Matematica, Anno Accademico 2005-2006, Scienze Geologiche

M. Novaga, V.M. Tortorelli

CONTINUITA'

dal 15 ottobre al 16 dicembre 2005

Programma, registro degli argomenti svolti e materiale relativo al corso possono essere reperiti in rete all'indirizzo http://www.dm.unipi.it/didactics/home.html ivi selezionando il nome del corso.

-Per la correttezza di molte deduzioni va giustificata l'esistenza di valori massimi o minimi di funzioni: per esempio nella dimostrazione del teorema di Rolle, e simili, è stato necessario assumere che una funzione derivabile su un intervallo chiuso e limitato ha un valore massimo e minimo. Nel caso la derivabilità della funzione serve solo nell'intervallo aperto. Quello che serve è la continuità in ogni punto dell'intervallo chiuso:

DEFINIZIONE $f:[a,b] \to \mathbf{R}$ si dice continua in $p \in [a,b]$ se

 $\forall \varepsilon \exists \delta \forall x, \ a \leq x \leq b \ |x - p| \leq \delta \Rightarrow |f(x) - f(p)| \leq \varepsilon$

OSSERVAZIONE: una funzione definita su un intervallo derivabile in un punto è continua in quel punto.

TEOREMA Se $f:[a,b] \to \mathbf{R}$ è continua in ogni punto dell'intervallo allora vi sono $x_1, x_2 \in [a,b]$ per cui per ogni $x \in [a,b]$ si ha $f(x_1) \leq f(x) \leq f(x_2)$. Ovevro f assuma vaolre massimo e minomo sull'intervallo.

Un'altra proprietà notevole delle funzioni coninue su intervalli è la seguente

TEOREMA(degli zeri) Se $f : [a, b] \to \mathbf{R}$ è continua e f(a), f(b) hanno segno diverso allora vi è $x_0 \in]a, b[$ per cui $f(x_0) = 0$.

COROLLARIO (terorema del valor medio) Una funzione continua su un intervallo assume su di esso tutti i valori compresi tra l'estremo superiore dei valori assunti dalla funzione sull'intervallo e l'estremo inferiore di questi.

OSSERVAZIONE: un'enunciato che unifica i precedenti teoremi è il seguente:

le funzioni continue reali di variabile reale tresformano intervalli chiusi e limitati in intervalli chiusi e limitati

ESEMPI0: $x \mapsto \sin x - (x^{17} - 3x^{12} + \pi x + 23)$ è surgettiva da \mathbf{R} isu \mathbf{R} : infatti fissato un valore $y \in \mathbf{R}$ poichè $\lim_{-\infty} f = +\infty$ e $\lim_{+\infty} f = -\infty$, vi sono $a < b \in \mathbf{R}$ per cui f(b) < y < f(a). Per il teorema del valor medio vi è x per cui f(x) = y.

TEOREMA Se una funzione è continua ed iniettiva su intervallo allora è monotona e la sua inversa è anch'essa *continua* sull'intervallo immagine del predetto.

- Si vede ora un quadro sintetico della continuità delel funzioni vettoriali in più variabili: **DEFINIZIONE** $p \in C \subseteq \mathbf{R}^k$, $f: C \to \mathbf{R}^m$ si dice continua in p (lungo C):

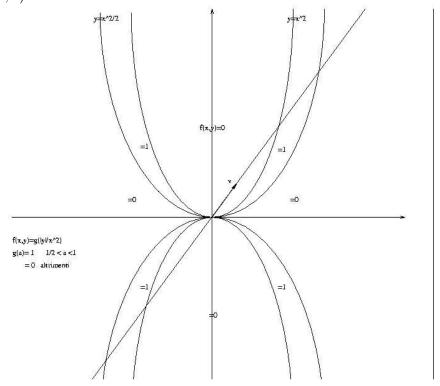
 $\forall \varepsilon \exists \delta(p,\varepsilon) \forall x \in C \ dist(x,p) \leq \delta \Rightarrow dist(f(x),f(p)) \leq \varepsilon$

- Se p è approssimabile con punti di C, (di accumulazione per C) allora f è continua in p se e solo se $\lim_{x\to p} f(x) = f(p)$.

OSSERVAZIONE: Una funzione è continua in p su C se e solo se per ogni $x_n \in C$, $x_n \to_{n\to\infty} p$ si ha $f(x_n) \to f(p)$. In altri termini una funzione continua su C trasforma successio di elementi di C convergenti ad un elemento di C in successioni convergenti al valore del limite.

OSSERVAZIONE: poichè $|a_i - b_i| \le \sqrt{|a_1 - b_1|^2 + \dots + |a_m - b_m|^2} \le |a_1 - b_1| + \dots + |a_m - b_m|$ una funzione vettoriale $f = (f_1, \dots, f_m)$ è continua se e solo se lo sono f_1, \dots, f_m .

OSSERVAZIONE: la continuità di una funzione di più variabili in un punto non è conseguenza della continuità della funzione in ciascuna delle variabili nello stesso punto, le rimanenti essendo assegnate come valori delle rispettive coordinate del punto in questione. Pittoricamente, per esemplificare: se si considera il grafico nello spazio di una funzione di due variabili per cui le sue due intersezioni con i due piani "verticali" x=1 e y=2 sono grafici di sue funzioni continue rispettivamente nei punti 2 ed 1 non è detto che la funzione sia continua nel punto (1,2). Anzi una funzioni per cui la sua restrizone lungo ogni retta passante per un dato punto è una funzione continua di una variabile non è detto sia continua nel punto: si consideri infatti la funzione della variabile reale a g(a) = 1, $\frac{1}{2} < t < 1$, g(a) = 0 altrimnenti, e quindi la funzione di due variabili $f(x,y) = g(\frac{|y|}{x^2})$ costante sulle parabole grafici di $y = ax^2$. Per la convessità delle parabole tale funzione ristretta alle rette passanti per (0,0) è costantemente nulla e quindi continua. Ma potetendo avvicinarsi a (0,0) non solo lungo rette ma nella zona in cui il coefficiente delle parbole è compreso tra 1/2 e 1 la funzione non è continua in (0,0).



-Per enunciare le principali proprietà della continuità in più variabli conviene premettere qualche nozione e notazione:

DEFINIZIONE

- un punto p si dice interno ad un insieme A se vi è una palla di centro il punto interamente contenuta in A ($\exists r > 0 \ dist(x, p) \le r \Rightarrow x \in A$).
 - un sottoinsieme di \mathbb{R}^n si dice aperto se ogni suo punto è a lui interno.
- un sottoinsieme $A \subseteq \mathbf{R}^n$ si dice *chiuso* (per successioni) se una successione di suoi punti converge allora converge ad un suo punto $(x_k \in A, x_k \to p \Rightarrow p \in A)$
- un insieme $B \subseteq C$ si dice aperto relativamente a C, rispettivamente chiuso relativamente a C, se vi è un aperto $A \subseteq \mathbf{R}^n$, ovvero chiuso, per cuio $B = A \cup C$
- un sottoinsieme $A \subseteq \mathbf{R}^n$ si dice connesso per archi se ogni coppia di suoi punti può essere congiunta da un cammino continuo che giace interamente in A:

 $\forall p, q \in A \exists \gamma : [0,1] \to A$, continua, per cui: $\gamma(t) \in A$, $\gamma(0) = p$, $\gamma(1) = q$ **PROPOSIZIONE** Un insieme è chiuso (relativamente) se e solo se il suo complementare (relativo) è aperto (relativamente). **PROPOSIZIONE** Una funzione $f: C \to \mathbb{R}^m$ è continua in ogni punto di C (lungo C) se e solo se le preimmagini di aperti sono aperti relativamente a C se e solo se le preimmagini di chiusi sono chiusi relativamente a C.

OSSERVAZIONE In particolare le preimmagini di punti, per esempio gli insiemi di livello, di una funzione continua sono sottoinsiemi chiusi:

```
\{(x,y): f(x,y)=5\} = \{(x,y): f(x,y)\in \{5\}\} = f^{-1}(\{5\}),
```

 $\{(x,y): f(x,y) \leq -23\} = f^{-1}(]-\infty, -23]$), sono chiusi se f ùna funzione continua di due variabili.

PROPOSIZIONE I sottonsimei di **R** connessi sono tutti e soli i segmenti (retta, semirette e intervalli).

PROPOSIZIONE Un insieme aperto è connesso se e solo se ogni coppia di suoi punti può essere conginutra con cammini a componenti derivabili se e solo se da cammini che sono spezzate con lati paralleli agli assi coordinati

OSSERVAZIONE I convessi sono convessi

Quindi i principali teoremi sono

TEOREMA (Bolzano-Weierstrass) Un sottoinsieme di \mathbb{R}^k è sia limitato che chiuso se e solo se ogni successione di suoi elementi ha una sottosuccessione che converge ad un elemento dell'insieme stesso.

TEOREMA Una funzione continua trasforma sottoinsiemi che sono sia limitatio che chiusi in sottoinsiemi che sono sia limitati che chiusi.

TEOREMA(Weiestrass) Una funzione a valori reali su un sottoinsime sia limitato che chiuso assume su tale insieme valore massimo e valore minimo

TEOREMA Una funzione continua trasforma connessi in connessi.

COROLLARIO Una funzione continua su un connesso assume su tale insieme tutti i valori compresi tra l'estremo superiore e l'estremo inferiore.

- Si propone ora una serie di enunciati che permettono di riconoscere/produrre funzioni continue di più variabili a partire dalla continuità delle funzioni elementari di una variabile che si è dimostrato essere derivabili e quindi continue.

TEOREMA La composizione di funzioni continue è una funzione continua

```
(f:A\to B\ x\mapsto f(x),\ g:B\to C\ z\mapsto g(z) continue allora g\circ f:A\to C,\ x\mapsto g(f(x)) continua)
```

DEFINIZIONE Una funzione $f: A \in \mathbb{R}^m$ si dice Lipschitziana se vi è una costante che va bene per ogni coppia di punti p e qdi A per cui $dist(f(p), f(q)) \leq Ldist(p, q)$. In altre parole sono le funzioni con rapporti incrementali limitati.

OSSERVAZIONE Le funzioni lipschitziane sono continue ($\delta = \varepsilon/L$).

TEOREMA Le funzioni lineari essendo lipschitziane sono continue si deduce immediatamente che

TEOREMA La somma di funzioni continue è continua

Inoltre si ha

PROPOSIZIONE la funzione $(x, y) \mapsto xy$ è continua.

```
DIM.: |x_0y_0 - xy| \le |x_0||y_0 - y| + |x_0 - x||y| \to 0 \ (x, y) \to (x_0, y_0)
```

TEOREMA I rapporti di polinomi sono funzioni continue ove non si annulla il denominatore **TEOREMA** L'insieme delle funzioni continue su C a valori in \mathbb{R}^m sono uno spazio vettoriale.