will, after successive iterations, permit to write
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of+1

(2.6) Vi, = Vaurs = (Voour)? " Mod (Q2“"’f) .

where Vo.—y is an unlimited. Now if V,.-f is even then

‘/2w+1 = 271:
where v = min (2f + gw=f ) and t is integer. This signifies that we can
put Vows1 in the form of 271.272.¢ where v, and 7, are two unlimited

integers of which the sum is ~.
If Vou—s is odd, then

Vowin — 1 = [(Vzw_f)wrl - 1} + Q. Since (Vau-r)
difference of two squares, then

of+1 .
—1is a

Vgor1 — 1 = [(VW)” - 1} [(&/W)2f + 1} RO

Also (Voe- f)2f — 1 is a difference of two squares, consequently

Vgor1—1 = [(VW,«)W - 1] [(V%f)gf’l + 1] [(vgw,f)”c + 1} QY

By this way we can write Vow+1 — 1 as follows

of—(t—-1)

Vaoos = 1= [(Var)? ™ 1] [Vourn)?™ 1] [ (V)
------- Voo 1] | Voo 1) Q2

where ¢ is an integer verifying 1 <t < f.

Let’s take tq = +oo such that ¢ty < f and ¢ty + 2 < 2/, This
is possible, indeed: since that Min ( f,2v=f ) >~ +oo therefore we can
choose an integer s = 400 and s < Min (f, 2“’f). Let’s take tg =

s — 3. seen that Q> contains the factor 22°°' and the product
to

|:<‘/2w—f)2f_t0 - 1} H |:(‘/2w7f)2f_i + 1] contains 2% where k > ty + 2,

1=

+1]+...

then

Vowtr — 1 = 202N
where N is an integer. Therefore

V,—1="Vyur1 —1=20120N .
where t; and t, are two unlimited positive integers of which the sum is
to + 2.
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b) Qisodd (Q =2t +1,t € Z).
Put n, = 2¥. If Q) = £1, then by (1.4)

Vn - ‘/2710 = (Vno>2 _2Qn0
(Vn0)2 —2
because n, is even. This end the proof because V,, is, by lemma 2,
an unlimited. Therefore we suppose () # +1 and we distinguish the
following cases

1°) P is even. In this case, by induction, we show easily that the
elements V,, (n > 0) are even. Moreover Vo # 2, because otherwise
P? —2(Q) = 2 and therefore D = P? — 4(Q) = 2 — 2(). Hence the fact
that D > 0 means 2 — 2Q) > 0 ie. @ <0 (Q € Z*). This contradicts
P? —2() = 2. By the same way we show that 1, # —2.

Now we demonstrate that V,, — 2 equal to the product of two unlim-
ited integers. Indeed by (1.4)

Vn = Vv2w+1 = ‘/2710
= V2 Qe
Then
Vong —2 = V2 —4—2Qm +2

= Vg —2).(Viy +2)—2(Q™ —1).

Seen that Q" — 1 is the difference between two squares,

(27) Vo —2=(Veg = 2) (Veg +2) = 2(Q2 1) (@2 +1).

Because ng is divisible by 2, the application of (1.4) to V;,, — 2 permit

to write Vi, — 2 = Vamgz) — 2 = Vi j —4 —2(Q"/? = 1). Then

from this and by (2.7) we have

Vany =2 = [V, = 4= 2(Q"2 = 1) | (Vi +2)=2(Q" 1) (@™ +1).
Seen that V(%LO 2y~ 4 and (Q”O/ 2 _ 1) are differences between squares,

it ensues

Vang =2 = (Vioo/2) = 2) (Vinor2) +2) (Voo +2)
(28) -9 (Qn0/4 _ 1) (Qn0/4 + 1) (Vno + 2)
2 QU= 1) (@ 1) (@ + 1).

Because ng/2 is divisible by 2, the application of (1.4) to V,, /2 — 2
permit to write
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Vioy =2 = Vi, —2Qm" =442

= (W= 1) 2@ - 1).

By replacing V{;,,/2) — 2 by <V(3LO )~ 4) -2 (Q”O/ 1 1) and by observ-

ing that V(io 1) — 4 and Q™/* — 1 are differences between squares, we
get

(2.9)
o =2 = (Vo) = 2) (Vinoja) +2) (Vimos) +2) (Vi +2)
-9 (Qno/8 _ 1) (Qno/S + 1) (V(no/2) + 2) (Vno + 2)
—2(Qm/8 —1) (Q™/8 +1) (Q™/* +1) (V;, +2)
—9 (Qﬂo/g . 1) (Qno/S + 1) (Qn0/4 + 1) (Qno/Z + 1) )
So the process consisting, every time to apply (1.4) and to put the
difference between two squares as a product of two factors, leads to the
following general formulate
Vn —-2= Vv2ng —2=
(Vao2i-t = 2) (Vigjai-1 +2) oo (Vigyz + 2) (Vi + 2)

—2 (Qno/T — 1) (Qno/? + 1) (Vigj2i-z +2) oo (Vg2 +2) (Vi +2)
9 (Qno/f . 1) (Qno/f + 1) (Qno/?’l + 1) (Vi ot +2) . (Vi +2)

( . > . > (QnO/QFI +1 <Qn°/2i72 + 1> (Vn0/2i74 + 2)
.................................................. (Qno/22 . 1) I
(Q"0/22 + 1) (Qm/2 +1).

—
=~
S
_l_
\)
~—
3
N——"—— N——"——

(2.10)

This formula is general in the following sense: If we replace i by 1 we
recover (2.7) and by 2 we recover (2.8) etc... .

Take ip = 400 such that % > 1. The formula (2.10) is formed by

7o + 1 terms where each term is a product of iy + 1 nonzero factors
of which each is a multiple of 2. This because on the one hand the
integers V,,; /25 (0 < j < ip — 1) appearing in the formula is even and,
according to lemme 4, different of £2 following the fact that V5 is
different from these values. On the other hand () is odd different of
+1. Then in (2.10), we can put 2! as a common factor between
terms constituting V5,, — 2. From this
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Vi —2=Vy,, —2=212"¢
where t; and t, are two unlimited positive integers of which the sum is
1o + 1 and ¢ is an integer.

2°) P is odd. In this case we demonstrate by induction that Van (n > 1)
is odd; indeed: Vy = V5 = P? — 2Q) this 81gn1ﬁes that V5 is odd. Sup-
pose thatVon, n > 11is odd. Vons1 = (Vgn) — 2Q?%" then Va1 is also
odd. On the other handV, # 1 because otherwise P? — 2Q = 1, then
the fact that D = P? —4Q = 1 — 2Q > 0 signifies ) < 0 and this
contradicts P?2 — 2(Q) = 1. By the same way V5 # —

By (1.4)
Vn = ‘/2W+1 = ‘/2710
— v g
Then Vowt:r +1 = VnQo —14+2-2Qm
Vowt1 +1 = V50—1_|_2_2Qn0
= (V- +D)+2(1-Q™)
So
(2 11) ‘/QWH +1 = (Vno + 1) (Vno - 1)
Let’s calculate, with (1.4),V,,, + 1:
Vg 1= Vanos2) + 1

— 2 no/2
= [‘/(n0/2)_1+2_2Q(0/)

= [(Vino2) = 1) (Vingj2) +1) +2 (1= Q)]

Now by replacing in (2.11) by the value of V,, + 1 we get
Vast +1 = [(Vinoy2) = 1) (Vings2) +1) +£2 (1= QU (V,,, = 1)
+2 (1= QM%) (1+Qm/?)
- (V(NO/2) - 1) (V(no/2) + 1) (Vi — 1)

+2 (1= QM/?) (V,,, — 1)

492 (1 — Q(NO/Q)) (1 + Q(no/Q)) .

Then

‘/2w+1+1 = ( n0/2 )( (710/2 ) 1)
ey o (1) (g

+92 (1 _ Q(n0/4)) (1 Q(n0/4 ) (1 + Q (no/2) )

So for @ > 0, the general formulates is
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Vio+1=Vowr1 +1=
(Vaoyzi + 1) (Vigjai = 1) (Vigjai-r — 1) oo (Vigja — 1) (Vipy — 1)
+2 (1 — Q”0/2i+1> (1 + Q”0/2i+1> (Vno/zifl — 1) (Vn0/2i72 — 1) (‘/no — 1)

42 (1 _ Qno/T“) (1 n Qno/?“) (1 + Q"O/T) (Vigjarz — 1) e (Vg = 1)
+2 (1 _ Q_+L> (1 + Q%) (1 + Qi> (1 + Q—L) <V+ _ 1) (Vg — 1)

+2<1_Qn0/z+1><1+Qno/z+l> (1 n Qno/2i> <1 n Qno/zi—l) (1 n Q”0/22>
(Viy — 1)

+2 (1 - Q"O/T“) (1 + Q”0/2"“) (1 + Q"0/2") (1 + Q”O/T‘l) o (14 Qo).

(2.13)

This formula is general in the following sense: where if we replace i by
0 we recover (2.11) and by 1 we recover (2.12) etc... .

Take iy = +o00 such that % > 2. The formula (2.13) is formed by iy+2

terms where each term is a product of i + 2 nonzero factors of which
each is a multiple of 2. This because on the one hand the integers V,, 2
(0 < j <) appearing in the formula is odd and, according to lemme 4,
different of £1 following the fact that V5 is different from these values.
On the other hand @ is odd different of £1. Then in (2.13), we can put
200+2 a5 a common factor between terms constituting Von, + 1. From
this

Vit 1=V, +1=2"2"¢

where t; and t, are two unlimited positive integers of which the sum is
70 + 2 and ¢ is an integer.[]
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