VARIATIONS ON PROPERTIES OF ULTRAFILTERS RELATED TO COMPACTNESS OF TOPOLOGICAL SPACES AND TO MODEL-THEORETICAL PRINCIPLES

PAOLO LIPPARINI

5. General Topology 10. Set theory and foundations

Many properties of ultrafilters can be equivalently stated as properties of their ultrapowers. For example, for λ a regular cardinal, an ultrafilter is λ -decomposable if and only if the ultrapower $\prod_D \langle \lambda, \langle \rangle$ contains an element greater than all former elements of λ .

Thus, for $\lambda > \mu$ regular cardinals, the property "every λ -decomposable ultrafilter is μ -decomposable" can be reformulated in model-theoretical terms as follows: "for every ultrapower extension \mathfrak{B} of $\langle \lambda, \langle \rangle$, if \mathfrak{B} contains an element greater than all former elements of λ then \mathfrak{B} contains an element $\langle d(\mu) \rangle$ but greater than all former elements of μ ".

If in the above italicized statement we consider elementary extensions of $\langle \lambda, < \rangle$ rather than ultrapower extensions, we get a stronger property, namely "the model $\langle \lambda, < \rangle$ has an expansion \mathfrak{A} in a language with at most λ new symbols such that whenever \mathfrak{B} is an elementary extension of \mathfrak{A} and \mathfrak{B} has an element x such that $\mathfrak{B} \models \gamma < x$ for every $\gamma < \lambda$, then \mathfrak{B} has an element y such that $\mathfrak{B} \models \alpha < y < \mu$ for every $\alpha < \mu$ ".

We show that the above model-theoretical property has many equivalent reformulations both in set-theoretical terms and in topological terms.

DIPARTIMENTO DI MATEMATICA, VIALE DELLA RICERCA SCIENTIFICA, II UNI-VERSITÀ DI ROMA (TOR VERGATA), I-00133 ROME, ITALY.

URL: http://www.mat.uniroma2.it/~lipparin E-mail address: lipparin@axp.mat.uniroma2.it