COMFORT ORDER ON LOCALLY COMPACT TOPOLOGICAL SPACES

M. AKBARI TOOTKABONI

The Comfort order of the Stone-Čech reminder $\beta S - S$ of discrete space S has often been studied, (See [2]). In this paper we define comfort order on $S^{\mathcal{F}}($ which is the set of all multiplicative mean on \mathcal{F}). Throughout this paper S is a locally compact topological Hausdorff space and $\mathcal{CB}(S)$ is the \mathcal{C}^* - algebra of all bounded continuous complex-valued functions on S with supremum norm. Let \mathcal{F} be a conjugate closed subalgebra \mathcal{F} of $\mathcal{CB}(S)$ containing the constant functions, then the set of all multiplicative means of \mathcal{F} , which denote by $S^{\mathcal{F}}$, equipped with the Gelfand topology is a compact Hausdorff space, furthermore the evaluation mapping $\varepsilon : S \to S^{\mathcal{F}}$, where $\varepsilon(s)(f) = f(s)$ is a continuous map onto a dense subset of $S^{\mathcal{F}}$. Also $\varepsilon^* : \mathcal{C}(S^{\mathcal{F}}) \to \mathcal{F}$ is an isometric isomorphism and $\widehat{f} = (\varepsilon^*)^{-1}(f) \in \mathcal{C}(S^{\mathcal{F}})$ for $f \in \mathcal{F}$ is given by $\widehat{f}(\mu) = \mu(f)$ for all $\mu \in S^{\mathcal{F}}$, (see [1]). For \mathcal{F} (of $\mathcal{CB}(S)$) on a Hausdorff space S, similar to [3], that the compactification $S^{\mathcal{F}}$ can be reconstructed by a suitable quotient space of the set of all z-ultrafilters.

Let X be a topological Hausdorff space and $\tilde{p} \in S^{\mathcal{F}}$. Let $s \mapsto x_s : S \to X$ be a continuous function and $y \in X$. We say $\tilde{p} - \lim_{s \in S} x_s = y$ if and only if for every open set U of $y, \tilde{p} \in (\overline{x^{-1}(U)})^{\circ}$. If $\tilde{p} - \lim_{s \in S} x_s$ exists, then it is unique and also if X is a compact space then $\tilde{p} - \lim_{s \in S} x_s$ exists. Let X be a topological Hausdorff space and $\tilde{p} \in S^{\mathcal{F}}$. We say X is a $\mathcal{F}_{\tilde{p}}$ (or \tilde{p}) -compact space if $\tilde{p} - \lim_{s \in S} f(s)$ exist for each continuous function $f: S \to X$. So we can define topological comfort order (\leq_c) on $S^{\mathcal{F}}$. For $\tilde{p}, \tilde{q} \in S^{\mathcal{F}}$, we define $\tilde{p} \leq_c \tilde{q}$ if and only if each \tilde{q} -compact space be a \tilde{p} -compact space.

Now let X be a completely regular Hausdorff space, let S be a locally compact topological Hausdorff space. Let \mathcal{F} and \mathcal{U} be conjugate closed subalgebra of $\mathcal{CB}(S)$ and $\mathcal{CB}(X)$, respectively, containing the constant functions. We define

 $(\mathcal{F}, \mathcal{U}, \widetilde{p}) = \bigcap \{ Y : X \subseteq Y \subseteq X^{\mathcal{U}}, Y \text{ is a } \widetilde{p} \text{ -compact space.} \}.$

Lemma 1. Let $\alpha = |S|$, $\tilde{p} \in S^{\mathcal{F}}$ and $A_{\circ}(\tilde{p}, X) = X$. Inductively, let $\sigma < \alpha^{+}$ be given. If σ be a non zero limit ordinal, let $A_{\sigma}(\tilde{p}, X) = \bigcup_{r < \sigma} A_{r}(\tilde{p}, X)$. If $\sigma = \tau + 1$, let $A_{\sigma}(\tilde{p}, X) = \{\tilde{p} - \lim_{s \in S} f(s) : f : S \to A_{\tau}(\tilde{p}, X) \subseteq X^{\mathcal{U}} \text{ be continuous.}\}$. Then $(\mathcal{F}, \mathcal{U}, \tilde{p}) = \bigcup_{\sigma < \alpha^{+}} A_{r}(\tilde{p}, X)$.

Theorem 2. Let S be a locally compact Hausdorff topological space. Let \mathcal{F} be a conjugate closed subalgebra of $\mathcal{CB}(S)$ contained constant functions. Let $\varepsilon : S \to S^{\mathcal{F}}$ be a evaluation map and $|\varepsilon(S)| = \alpha \leq |S|$. Then $|(\mathcal{F}, \tilde{p})(S)| \leq 2^{\alpha}$, where $(\mathcal{F}, \tilde{p})(S) = \bigcap \{Y : S \subseteq Y \subseteq S^{\mathcal{F}}, Y \text{ is } \tilde{p} \text{ -compact space.} \}$.

Theorem 3. Let S be an infinite locally compact Hausdorff topological space. Let \mathcal{F} be a conjugate closed subalgebra of $\mathcal{CB}(S)$ contained constant functions. Let $\tilde{p}, \tilde{q} \in S^{\mathcal{F}} - \varepsilon(S)$. Let X is \tilde{p} -compact and every continuous function $f : S \to X$ can be extended to a continuous function $\hat{f} : S^{\mathcal{F}} \to \beta X$. Then $\tilde{p} \leq_c \tilde{q}$ iff $(\mathcal{F}, \tilde{p})(S) \subseteq (\mathcal{F}, \tilde{q})(S)$ iff $\tilde{p} \in (\mathcal{F}, \tilde{q})(S)$ iff there exists a continuous function $f : S \to (\mathcal{F}, \tilde{q})(S)$ such that $\hat{f}(\tilde{q}) = \tilde{p} \notin f(S)$ iff $(\mathcal{F}, \tilde{q})(S)$ is \tilde{p} -compact.

References

- J.F. Berglund, H. D. Junghenn, and P. Milnes, Analysis on Semigroups, Function spaces, compactifications, representations, Wiley, 1989.
- [2] S. Garcia-Ferreira, N. Hindman, and D. Strauss, Orderings of the Stone-Cech remainder of a discrete semigroup, Topology and its Applications 97 (1999), 127Ũ-148.
- M. A. Tootkaboni and A. Riazi, Ultrafilters on semitopological semigroup, Semigroup Forum 70 (2005), no. 3, 317-Ü328.

DEPARTMENT OF MATHEMATICS, SHAHED UNIVERSITY, TEHRAN-IRAN. *E-mail address:* akbari@shahed.ac.ir