ULTRAFILTERS IN MEASURE THEORY

DAVID H. FREMLIN

An ultrafilter \mathcal{F} on \mathbb{N} is **measure-centering** if whenever $\langle K_n \rangle_{n \in \mathbb{N}}$ is a sequence of compact subsets of [0, 1] such that $\lim_{n \to \mathcal{F}} \mu_L K_n > 0$, where μ_L is Lebesgue measure, then there is an $A \in \mathcal{F}$ such that $\bigcap_{n \in A} K_n \neq \emptyset$. For any such ultrafilter, and for any perfect probability space (X, μ) , there is a measure $\mu_{\mathcal{F}}$ on X, extending μ , such that $\mu_{\mathcal{F}}(\lim_{n \to \mathcal{F}} E_n)$ is defined and equal to $\lim_{n \to \mathcal{F}} \mu E_n$ for every sequence $\langle E_n \rangle_{n \in \mathbb{N}}$ of sets measured by μ . I will describe the measure algebras and function spaces of such extensions, and sketch the proof of M. Benedikt's theorem that there is a common extension of the measures $\mu_{\mathcal{F}}$ as \mathcal{F} runs over the family of all Ramsey ultrafilters.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF ESSEX, COLCHESTER, U.K.

 $E\text{-}mail\ address: \texttt{fremdh@essex.ac.uk}$