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Preliminaries

Basic remarks

we will consider ultrafilters on P(N) and on Boolean
subalgebras of P(N);

if A is a subalgebra of P(N), then every ultrafilter on A is
generated by a filter on P(N).
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Pseudo–intersection

Definition

We say that P ⊆ N is a pseudo–intersection of a filter F if P \ F is
finite (P ⊆∗ F ) for every F ∈ F .

Definition

The pseudo–intersection number p is a minimal cardinality of a
base of a filter without a pseudo–intersection.

ℵ0 < p ≤ c;

p = c under MA;

p = ℵ1 < c in Sacks model (and many others).
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Asymptotic density

Definition

The asymptotic density of a set A ⊆ N is defined as

d(A) = lim
n→∞

|A ∩ [1, . . . , n]|
n

,

provided this limit exists. The family {A : d(A) = 1} forms a filter
on N.

Definition

For an infinite B = {b1 < b2 < b3 < . . .} ⊆ N define the relative
density of A in B by

dB(A) = d({n : bn ∈ A})

if this limit exists.
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Condenser

Definition

Say that B ⊆ N is a condenser of a filter F on N if

dB(F ) = 1

for every F ∈ F .

Remarks

Every pseudo–intersection is a condenser;

A density filter is an example of a filter with a condenser but
without a pseudo–intersection.
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Another approach to condensation

Definition

We say that a filter F on N is condensed if there is a bijection
f : N → N such that

d(f [F ]) = 1

for every F ∈ F .

Remarks

if F has a condenser, then it is condensed;

if F is condensed, then it is feeble, i.e. there is a finite–to–one
function f : N → N such that f [F ] is co–finite for every
F ∈ F .
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Special Boolean algebras

Remarks

it is quite easy to construct a subalgebra A of P(N) such that
each ultrafilter on A does not have pseudo–intersection . . .

. . . even if this A has to be small (i.e. does not contain
uncountable independent family).

Loosely speaking

The more ultrafilters does not have a pseudo–intersection
(condenser), the more rich has to be our algebra.
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Problem

Problem

Can we construct a subalgebra A of P(N) such that

no ultrafilter on A has a pseudo–intersection;

every ultrafilter on A is condensed?

Answer - partial and easy

assume CH;

suppose no ultrafilter on A has a pseudo–intersection;

then, it has to be 2c ultrafilters on A;

thus, there is no enough bijections to ensure that every
ultrafilter is condensed;

conclusion: under CH there is no such an algebra.
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Coefficient

What about the general result?

Can we construct such an algebra in other models of ZFC?

Definition

A condensation number k is a minimal cardinality of a base of filter
on N without a condenser.

Facts

p ≤ k;

k ≤ b (a consequence of P. Simon’s result);

consistently k < b (a consequence of M. Hrusak’s result).
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Construction of demanded algebra

Result (?)

If k > h, then there is a Boolean algebra A such that no ultrafilter
on A has a pseudo–intersection, but each ultrafilter is condensed.

Sketch of proof

consider a base matrix tree T (Balcar, Simon, Pelant);

let B be a Boolean algebra generated by T ;

there are two types of ultrafilters on B: branches and knots;

B can be refined a little bit to an algebra A to ensure that
knots are condensed;

since k > h, every branch is condensed.
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Feebles

Theorem

In the same manner it can be proved that if b > h (eg. in Hechler
model), then there is a Boolean algebra A such that

no ultrafilter on A has a pseudo–intersection;

every ultrafilter on A is feeble.
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Dualities

Boolean algebra A

compact space K = ult(A)

Banach space X = C (K )

dual Banach space M = C ∗(K ) = M(K )

. . .
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Easy application

Fact

Let p be an ultrafilter on a Boolean algebra A ⊆ P(N). The
following conditions are equivalent:

p has a pseudo–intersection {n1, n2, . . .};
lim nk = p in ult(A).
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Gelfand–Phillips Property and Mazur property

Definition

A Banach space X has a Mazur property if every
weak∗–sequentially continuous x∗∗ ∈ X ∗∗ is continuous.

A bounded subset A of a Banach space X is said to be limited if

lim
n→∞

sup
x∈A

|x∗n (x)| = 0

for every weak∗–null sequence x∗n ∈ X ∗.

Definition

Banach space X has a Gelfand–Phillips property if every relatively
norm compact space is limited.
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Mazur Property vs. Gelfand-Phillips Property

Problem

It is known that there are Banach spaces with a Gelfand–Phillips
property but without a Mazur property. Does Mazur property
imply Gelfand–Phillips property?

Fact

If A is a Boolean algebra such that no ultrafilter on A has a
pseudo–intersection but each ultrafilter on A has a condenser, then
C (ult(A)) is an example of a Mazur space which does not possess
the Gelfand–Phillips property.
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The end

Slides and a preprint concerning the subject will be available on

http://www.math.uni.wroc.pl/~pborod
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