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The aim of this talk is to make two points relative to NSA:

In most applications of NSA to analysis, only elementary tools and
techniques of nonstandard calculus seems to be necessary.

The advantages of a theory which includes infinitasimals rely more on
the possibility of making new models rather than in the dimostration
techniques.

These two points will be illustrated using α-theory in the study of
Brownian motion.
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α-theory

α-theory is a very simplified version of the usual Non Standard Analysis.
The main differences between α-theory and the usual Nonstandard
Analysis are two:

first, α-theory does not need the language (and the knowledge) of
symbolic logic;

second, it does not need to distinguish two mathematical universes,
(the standard universe and the nonstandard one).

V. Benci, A Construction of a Nonstandard Universe, in Advances in
Dynamical System and Quantum Physics, S. Albeverio, R. Figari, E.
Orlandi, A. Teta ed.,(Capri, 1993), 11–21, World Scientific, (1995).

V Benci, M Di Nasso, Alpha-theory: an elementary axiomatics for
nonstandard analysis. Expo. Math. 21 (2003), no. 4, 355–386.
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Brownian motion

Brownian motion can be considered as a ”classical model” to test the
power of the infinitesimal approach.

Anderson, Robert M. A nonstandard representation for Brownian
motion and Itô integration. Bull. Amer. Math. Soc. 82 (1976), no. 1,
99–101.

Keisler, H. Jerome An infinitesimal approach to stochastic analysis.
Mem. Amer. Math. Soc. 48 (1984), no. 297, x+184 pp.

S. Albeverio, J. E. Fenstad, R. Hoegh-Krohn, and T.
Lindstrøm, Non-standard Methods in Stochastic Analysis and
Mathematical Physics, Academic Press, New York, 1986.
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The appropriate standard mathematical model to describe Brownian
motion is based on the notion of

stochastic differential equation

The nonstandard mathematical model which I will present here is based on
the notion of

stochastic grid equation
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The basic point

We do not want that every single object or result of the standard model
have its analogous in the nonstandard model.

We want to compare only the final result (namely the Fokker-Plank
equation).

Without this request, usually, the nonstandard models are more
complicated that the standard ones since they are forced to follows a
development not natural for them.
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The abstract scheme

FACTS TO EXPLAIN-DESCRIBE
⇓

MATHEMATICAL MODEL
⇓

RESULTS WHICH MIGHT COMPARED WITH ”REALITY”
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Our program

Starting from a naive idea of Brownian motion, and using α-theory, we
deduce the Fokker-Plank equation in a simple and rigorous way.

It is possible to keep every things to a simple level since all the theory of
stochastic grid equations is treated as a hyperfinite theory and it is not
translated in a ”standard model”.

The only standard object is the final one: the Fokker-Plank equation.
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α-theory

α-theory is based on the existence of a new mathematical object, namely α
which is added to the other entities of the mathematical universe.

We may think of α as a new “infinite” natural number added to N, in a
similar way as the imaginary unit i can be seen as a new number added to
the real numbers R.

The ”existence” of i leads to new mathematical objects such as
holomorphic functions etc.
In a similar way, the ”existence” of α leads to new mathematical objects
such as internal sets (and functions) etc.
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Aximatic introduction of α-theory (B., Di Nasso)

α1. Extension Axiom.
Every sequence ϕ(n) can be uniquely extended to N∪ {α}. The
corresponding value at α will be denoted by ϕ(α). If two sequences ϕ, ψ
are different at all points, then ϕ(α) 6= ψ(α).

α2. Composition Axiom.
If ϕ and ψ are sequences and if f is any function such that compositions
f ◦ ϕ and f ◦ ψ make sense, then

ϕ(α) = ψ(α)⇒ (f ◦ ϕ)(α) = (f ◦ ψ)(α)
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Aximatic introduction of α-theory (B., Di Nasso)

α3. Real Number Axiom.
If cm : n 7→ r is the constant sequence with value r , then cm(α) = r ; and
if 1N : n 7→ n is the immersion of N in R, then 1R(α) = α /∈ R.

α4. Internal Set Axiom.
If ψ is a sequence of sets, then also ψ(α) is a set and

ψ(α) = {ϕ(α) : ϕ(n) ∈ ψ(n) for all n} .

α5. Pair Axiom.
If ϑ(n) = {ϕ(n), ψ(n)} for all n, then ϑ(α) = {ϕ(α), ψ(α)} .
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Then, in α-theory there exists a unique Mathematical Universe with three
kind of sets:

standard sets: they can be constructed without postulating the
existence of ”α”.

internal sets: they are constructed according to the rule defined by
Axiom 4.

sets which are not standard nor internal.
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The application of α-theory to the study of Brownian motion is contained
in the following works:

Rago, Emiliano Una deduzione dell’equazione di Fokker-Planck con
metodi Nonstandard, Thesis, University of Pisa, (2001).

Benci V., Galatolo S., Ghimenti M. An elementary approach to
Stochastic Differential Equations using the infinitesimals, to appear.
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Basic notions

The hyperfinite grid Hα is defined as the ideal value of the set

Hn =
{

k

n
: k ∈ Z, −n2

2
≤ k <

n2

2

}
;

namely,

H : = Hα =
{

k∆ : k ∈ Z∗, −α2

2
≤ k <

α2

2

}

∆ :=
1

α

Clearly H is an hyperfinite set with |H| = α2. Given a, b ∈H, we set

[a, b]H = {x ∈H : a ≤ k ≤ b}
[a, b)H = {x ∈H : a ≤ k < b}
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Definition

An internal function
ξ : H→ R∗

is called grid function.

Definition

Given a grid function ξ : H→ R∗, we define its grid derivative ∆ξ
∆t as

∆ξ

∆t
(t) =

ξ(t + ∆)− ξ(t)
∆

;
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Definition

The grid integral of ξ is defined as

I [ξ] = ∆ ∑
t∈H

ξ (t) ;

if Γ ⊂H is a hyperfinite set we define its grid integral as

IΓ [ξ] = ∆ ∑
t∈Γ

ξ (t)

Vieri Benci (DMA-Pisa) Nonstandard Methods 03/06 17 / 42



Definition

of A grid function ξ is called integrable in [a, b] (a, b ∈ R) if I[a,b] [ξ] is
finite; in this case, we set

∫ b

a
ξ(s) ds∆ := sh

(
I[a,b) [ξ]

)
= sh

(
∆ ∑

t∈H∩[a,b)
ξ(t)

)
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To every real function
f : [a, b]→ R

it is possible to associate its natural extension

f ∗ : [a, b]∗ → R∗

and a grid function
f̃ : [a, b]H → R∗ (1)

obtained as restriction of f ∗ to [a, b]H .

When no ambiguity is possible we
will denote f ∗ and f̃ with the same symbol and the α-integral of f will be
denoted by ∫ b

a
f (s) ds∆

Clearly, if f is continuous, the α-integral of f̃ coincides with the Riemann
integral of f . Notice that every (bonded) function has its α-integral.
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As we will see, the trajectory of a molecule which moves by a Brownian
motion will be described by a grid function x(t).

In order to develop the the theory, the grid derivative of x(t) needs to be
infinite, but not too big, namely

∆x

∆t
(t) ∼=

√
α
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The main tool: Ito’s formula

The Ito’s Formula holds for grid-functions which have infinite derivative,
but not too big, as in the case of Brownian motion.

Theorem (The Ito’s Formula for grid-functions)

Let ϕ ∈ C 3
0 (R2) and x(t) be a grid function such that∣∣∣∣∆x

∆t
(t)
∣∣∣∣ ≤ ηα2/3, η ∼ 0. (2)

Then

∆
∆t

ϕ(t, x) ∼ ϕt(t, x) + ϕx (t, x)
∆x

∆t
+

∆
2

ϕxx (t, x) ·
(

∆x

∆t

)2

.

Here ϕt , ϕx and ϕxx denote the usual partial derivative of ϕ.
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Idea of the proof

∆
∆t

ϕ(t, x(t)) =
ϕ(t + ∆, x(t + ∆))− ϕ(t, x(t + ∆))

∆

+
ϕ(t, x(t + ∆))− ϕ(t, x(t))

∆

∼ ϕt(t, x(t)) +
ϕ(t, x(t + ∆))− ϕ(t, x(t))

∆

Vieri Benci (DMA-Pisa) Nonstandard Methods 03/06 22 / 42



Idea of the proof

But

ϕ(t, x(t + ∆)) = ϕ

(
t, x(t) + ∆

∆x

∆t
(t)
)

,

and
∣∣∆ ∆x

∆t (t)
∣∣ ≤ ηα2/3∆ = η∆1/3 is infinitesimal.

Then

ϕ

(
t, x(t) + ∆

∆x

∆t
(t)
)

= ϕ(t, x(t)) + ϕx (t, x(t))∆
∆x

∆t
(t) +

1

2
ϕxx (t, x(t))

(
∆

∆x

∆t
(t)
)2

+
1

3!
ϕxxx (t, x(t))

(
∆

∆x

∆t
(t)
)3

+ ε

(
∆

∆x

∆t
(t)
)3
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Idea of the proof

Hence

ϕ(t, x(t + ∆))− ϕ(t, x(t))
∆

= ϕx (t, x(t))
∆x

∆t
(t) +

∆
2

ϕxx (t, x(t)) ·
(

∆x

∆t
(t)
)2

+
∆2

6
ϕxxx ·

(
∆x

∆t
(t)
)3

+ ε∆2

(
∆x

∆t
(t)
)3
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Grid Differential Equations

A Grid Differential Equations has the following form{ ∆x
∆t (t) = f (t, x(t)), t ∈H

x(t0) = x0

where f is any internal function.

Theorem

The Cauchy problem for a Grid Differential equation has always a unique
solution
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Stochastic Grid Equations

A Stochastic Grid Equation is simply a family of grid differential equations
having the following form

∆x
∆t (t) = f (t, x) + h(t, x)ξ(t),
x(0) = x0,
ξ ∈ R.

where R is a hyperfinite set.
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We want to study the statistical behavior of the set of solutions of the
above Cauchy problems

S =
{

xξ(t) : ξ ∈ R
}

;

More precisely we want to describe the behavior of the density function

ρ : [0, 1]H ×H∗ → Q∗

defined as follows

ρ (t, x) =

∣∣{xξ ∈ S : x ≤ xξ(t) < x + ∆}
∣∣

∆ |R| .
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Definition

A stochastic class of white noises (or simply a withe noise) is the internal
set of grid functions defined by

R = Rα

where
Rn =

{
−
√

n, +
√

n
}[0,1]Hn

Thus, given a grid function ξ, we have that

ξ ∈ R ⇔ ∀x , ξ(x) = ±
√

α
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The main result

We will prove that ∀ϕ ∈ D ([0, 1)×R) ,∫ ∫ (
ϕt + f ϕx + ϕxxh2

)
ρ dx∆ dt∆ + ϕ(0, x0) = 0

under the assumption that f and h are internal functions, bounded on
bounded sets.

Vieri Benci (DMA-Pisa) Nonstandard Methods 03/06 29 / 42



Standard interpretation

This result has a meaningful interpretation which makes sense also using
the standard language.

The standard objects which allow a bridge between Grid Functions and
Standard Universe are the distributions

In fact, it is possible to associate a distribution Tξ to a grid function ξ via
the following formula:

〈
Tξ , ϕ

〉
=
∫
A

ξϕ ds∆ = sh

(
∆ · ∑

t∈AH

ξ(t)ϕ(t)

)
, ϕ ∈ D.

provided that ξϕ is integrable.
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Thus we have obtained the following result:

Theorem

Assume that R is a white noise and that f (t, x) and h(t, x) are
continuous functions. Then the distribution Tρ relative to the density
function ρ is a measure and satisfies the Fokker-Plank equation

dTρ

dt
+

d

dx

(
f (t, x)Tρ

)
− 1

2

d2

dx2

(
h(t, x)2Tρ

)
= 0. (3)

Tρ(0, x) = δ (4)

in the sense of distribution.
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If f (t, x) and h(t, x) are smooth functions, by standard results in PDE, we
know that, for t > 0, the distribution Tρ coincides with a smooth function
u(t, x).

Then, for any t > 0, ρ defines a smooth function u by the formula

∀ϕ ∈ D ((0, 1)×R) ,
∫ ∫

ρϕ dx∆dt∆ =
∫ ∫

uϕ dx dt

and u satisfies the Fokker-Plank equation in (0, 1)×R in the usual sense:

du

dt
+

d

dx
(f (t, x)u)− 1

2

d2

dx2

(
h(t, x)2u

)
= 0.

Vieri Benci (DMA-Pisa) Nonstandard Methods 03/06 32 / 42



If f (t, x) and h(t, x) are smooth functions, by standard results in PDE, we
know that, for t > 0, the distribution Tρ coincides with a smooth function
u(t, x). Then, for any t > 0, ρ defines a smooth function u by the formula

∀ϕ ∈ D ((0, 1)×R) ,
∫ ∫

ρϕ dx∆dt∆ =
∫ ∫

uϕ dx dt

and u satisfies the Fokker-Plank equation in (0, 1)×R in the usual sense:

du

dt
+

d

dx
(f (t, x)u)− 1

2

d2

dx2

(
h(t, x)2u

)
= 0.

Vieri Benci (DMA-Pisa) Nonstandard Methods 03/06 32 / 42



The conclusion of our Theorem hold not only if the ”stochastic class” R
defined as above, but for any class R which satisfies suitable properties.
For example we can take

R = Rα; Rn :=
{

q1

√
n, ...., qk

√
n
}[0,1]Hn ; k ∈N

with qi ∈ R∗,
k

∑
i=1

qi = 0;
k

∑
i=1

q2
i = 1.
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Probabilistic interpretation

In classical mathematics and also in some Nonstandard approach to this
topic, the most delicate part relies in the notion of probability measure in
an infinite dimensional metric space, namely the space of all the orbits.

In our approach we have not used the notion of probability but rather that
of descriptive statistics
How can we introduce a probabilistic interpretation of the Fokker-Plank
equation?
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Probabilistic interpretation

In a world where infinitesimals are allowed, it makes sense to define the
probability function

P : [P (Ω)]∗ → [0, 1]∗ ∩Q∗

in the following way

P (E ) =
|E |
|Ω|

In this approach, there is no need to define the Lieb measure.
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Probabilistic interpretation

In fact, we have that

P[a,b) := P
(
xξ(t) ∈ [a, b)

)
= I[a,b) (ρ (·, t))

namely the probability is a hyperrational number; if you do not like it you
may take the standard part:

sh
(

P[a,b)

)
:=
∫ b

a
ρ (x , t) dx∆ =

∫ b

a
u (x , t) dx
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Idea of the proof

Chosen an arbitrary ϕ ∈ C([0, 1]×R) bounded in the second variable, we
have that

ϕ(1, xξ(1))− ϕ(0, x0) = ∆ ∑
t∈[0,1−∆]H

∆ϕ

∆t
(t, xξ(t)),

Now we assume that ϕ ∈ D([0, 1)×R)); the by the Ito grid formula

−ϕ(0, x0) ∼ ∆ ∑
t∈[0,1)H

[
ϕt + ϕx ·

∆x

∆t
+

∆
2

ϕxx ·
(

∆x

∆t

)2
]
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Idea of the proof

Since xξ solves our equation, we obtain

−ϕ(0, x0) ∼ ∆ ∑
t∈[0,1)H

[
ϕt + ϕx · (f + hξ) +

∆
2

ϕxx · (f + hξ)2
]

= ∆ ∑
t∈[0,1)H

(ϕt + f ϕx ) + (ϕxh + ∆ϕxx f ) ξ

+∆ ∑
t∈[0,1)H

∆
2

ϕxx f +
∆
2

ϕxxh2ξ2
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Idea of the proof

Now we want to compute the mean or expectation value

Eξ∈R

of each term of the above formula.

The expectation value is defined in the following way:

Eξ∈R(Fξ) :=
1

|R|∑ Fξ
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Idea of the proof

Eξ∈R [ϕt + f ϕx ] ∼ ∆ ∑
x∈H

[ϕt + f ϕx ] ρ

Eξ [(ϕxh + ∆ϕxx f ) ξ] ∼ 0.

Eξ

[
∆
2

ϕxx f

]
∼ 0

Eξ

[
∆
2

ϕxxh2ξ2

]
∼ Eξ

[
α∆
2

ϕxxh2

]
=

1

2
Eξ

[
ϕxxh2

]
=

∆
2 ∑

x∈H

ϕxxh2ρ
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Idea of the proof

−ϕ(0, x0) = Et,ξ [−ϕ(0, x0)]

∼ ∆ ∑
t∈[0,1)H

(
Eξ [ϕt + f ϕx ] + Eξ [(ϕxh + ∆ϕxx f ) ξ]

)
+

+∆ ∑
t∈[0,1)H

(
Eξ

[
∆
2

ϕxx f

]
+ Eξ

[
∆
2

ϕxxh2ξ2

] )
∼ ∆2 ∑

t∈[0,1)H

(
∑

x∈H

(ϕt + f ϕx ) ρ + ϕxxh2ρ

)

∼
∫ ∫ (

ϕt + f ϕx + ϕxxh2
)

ρ dxdt

Then,

−ϕ(0, x0) ∼
∫ ∫ (

ϕt + f ϕx + ϕxxh2
)

ρ dxdt
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The end

Thank you for your attention!
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