Matematica, Anno Accademico 2006-2007, Scienze Geologiche

M. Novaga, V.M. Tortorelli

Diseguaglainza tra media geometrica e media aritrmetica e numero e

Materiale relativo al corso può essere reperito in rete http://www.dm.unipi.it/didactics/home.html#alt e quindi selezionando ALTRI CORSI DI LAUREA e Corso di laurea *****

- Per ogni $n \in \mathbb{N}$ vale la seguente proprietà D_n :

comunque siano dati n numeri non negativi si ha $\sqrt[n]{x_1 \dots x_n} \leq \frac{x_1 + \dots x_n}{n}$.

DIMOSTRAZIONE: Lo schema è il seguente:

- 1- Si ha che se vale D_n vale D_{2n} .
- 2- Si ha che se vale D_{n+1} vale D_n .
- 3- Si deduce che per ogni n vale D_n (ovvero è vero che la media geometrica è sempre minore o equale alla media aritmetica).

Il terzo punto segue direttamente dal metodo di induzione. Infatti dal primo punto per induzione su m si deduce che D_{2^m} è vera per ogni m: D_{2^1} è vera, e se è vera D_{2^m} per il primo punto ne segue $D_{2^{m+1}}$

Quindi per provare che D_n vale si osserva che essendo vera D_{2^n} il secondo punto permette "tornare indietro".

(Per quanto intuitivo questo ultimo passaggio a rigore rende necessario un argomento induttivo abbastanza ostico, per rendere conto dell'argomento del "tornare indietro un numero variabile di passi": si considera la proprietà C_h : "se vale D_h allora vale D_m per tutti gli $m \le h$ " e la si dimostra per induzione su h. C_1 è vera. Se vale C_h bisogna mostrare che vale C_{h+1} : ora se si assume che vale D_{h+1} dalla prima parte si ha che vale D_h e quindi utilizzando l'ipotesi induttiva C_h si ha che vale D_m per ogni $m \le h$, e d'altronde si è assunto che vale anche D_{h+1} . Quindi C_h vale sempre, in particolare per $h=2^n>n$).

Il primo punto si prova come segue: D_2 vale poichè posto $x=a^2$, $y=b^2$ vale $a^2+b^2-2ab=(a-b)^2\geq 0$. Quindi si prosegue:

$$(a-b)^2 \ge 0$$
. Quindi si prosegue:
 $\sqrt[2n]{x_1 \dots x_{2n}} = \sqrt[n]{x_1 \dots x_n} \sqrt[n]{x_{n+1} \dots x_{2n}} \le \frac{\sqrt[n]{x_1 \dots x_n} + \sqrt[n]{x_{n+1} \dots x_{2n}}}{2} \le \frac{\sqrt[n]{x_1 \dots x_n} + \sqrt[n]{x_n} + \sqrt[n]{x_n}}{2} \le \frac{\sqrt[n]{x_1 \dots x_n} + \sqrt[n]{x_n}}{2} \le \frac{\sqrt[n]{x_1 \dots x_n}}{2} \le \frac{\sqrt[n]{x_1 \dots x_n} + \sqrt[n]{x_n}}{2} \le \frac{\sqrt[n]{x_1 \dots x_n} + \sqrt[n]{x_n}}{2} \le \frac{\sqrt[n]{x_1 \dots x_n}}{2} \le \frac{\sqrt[n]{x_1 \dots x_n} + \sqrt[n]{x_n}}{2} \le \frac{\sqrt[n]{x_1 \dots x_n} + \sqrt[n]{x_n}}{2} \le \frac{\sqrt[n]{x_1 \dots x_n}}{2} \le \frac{\sqrt[n]{x_1 \dots x_n} + \sqrt[n]{x_n}}{2} \le \frac{\sqrt[n]{x_1 \dots x_n}}{2} \le \frac{\sqrt[n]{x_1$

per D_2 avendo come argomenti le due radici n^e :

usando D_n due volte con $x_1...x_n$ e per $x_{n+1}...x_{2n}$

 $\leq \frac{\frac{x_1+\ldots+x_n}{n} + \frac{x_{n+1}+\ldots+x_{2n}}{n}}{2} =$

 $=\frac{x_1+...+x_{2n}}{2n}$

Il secondo punto si prova come segue: dati n numeri non negativi x_1, \ldots, x_n si usa D_{n+1} per i numeri x_1, \ldots, x_n e $\frac{x_1 + \ldots + x_n}{n}$, in modo che elevando alla n+1 i membri della diseguaglianza ottenuta si ha:

$$x_1 \cdot \dots \cdot x_n \frac{x_1 + \dots + x_n}{n} \le \left(\frac{x_1 + \dots + x_n + \frac{x_1 + \dots + x_n}{n}}{n+1}\right)^{n+1} = \left(\frac{x_1 + \dots + x_n}{n}\right)^{n+1}$$

quindi si divide per la media aritmetica di $x_1, \dots x_n$ e si fa la radice n^a .

Un'applicazione di questa diseguaglianza tra media aritmetica e media geometrica riguarda il fatto che la successione che da il valore finale dopo n istanti di una grandezza che varia ad ogni istante con un tasso $\frac{x}{n}$, cresce al crescere di n:

Per esempio il debito "cumulato" alla scadenza di un periodo di prestito, con un tasso di interesse composto $\frac{x}{n}$, variabile in funzione del numero n dei sottoperiodi concessi per l' "estinzione del debito", cresce al crescere di n:

$$1+x, \ 1+\frac{x}{2}+\frac{x}{2}(1+\frac{x}{2})=(1+\frac{x}{2})^2, \ldots, \ \left(1+\frac{x}{n}\right)^n: \ x_{h+1}-x_h=\frac{x}{n}x_h, \ x_n=\left(1+\frac{x}{n}\right)^n$$

Più precisamente

$$\left(1 + \frac{x}{n+1}\right)^{n+1} \ge \left(1 + \frac{x}{n}\right)^n \text{ (se } n > 1 - x),$$

(NOTA: tale diseguaglianza si può chiaramente provare direttamente per induzione, per il caso x = 1, ovvero $x \ge 0$, si veda Faedo-Modica pag. 85).

DIMOSTRAZIONE -
$$\left(1 + \frac{x}{n}\right)^n = \left(1 + \frac{x}{n}\right) \cdot \dots_{n \text{ volte}} \dots \cdot \left(1 + \frac{x}{n}\right) \cdot 1 \le$$
 si usa la diseguaglianza tra le medie di $n+1$ numeri non negativi $\le \left(\frac{1 + \frac{x}{n} + \dots_{n \text{ volte}} \dots + 1 + \frac{x}{n} + 1}{n+1}\right)^{n+1} = \left(1 + \frac{x}{n+1}\right)^{n+1}$

Corollario: La successione $\left(1+\frac{x}{n}\right)^n$ converge. DIMOSTRAZIONE - Essendo crescente basta mostrare che è limitata superiormente. Basta mostrarlo per $n\geq 0$. Si ha per $n\geq x\geq 0$: $\left(1+\frac{x}{n}\right)^n\left(1-\frac{x}{n}\right)^n\leq \left(1-\frac{x^2}{n^2}\right)^n\leq 1$ quindi essendo $\left(1-\frac{x}{n}\right)^n$ crescente per gli n>xsi ha quanto desiderato.

DEFINIZIONE: Il numero limite della successione crescente $\left(1+\frac{1}{n}\right)^n$ si dice costante di Nepero e si indica con la lettera e.

TEOREMA Il limite di $\left(1+\frac{x}{n}\right)^n$ è e^x .

- Un'altra diseguaglianza notevole è la seguente $\left(1+\frac{1}{n}\right)^{n+1} \geq \left(1+\frac{1}{n+1}\right)^{n+2}$, DIMOSTRAZIONE- $\left(1 + \frac{1}{n}\right)^{n+1} = \left(\frac{n+1}{n}\right)^{n+1} = \frac{1}{\left(\frac{n}{n+1}\right)^{n+1}} = \frac{1}{\left(1 - \frac{1}{n+1}\right)^{n+1}} \ge \frac{1}{\left(1 - \frac{1}{n+1}\right)^{n+1}} = \frac{1}{\left(1 - \frac{1}{n+1}\right)^{n+1}} = \frac{1}{\left(1 - \frac{1}{n+1}\right)^{n+1}} \ge \frac{1}{\left(1 - \frac{1}{n+1}\right)^{n+1}} = \frac{1$

per quanto provato al punto precedente con x = -1

$$\geq \frac{1}{\left(1 - \frac{1}{n+2}\right)^{n+2}} = \left(1 + \frac{1}{n+1}\right)^{n+2}$$

NOTA: poichè $0 \le \left(1 + \frac{1}{n}\right)^{n+1} - \left(1 + \frac{1}{n}\right)^n \le \frac{3}{n}$ la successione $\left(1 + \frac{1}{n}\right)^{n+1}$ da invece un'approssimazione per eccesso di e.

- Infine è interessante la seguente:

$$\sqrt[n]{n} \ge \sqrt[n+1]{n+1}$$
 (se $n \ge 4$) da cui segue che $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

Per provare che $\sqrt[n]{n}$ decrescere al crescere di $n \geq 4$ si procede come segue:

 $\sqrt[n]{n} \ge \sqrt[n+1]{n+1}$ se e solo se

$$\sqrt[n]{n} \ge \sqrt[n+1]{n}$$
 se e solo se $n^{n+1} \ge (n+1)^n$ se e solo se $n \ge \frac{(n+1)^n}{n^n} = \left(1 + \frac{1}{n}\right)^n$, Si ha inoltre:

$$\left(1+\frac{1}{n}\right)^n \le \text{(si moltiplica per un numero maggiore di 1)}$$

 $\le \left(1+\frac{1}{n}\right)^{n+1} \le \text{(essendo decrescente per quanto appena provato)}$

$$\leq (1+1)^2 = 4.$$

Quindi per $n \geq 4$ si ha $\sqrt[n]{n} \geq \sqrt[n+1]{n+1}$.