A variant of the Hales-Jewett theorem

Mathias Beiglböck

Institute of Discrete Mathematics and Geometry Vienna University of Technology Wien, Austria

June 2008 / Pisa

van der Waerden's Theorem (1927)

Let $k, r \in \mathbb{N}$, $C_1 \cup \ldots \cup C_r = \mathbb{N}$. $\Rightarrow \exists s \text{ and } a, d \in \mathbb{N} \text{ s.t.}$

$$a + d \cdot i \in C_s$$
 for $i = 0, \ldots, k$

van der Waerden's Theorem (1927)

Let $k, r \in \mathbb{N}$, $C_1 \cup \ldots \cup C_r = \mathbb{N}$. $\Rightarrow \exists s \text{ and } a, d \in \mathbb{N} \text{ s.t.}$

$$a + d \cdot i \in C_s$$
 for $i = 0, \dots, k$

Hales-Jewett Theorem (1963)

Let $k, r \in \mathbb{N}$, $C_1 \cup \ldots \cup C_r = Fin(\mathbb{N} \times \{0, \ldots, k\})$. $\Rightarrow \exists s \text{ and} \alpha \subseteq \mathbb{N} \times \{0, \ldots, k\}, \gamma \subseteq \mathbb{N} \text{ s.t.}$

$$\alpha \uplus \gamma \times \{i\} \in C_s \quad \text{ for } i = 0, \dots, k$$

van der Waerden's Theorem (1927)

Let $k, r \in \mathbb{N}$, $C_1 \cup \ldots \cup C_r = \mathbb{N}$. $\Rightarrow \exists s \text{ and } a, d \in \mathbb{N} \text{ s.t.}$

$$a + d \cdot i \in C_s$$
 for $i = 0, \dots, k$

Hales-Jewett Theorem (1963)

Let $k, r \in \mathbb{N}$, $C_1 \cup \ldots \cup C_r = Fin(\mathbb{N} \times \{0, \ldots, k\})$. $\Rightarrow \exists s \text{ and} \alpha \subseteq \mathbb{N} \times \{0, \ldots, k\}, \gamma \subseteq \mathbb{N} \text{ s.t.}$

$$\alpha \uplus \gamma \times \{i\} \in C_s \quad \text{ for } i = 0, \dots, k$$

Szemerédi's Theorem \longleftrightarrow density Hales-Jewett Polynomial van der Waerden \longleftrightarrow Polynomial Hales-Jewett

A combined additive and multiplicative van der Waerden theorem

Bergelson 2005

Let $k, r \in \mathbb{N}$ and $\mathbb{N} = C_1 \cup \ldots \cup C_r$. There exist a, b, d, s s.t.

$b(a+id)^j \in C_s$

for all $i, j \in \{0, ..., k\}$.

A combined additive and multiplicative van der Waerden theorem

Bergelson 2005

Let $k, r \in \mathbb{N}$ and $\mathbb{N} = C_1 \cup \ldots \cup C_r$. There exist a, b, d, s s.t.

 $b(a+id)^j \in C_s$

for all $i, j \in \{0, ..., k\}$.

In fact: Every set $C \subseteq \mathbb{N}$ of *positive upper multiplicative density* contains such configurations.

A combined additive and multiplicative van der Waerden theorem

Bergelson 2005

Let $k, r \in \mathbb{N}$ and $\mathbb{N} = C_1 \cup \ldots \cup C_r$. There exist a, b, d, s s.t.

 $b(a+id)^j \in C_s$

for all $i, j \in \{0, ..., k\}$.

In fact: Every set $C \subseteq \mathbb{N}$ of *positive upper multiplicative density* contains such configurations.

Idea: Uniform IP-Szemeredi implies that every such C contains a large set G of geometric progressions. Then Szemerédi's Theorem yields that G contains arithmetic progressions.

 \mathcal{F} ... family of finite subsets of \mathbb{N} .

 \mathcal{F} is *partition regular* iff one cell of any finite partition contains an element of \mathcal{F} .

(E.g. $\mathcal{F} = \{\{a, a + d, \dots, a + kd\} : a, d \in \mathbb{N}\}.$)

 \mathcal{F} ... family of finite subsets of \mathbb{N} .

 \mathcal{F} is *partition regular* iff one cell of any finite partition contains an element of \mathcal{F} .

(E.g. $\mathcal{F} = \{\{a, a+d, \dots, a+kd\} : a, d \in \mathbb{N}\}.$)

Theorem

Let $k, r \in \mathbb{N}$, $C_1 \cup \ldots \cup C_r = Fin(\mathbb{N} \times \{0, \ldots, k\})$ and let \mathcal{F} be a partition regular family of finite sets.

$$\Rightarrow \exists s, \alpha, \gamma \text{ and } F \in \mathcal{F} \text{ s.t.}$$

$$\alpha \uplus (\gamma \uplus \{t\}) \times \{j\} \in C_s \quad \text{ for all } j \in \{0, \dots, k\} \text{ and } t \in F$$

 \mathcal{F} ... family of finite subsets of \mathbb{N} .

 \mathcal{F} is *partition regular* iff one cell of any finite partition contains an element of \mathcal{F} .

(E.g. $\mathcal{F} = \{\{a, a + d, \dots, a + kd\} : a, d \in \mathbb{N}\}$.)

Theorem

Let $k, r \in \mathbb{N}$, $C_1 \cup \ldots \cup C_r = Fin(\mathbb{N} \times \{0, \ldots, k\})$ and let \mathcal{F} be a partition regular family of finite sets. =

$$\Rightarrow \exists s, \alpha, \gamma \text{ and } F \in \mathcal{F} \text{ s.t.}$$

$$lpha \uplus \left(\gamma \uplus \{t\}
ight) imes \{j\} \in \mathcal{C}_{\mathcal{S}} \quad ext{ for all } j \in \{0, \dots, k\} ext{ and } t \in \mathcal{F}$$

main idea: C large $\Rightarrow \{(\alpha, \gamma) : \alpha \uplus \gamma \times \{i\} \in C, i = 0, \dots, k\}$ large.

 \mathcal{F} ... family of finite subsets of \mathbb{N} .

 \mathcal{F} is *partition regular* iff one cell of any finite partition contains an element of \mathcal{F} .

(E.g. $\mathcal{F} = \{\{a, a + d, \dots, a + kd\} : a, d \in \mathbb{N}\}$.)

Theorem

Let $k, r \in \mathbb{N}$, $C_1 \cup \ldots \cup C_r = Fin(\mathbb{N} \times \{0, \ldots, k\})$ and let \mathcal{F} be a partition regular family of finite sets. =

$$\Rightarrow \exists \boldsymbol{s}, \alpha, \gamma \text{ and } \boldsymbol{F} \in \mathcal{F} \text{ s.t.}$$

 $\alpha \uplus (\gamma \uplus \{t\}) \times \{j\} \in C_s \quad \text{for all } j \in \{0, \dots, k\} \text{ and } t \in F$

main idea: C large $\Rightarrow \{(\alpha, \gamma) : \alpha \uplus \gamma \times \{i\} \in C, i = 0, \dots, k\}$ large.

simpler: $C \subseteq \mathbb{Z}$ large $\Rightarrow \{(a, d) \in \mathbb{Z}^2 : a + id \in C, i = 0, \dots, k\}$ large.

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is piecewise syndetic.

 \Rightarrow {(*a*, *d*) : *a*, *a* + *d*, ..., *a* + *kd* \in *C*} is piecewise syndetic in \mathbb{Z}^2 .

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is piecewise syndetic.

 \Rightarrow {(*a*, *d*) : *a*, *a* + *d*, ..., *a* + *kd* \in *C*} is piecewise syndetic in \mathbb{Z}^2 .

 $C \subseteq \mathbb{Z}$ is *piecewise syndetic* \Leftrightarrow $C + \{0, ..., n\}$ contains arbitrarily long intervals for *n* large enough.

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is piecewise syndetic.

 \Rightarrow {(*a*, *d*) : *a*, *a* + *d*, ..., *a* + *kd* \in *C*} is piecewise syndetic in \mathbb{Z}^2 .

 $C \subseteq \mathbb{Z}$ is *piecewise syndetic* \Leftrightarrow $C + \{0, ..., n\}$ contains arbitrarily long intervals for *n* large enough.

In commutative groups: $C \subseteq G$ is *piecewise syndetic*

 \Leftrightarrow there is some finite set *F* such *C* + *F* contains a shifted copy of every finite set

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is piecewise syndetic.

 $\Rightarrow \{(a, d) : a, a + d, \dots, a + kd \in C\}$ is piecewise syndetic in \mathbb{Z}^2 .

 $C \subseteq \mathbb{Z}$ is *piecewise syndetic* \Leftrightarrow $C + \{0, ..., n\}$ contains arbitrarily long intervals for *n* large enough.

In commutative groups: $C \subseteq G$ is *piecewise syndetic*

 \Leftrightarrow there is some finite set *F* such *C* + *F* contains a shifted copy of every finite set

 $\Leftrightarrow \exists p \in K(\beta G) \text{ s.t. } C \in p.$

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is piecewise syndetic.

 $\Rightarrow \{(a, d) : a, a + d, \dots, a + kd \in C\}$ is piecewise syndetic in \mathbb{Z}^2 .

 $C \subseteq \mathbb{Z}$ is *piecewise syndetic* \Leftrightarrow $C + \{0, ..., n\}$ contains arbitrarily long intervals for *n* large enough.

In commutative groups: $C \subseteq G$ is *piecewise syndetic*

 \Leftrightarrow there is some finite set *F* such *C* + *F* contains a shifted copy of every finite set

 $\Leftrightarrow \exists p \in K(\beta G) \text{ s.t. } C \in p.$

fact: One cell of any finite partition of *G* is piecewise syndetic.

preservation of largeness

Bergelson & Hindman 2001

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is central.

$$\Rightarrow \{(a,d): a, a+d, \dots, a+kd \in C\}$$
 is central in \mathbb{Z}^2

Bergelson & Hindman 2001

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is central.

$$\Rightarrow$$
 {(*a*, *d*) : *a*, *a* + *d*, ..., *a* + *kd* \in *C*} is central in \mathbb{Z}^2 .

 $C \subseteq G$ is *central* \Leftrightarrow there is a minimal idempotent $p \in \beta G$ s.t. $S \in p$. $p \in \beta G$ is idempotent if p + p = p, the idempotents are ordered by

$$p \leq q \Leftrightarrow p + q = q + p = p.$$

Bergelson & Hindman 2001

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is central.

$$\Rightarrow$$
 {(a, d) : $a, a + d, \dots, a + kd \in C$ } is central in \mathbb{Z}^2 .

 $C \subseteq G$ is *central* \Leftrightarrow there is a minimal idempotent $p \in \beta G$ s.t. $S \in p$. $p \in \beta G$ is idempotent if p + p = p, the idempotents are ordered by

$$p \leq q \Leftrightarrow p+q=q+p=p.$$

sketch of proof: Set $\phi_i(a, d) = a + id$, let $\hat{\phi}_i : \beta(\mathbb{Z}^2) \to \beta\mathbb{Z}$ be its continuous extension. Goal:

 $\{(a, d) : \phi_0(a, d), \dots, \phi_k(a, d) \in C\}$ is central

Bergelson & Hindman 2001

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is central.

$$\Rightarrow$$
 {(*a*, *d*) : *a*, *a* + *d*, ..., *a* + *kd* \in *C*} is central in \mathbb{Z}^2 .

 $C \subseteq G$ is *central* \Leftrightarrow there is a minimal idempotent $p \in \beta G$ s.t. $S \in p$. $p \in \beta G$ is idempotent if p + p = p, the idempotents are ordered by

$$p \leq q \Leftrightarrow p+q=q+p=p.$$

sketch of proof: Set $\phi_i(a, d) = a + id$, let $\hat{\phi}_i : \beta(\mathbb{Z}^2) \to \beta\mathbb{Z}$ be its continuous extension. Goal:

 $\{(a, d) : \phi_0(a, d), \dots, \phi_k(a, d) \in C\}$ is central

Pick a minimal idempotent p s.t. $C \in p$. $\Rightarrow \exists q \in \beta(G^2)$, minimal idempotent s.t.

$$\hat{\phi}_0(q) = \ldots = \hat{\phi}_k(q) = p.$$

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is piecewise syndetic. Then

$$\{(a,d): a, a+d, \ldots, a+kd \in C\}$$

is piecewise syndetic in \mathbb{Z}^2 .

Let $k \in \mathbb{N}$, assume that $C \subseteq \mathbb{Z}$ is piecewise syndetic. Then

$$\{(a,d): a, a+d, \ldots, a+kd \in C\}$$

is piecewise syndetic in \mathbb{Z}^2 .

modest version

Assume that $C_1 \cup C_2 = \mathbb{Z}$. There exists $s \in \{1, 2\}$ s.t.

$$\{(a,d): a, a+d, a+2d \in C_s\}$$

is piecewise syndetic in \mathbb{Z}^2 .