A variant of the Hales-Jewett theorem

Mathias Beiglböck

Institute of Discrete Mathematics and Geometry
Vienna University of Technology
Wien, Austria

June 2008 / Pisa

van der Waerden / Hales-Jewett

van der Waerden's Theorem (1927)

Let $k, r \in \mathbb{N}, C_{1} \cup \ldots \cup C_{r}=\mathbb{N} . \Rightarrow \exists s$ and $a, d \in \mathbb{N}$ s.t.

$$
a+d \cdot i \in C_{s} \quad \text { for } i=0, \ldots, k
$$

van der Waerden / Hales-Jewett

van der Waerden's Theorem (1927)

Let $k, r \in \mathbb{N}, C_{1} \cup \ldots \cup C_{r}=\mathbb{N} . \Rightarrow \exists s$ and $a, d \in \mathbb{N}$ s.t.

$$
a+d \cdot i \in C_{s} \quad \text { for } i=0, \ldots, k
$$

Hales-Jewett Theorem (1963)

Let $k, r \in \mathbb{N}, C_{1} \cup \ldots \cup C_{r}=\operatorname{Fin}(\mathbb{N} \times\{0, \ldots, k\}) . \Rightarrow \exists s$ and $\alpha \subseteq \mathbb{N} \times\{0, \ldots, k\}, \gamma \subseteq \mathbb{N}$ s.t.

$$
\alpha \uplus \gamma \times\{i\} \in C_{s} \quad \text { for } i=0, \ldots, k
$$

van der Waerden / Hales-Jewett

van der Waerden's Theorem (1927)

Let $k, r \in \mathbb{N}, C_{1} \cup \ldots \cup C_{r}=\mathbb{N} . \Rightarrow \exists s$ and $a, d \in \mathbb{N}$ s.t.

$$
a+d \cdot i \in C_{s} \quad \text { for } i=0, \ldots, k
$$

Hales-Jewett Theorem (1963)

Let $k, r \in \mathbb{N}, C_{1} \cup \ldots \cup C_{r}=\operatorname{Fin}(\mathbb{N} \times\{0, \ldots, k\}) . \Rightarrow \exists s$ and $\alpha \subseteq \mathbb{N} \times\{0, \ldots, k\}, \gamma \subseteq \mathbb{N}$ s.t.

$$
\alpha \uplus \gamma \times\{i\} \in C_{s} \quad \text { for } i=0, \ldots, k
$$

Szemerédi's Theorem Polynomial van der Waerden \longleftrightarrow Polynomial Hales-Jewett

A combined additive and multiplicative van der Waerden theorem

Bergelson 2005

Let $k, r \in \mathbb{N}$ and $\mathbb{N}=C_{1} \cup \ldots \cup C_{r}$. There exist a, b, d, s s.t.

$$
b(a+i d)^{j} \in C_{s}
$$

for all $i, j \in\{0, \ldots, k\}$.

A combined additive and multiplicative van der Waerden theorem

Bergelson 2005

Let $k, r \in \mathbb{N}$ and $\mathbb{N}=C_{1} \cup \ldots \cup C_{r}$. There exist a, b, d, s s.t.

$$
b(a+i d)^{j} \in C_{s}
$$

for all $i, j \in\{0, \ldots, k\}$.
In fact: Every set $C \subseteq \mathbb{N}$ of positive upper multiplicative density contains such configurations.

A combined additive and multiplicative van der Waerden theorem

Bergelson 2005

Let $k, r \in \mathbb{N}$ and $\mathbb{N}=C_{1} \cup \ldots \cup C_{r}$. There exist a, b, d, s s.t.

$$
b(a+i d)^{j} \in C_{s}
$$

for all $i, j \in\{0, \ldots, k\}$.
In fact: Every set $C \subseteq \mathbb{N}$ of positive upper multiplicative density contains such configurations. Idea: Uniform IP-Szemeredi implies that every such C contains a large set G of geometric progressions. Then Szemerédi's Theorem yields that G contains arithmetic progressions.

abstract version of Bergelson's result: "One cell contains many combinatorial lines"

abstract version of Bergelson's result: "One cell contains many combinatorial lines"

\mathcal{F}. . family of finite subsets of \mathbb{N}.
\mathcal{F} is partition regular iff one cell of any finite partition contains an element of \mathcal{F}.
$($ E.g. $\mathcal{F}=\{\{a, a+d, \ldots, a+k d\}: a, d \in \mathbb{N}\}$.

abstract version of Bergelson's result: "One cell contains many combinatorial lines"

\mathcal{F}. . family of finite subsets of \mathbb{N}.
\mathcal{F} is partition regular iff one cell of any finite partition contains an element of \mathcal{F}.
(E.g. $\mathcal{F}=\{\{a, a+d, \ldots, a+k d\}: a, d \in \mathbb{N}\}$.

Theorem

Let $k, r \in \mathbb{N}, C_{1} \cup \ldots \cup C_{r}=\operatorname{Fin}(\mathbb{N} \times\{0, \ldots, k\})$ and let \mathcal{F} be a partition regular family of finite sets.
$\Rightarrow \exists s, \alpha, \gamma$ and $F \in \mathcal{F}$ s.t.

$$
\alpha \uplus(\gamma \uplus\{t\}) \times\{j\} \in C_{s} \quad \text { for all } j \in\{0, \ldots, k\} \text { and } t \in F
$$

abstract version of Bergelson's result: "One cell contains many combinatorial lines"

$\mathcal{F} .$. family of finite subsets of \mathbb{N}.
\mathcal{F} is partition regular iff one cell of any finite partition contains an element of \mathcal{F}.
(E.g. $\mathcal{F}=\{\{a, a+d, \ldots, a+k d\}: a, d \in \mathbb{N}\}$.)

Theorem

Let $k, r \in \mathbb{N}, C_{1} \cup \ldots \cup C_{r}=\operatorname{Fin}(\mathbb{N} \times\{0, \ldots, k\})$ and let \mathcal{F} be a partition regular family of finite sets.
$\Rightarrow \exists s, \alpha, \gamma$ and $F \in \mathcal{F}$ s.t.

$$
\alpha \uplus(\gamma \uplus\{t\}) \times\{j\} \in C_{s} \quad \text { for all } j \in\{0, \ldots, k\} \text { and } t \in F
$$

main idea: C large $\Rightarrow\{(\alpha, \gamma): \alpha \uplus \gamma \times\{i\} \in C, i=0, \ldots, k\}$ large.

abstract version of Bergelson's result: "One cell contains many combinatorial lines"

\mathcal{F}... family of finite subsets of \mathbb{N}.
\mathcal{F} is partition regular iff one cell of any finite partition contains an element of \mathcal{F}.
(E.g. $\mathcal{F}=\{\{a, a+d, \ldots, a+k d\}: a, d \in \mathbb{N}\}$.)

Theorem

Let $k, r \in \mathbb{N}, C_{1} \cup \ldots \cup C_{r}=\operatorname{Fin}(\mathbb{N} \times\{0, \ldots, k\})$ and let \mathcal{F} be a partition regular family of finite sets.
$\Rightarrow \exists s, \alpha, \gamma$ and $F \in \mathcal{F}$ s.t.

$$
\alpha \uplus(\gamma \uplus\{t\}) \times\{j\} \in C_{s} \quad \text { for all } j \in\{0, \ldots, k\} \text { and } t \in F
$$

main idea: C large $\Rightarrow\{(\alpha, \gamma): \alpha \uplus \gamma \times\{i\} \in C, i=0, \ldots, k\}$ large.
simpler: $C \subseteq \mathbb{Z}$ large $\Rightarrow\left\{(a, d) \in \mathbb{Z}^{2}: a+i d \in C, i=0, \ldots, k\right\}$ large.

preservation of largeness

Furstenberg \& Glasner 1998

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is piecewise syndetic.
$\Rightarrow\{(a, d): a, a+d, \ldots, a+k d \in C\}$ is piecewise syndetic in \mathbb{Z}^{2}.

preservation of largeness

Furstenberg \& Glasner 1998

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is piecewise syndetic.
$\Rightarrow\{(a, d): a, a+d, \ldots, a+k d \in C\}$ is piecewise syndetic in \mathbb{Z}^{2}.
$C \subseteq \mathbb{Z}$ is piecewise syndetic $\Leftrightarrow C+\{0, \ldots, n\}$ contains arbitrarily long intervals for n large enough.

preservation of largeness

Furstenberg \& Glasner 1998

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is piecewise syndetic.
$\Rightarrow\{(a, d): a, a+d, \ldots, a+k d \in C\}$ is piecewise syndetic in \mathbb{Z}^{2}.
$C \subseteq \mathbb{Z}$ is piecewise syndetic $\Leftrightarrow C+\{0, \ldots, n\}$ contains arbitrarily long intervals for n large enough.

In commutative groups: $C \subseteq G$ is piecewise syndetic \Leftrightarrow there is some finite set F such $C+F$ contains a shifted copy of every finite set

preservation of largeness

Furstenberg \& Glasner 1998

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is piecewise syndetic.
$\Rightarrow\{(a, d): a, a+d, \ldots, a+k d \in C\}$ is piecewise syndetic in \mathbb{Z}^{2}.
$C \subseteq \mathbb{Z}$ is piecewise syndetic $\Leftrightarrow C+\{0, \ldots, n\}$ contains arbitrarily long intervals for n large enough.

In commutative groups: $C \subseteq G$ is piecewise syndetic
\Leftrightarrow there is some finite set F such $C+F$ contains a shifted copy of every finite set
$\Leftrightarrow \exists p \in K(\beta G)$ s.t. $C \in p$.

preservation of largeness

Furstenberg \& Glasner 1998

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is piecewise syndetic.
$\Rightarrow\{(a, d): a, a+d, \ldots, a+k d \in C\}$ is piecewise syndetic in \mathbb{Z}^{2}.
$C \subseteq \mathbb{Z}$ is piecewise syndetic $\Leftrightarrow C+\{0, \ldots, n\}$ contains arbitrarily long intervals for n large enough.

In commutative groups: $C \subseteq G$ is piecewise syndetic
\Leftrightarrow there is some finite set F such $C+F$ contains a shifted copy of every finite set
$\Leftrightarrow \exists p \in K(\beta G)$ s.t. $C \in p$.
fact: One cell of any finite partition of G is piecewise syndetic.

preservation of largeness

Bergelson \& Hindman 2001

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is central.
$\Rightarrow\{(a, d): a, a+d, \ldots, a+k d \in C\}$ is central in \mathbb{Z}^{2}.

preservation of largeness

Bergelson \& Hindman 2001

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is central.

$$
\Rightarrow\{(a, d): a, a+d, \ldots, a+k d \in C\} \text { is central in } \mathbb{Z}^{2} .
$$

$C \subseteq G$ is central \Leftrightarrow there is a minimal idempotent $p \in \beta G$ s.t. $S \in p$. $p \in \beta G$ is idempotent if $p+p=p$, the idempotents are ordered by

$$
p \leq q \Leftrightarrow p+q=q+p=p .
$$

preservation of largeness

Bergelson \& Hindman 2001

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is central.

$$
\Rightarrow\{(a, d): a, a+d, \ldots, a+k d \in C\} \text { is central in } \mathbb{Z}^{2} .
$$

$C \subseteq G$ is central \Leftrightarrow there is a minimal idempotent $p \in \beta G$ s.t. $S \in p$. $p \in \beta G$ is idempotent if $p+p=p$, the idempotents are ordered by

$$
p \leq q \Leftrightarrow p+q=q+p=p .
$$

sketch of proof: Set $\phi_{i}(a, d)=a+i d$, let $\hat{\phi}_{i}: \beta\left(\mathbb{Z}^{2}\right) \rightarrow \beta \mathbb{Z}$ be its continuous extension. Goal:

$$
\left\{(a, d): \phi_{0}(a, d), \ldots, \phi_{k}(a, d) \in C\right\} \text { is central }
$$

preservation of largeness

Bergelson \& Hindman 2001

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is central.

$$
\Rightarrow\{(a, d): a, a+d, \ldots, a+k d \in C\} \text { is central in } \mathbb{Z}^{2} .
$$

$C \subseteq G$ is central \Leftrightarrow there is a minimal idempotent $p \in \beta G$ s.t. $S \in p$. $p \in \beta G$ is idempotent if $p+p=p$, the idempotents are ordered by

$$
p \leq q \Leftrightarrow p+q=q+p=p .
$$

sketch of proof: Set $\phi_{i}(a, d)=a+i d$, let $\hat{\phi}_{i}: \beta\left(\mathbb{Z}^{2}\right) \rightarrow \beta \mathbb{Z}$ be its continuous extension. Goal:

$$
\left\{(a, d): \phi_{0}(a, d), \ldots, \phi_{k}(a, d) \in C\right\} \text { is central }
$$

Pick a minimal idempotent p s.t. $C \in p . \Rightarrow \exists q \in \beta\left(G^{2}\right)$, minimal idempotent s.t.

$$
\hat{\phi}_{0}(q)=\ldots=\hat{\phi}_{k}(q)=p .
$$

preservation of largeness

Furstenberg \& Glasner 1998

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is piecewise syndetic. Then

$$
\{(a, d): a, a+d, \ldots, a+k d \in C\}
$$

is piecewise syndetic in \mathbb{Z}^{2}.

preservation of largeness

Furstenberg \& Glasner 1998

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is piecewise syndetic. Then

$$
\{(a, d): a, a+d, \ldots, a+k d \in C\}
$$

is piecewise syndetic in \mathbb{Z}^{2}.

modest version

Assume that $C_{1} \cup C_{2}=\mathbb{Z}$. There exists $s \in\{1,2\}$ s.t.

$$
\left\{(a, d): a, a+d, a+2 d \in C_{s}\right\}
$$

is piecewise syndetic in \mathbb{Z}^{2}.

