Complementi di Analisi Matematica, Anno Accademico 2005-2006, Laurea Specialistica in Informatica

V.M. Tortorelli

V.M. Tortorelli V foglio di esercizi 9 maggio 2006

Registro degli argomenti svolti e materiale relativo al corso possono essere reperiti in rete all'indirizzo http://www.dm.unipi.it/didactics/home.html ivi selezionando il nome del corso.

ESERCIZIO n. 1 Determinare i punti critici delle seguenti funzioni: $x^3 + (x-y)^2$, $x^4 + (x-y)^2$, $xy + y^2 - 3x$, $\sin(x+y)$, $x^2 - \sin y$, $x^3 + y^2 - 6xy - 39x + 18y + 20$.

ESERCIZIO n. 2 Si dica se (0,0) è di massimo, di minimo, o di sella per ciascuna delle seguenti funzioni: $x^4 + y^4$, $x^4 - y^4$, $1 - x^4 - x^2y^2 - y^4$.

ESERCIZIO n. 3 Determinare minimo e massimo delle seguenti funzioni nei rispettivi insiemi:

ESERCIZIO n. 4 Sia $f(x,y) = 2x^4 - x^2e^y + e^{4y}$. Si calcolino l'estremo superiore e l'estremo inferiore di tale funzione e se ne calcoli il limite per $x^2 + y^2 \to +\infty$. Si osservi che vi sono solo due punti di minimo assoluto e nessun altro punto critico. Si traccino approssimativamente le linee di livello f = c, al variare di c in \mathbf{R} , mettendo in risalto quali sono connesse, quali sono limitate.

ESERCIZIO n. 5 Sia data un insieme di coppie $(x_i, y_i)_{1 \le i \le N}$. Determinare a e b in modo tale che la funzione:

 $\chi^2(a,b) = \sum_{i=1}^N (y_i - ax_i - b)^2$ sia minima. Il minimo è assoluto o relativo?

ESERCIZIO n. 6 Si ricorda che $C \subseteq \mathbf{R}^n$ è detto convesso se contine interamente i segmenti delimitati dai suoi punti: se $x \in C$, $y \in C$ e $\lambda \in [0;1]$ allora $\lambda x + (1-\lambda)y \in C$. Una funzione $f: C \to \mathbf{R}$ si dice convessa se C è convesso e se $\lambda \in [0;1]$ allora $f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$.

- a) Sia Ω un aperto convesso di \mathbf{R}^n , e sia $f: \Omega \to \mathbf{R}$ differenziabile. Dimostrare che f è convessa se e solo se, per ogni $x, y \in \Omega$: $\langle \nabla f(x) \nabla f(y), x y \rangle \geq 0$ dove $\langle \cdot, \cdot \rangle$ rappresenta il prodotto scalare in \mathbf{R}^n .
- b) Nelle stesse ipotesi si deduca che f è convessa se e solo se il suo grafico sta sopra ogni piano tangente ad esso.
- c) Se poi $f \in C^2$ si provi che f è convessa se e solo se Hf(x) è definita non negativa in ogni punto.

ESERCIZIO n. 7

- a) Sia $f: \Omega \subset \mathbf{R}^n \to \mathbf{R}$ una funzione strettamente convessa, ove Ω è un aperto convesso. Si dimostri che f ha al più un estremale interno a Ω ?
- b) Utilizzando che una funzione convessa a valori reali, definita su un chiuso C limitato convesso è continua si provi che se $C = \bar{\Omega}$, con Ω aperto convesso, allora il massimo di f è assunto su $\partial\Omega$.

ESERCIZIO n. 8 Trovare i punti di massimo o di minimo relativo e calcolare i valori di massimo relativo e minimo relativo, delle seguenti funzioni sui domini rispettivi:

$$\begin{split} &f(x,y) = \frac{x^4 + 2x^3y}{x^4 + y^4} \;, \;\; y - x^2 = 0 \;; \;\; f(x,y) = \sin((x-2)^2 + y^2) \;, \quad (1-x)^3 + y^2 = 0 \;; \\ &f(x,y) = x^2 + 6xy + 3y^2 \;, \quad x^2 + y^2 - 2xy = \frac{1}{(x+y-2)^2} \;; \\ &f(x,y,z) = e^{-(x^2-y+z^2)} \;, \quad \frac{x^2}{4} + y^2 + 3z^2 \leq 1 \;, \;\; (Ex.C.P.S.29.14, \; 278) \;; \\ &f(x,y,z) = x^2 + y^2 + z^2 \;, \quad \left\{ \begin{array}{c} (z+1)^2 - y^2 - (x+3)^2 = 0 \\ z^2 + y^2 - (x+1)^2 = 0 \end{array} \right. \;; \\ &f(x,y,z) = (x+1)^2 + (y-\varepsilon)^2 + z \;, \quad \left\{ \begin{array}{c} (1-x)z = (1+x)y \\ z^2 + y^2 - (x+1)^2 = 0 \end{array} \right. \;; \\ &f(x,y,z) = x^2 + 2y^2 + z^2 \;, \quad \text{tetraedro di vertici } (-1,-1,-1), \;\; (1,-1,-1), \;\; (0,1,-1), \\ &(0,0,1) \;; \\ &f(x,y,z) = x^2 + 2y^2 + z^2 \;, \quad \max\{|x+2|,|y+3|,|z+4|\} = 1 \;; \\ &f(x,y,z,w) = x^2 + \frac{y^2}{2} + \frac{z^2}{3} + \frac{w^2}{4}, \;\; \left\{ \begin{array}{c} (x+y+z+w)^2 + (x-y+z-w)^2 = 1 \\ (x-y-z+w)^2 + (x-y-z-w)^2 = 1 \end{array} \right. \end{split}$$

ESERCIZIO n. 9 Provare che l'insieme $D=\left\{(x,y,z): \frac{\sqrt{x^2+\frac{y}{2}^2}-3}{4}+z^2=1\right\}$ è chiuso e limitato. Determinare poi la massima e la minima distanza dei punti di D dall'origine.

* ESERCIZIO n. 10 È vero che il minimo valore di $f(x,y) = (x^2 + y^2)^2 - x^2 + y^2$ su $(x-R)^2 + (y-R)^2 = 2R^2$ è sempre 0? Giustificare la risposta.

ESERCIZIO n. 11

- a) Trovare il massimo volume di un parallelepipedo rettangolo inscritto nell'ellissoide $x^2/a^2+y^2/b^2+z^2/c^2=1$.
- b) Trovare l'ellissoide $x^2/a^2+y^2/b^2+z^2/c^2=1$ di volume massimo per cui a+b+c=M, $a,\ b,\ c>0.$
- c) Trovare la minima distanza tra gli insiemi $\{x^2 + y^2 = 1\} \cap \{yz = xz\}$ e $\{z y = 0\} \cap \{x + y + z = 1\}.$

ESERCIZIO n.12 Sia O l'insieme delle matrici ortogonali $n \times n$, e sia $f : \mathbf{O} \mapsto \mathbf{R}$ definita da $f(A) = \operatorname{tr} A$. Si dimostri che esistono unici e si calcolino i punti di massimo e minimo di f.

ESERCIZIO n.13 Dato un vettore $x = (x_1, \dots x_n)$, tale che $x_i > 0$ per ogni $i \in \sum_{i=1}^n x_i = 1$, si definisce $H(x) = -\sum_{i=1}^n x_i \log x_i$. Determinare il vettore che massimizza H.

ESERCIZIO n.14 In un mercato duopolistico ci sono n aziende che producono lo stesso bene, ognuna in quantità y_i . Il prezzo p del bene dipende dalla quantità totale prodotta $\sum_{i=1}^{n} y_i$. Ogni azienda decide di produrre la quantità y_i che massimizza il proprio profitto:

$$f_i(y_i) = p\left(\sum_{i=1}^n y_i\right)y_i - cy$$

dove c è il costo unitario di produzione del bene.

Determinare in quali condizioni il mercato è in equilibrio (ogni azienda, cioè, non intende modificare la propria produzione y_i).

Dimostrare che per $n \to \infty$ il prezzo di equilibrio p converge a c.

ESERCIZIO n. 15

- a) Se $u \in C^2(\mathbf{R}^n)$ e $\triangle u = \sum_{i=1}^n \frac{\partial^2 u}{\partial x_i^2} > 0$ allora u non ha punti di massimo locale.
- Se $u \in C^2(\Omega) \cap C(\overline{\Omega})$, Ω aperto limitato, se $\Delta u \geq 0$ allora $\max_{\overline{\Omega}} u = \max_{\partial\Omega} u$. (Si consideri x_0 di massimo su $\overline{\Omega}$ di u e $v(x) = u(x) + \varepsilon |x x_0|^2$. Si applichi il precedente punto a v.)
- Si deduca che se $\Delta u \geq 0$ allora u non ha punti di massimo locale stretto.
- b) Si provi che se Ω é un aperto limitato, $f \in C(\mathbf{R}^n)$, $g \in C(\mathbf{R}^n)$ allora vi é al piú una funzione u definita su $\overline{\Omega}$ che risolve:

$$\begin{cases} \triangle u(x) = f(x) & x \in \Omega \\ u(x) = g(x) & x \in \partial\Omega \\ u \in C(\overline{\Omega}) \cap C^{2}(\Omega) \end{cases}$$

- Si provi che per questa eventuale soluzione si ha:

$$\max_{\overline{\Omega}} |u| \leq \max_{\partial \Omega} |g| + \frac{(\operatorname{diam}\Omega)^2}{2n} \max_{\overline{\Omega}} |f|.$$

NOTA: Si puó provare:

- se Ω é un connesso aperto, $u \in C^2(\Omega) \cap C(\overline{\Omega})$, $\Delta u \geq 0$, allora se u assume massimo in $\overline{\Omega}$ allora lo assume solo sul bordo $\partial \Omega$ oppure u é costante.
- se Ω é un connesso aperto, $u \in C^2(\Omega)$, $\Delta u = 0$, allora u non assume ne massimi ne minimi locali interni in Ω a meno che non sia costante.

ESERCIZIO n. 16 Utilizzando quanto dimostrato nel precedente esercizio si trovino tutte le soluzioni delle equazioni:

$$\begin{cases} \Delta u(x,y) \ = \ 0 \qquad \qquad x^2+y^2 < 1 \\ u(x,y) \ = \ \left(\frac{xy}{x^2+y^2}\right)^2 \quad x^2+y^2 = 1 \\ u \in C(\overline{\Omega}) \cap C^2(\Omega) \qquad \Omega = \{x^2+y^2 < 1\} \end{cases} \begin{cases} \Delta u(x,y) \ = \ 0 \qquad \max\{|x|,|y|\} < \pi \\ u(x,y) \ = \ \sin x \cos y \qquad \max\{|x|,|y|\} = \pi \\ u \in C(\overline{\Omega}) \cap C^2(\Omega) \qquad \Omega = \{\max\{|x|,|y|\} < \pi\} \end{cases}$$

ESERCIZIO n.17 Siano $I \subseteq \mathbf{R}$ un intervallo, limitato o meno, $f:(x,y) \in I \times \mathbf{R} \mapsto f(x,y)$ una funzione per cui dato $y \in \mathbf{R}$ $\exists \min_{x \in I} f(x, y) := g(y)$ e si ponga $C(y) =: \{x \in I : f(x, y) = g(y) \in \mathbb{R} \}$ g(y).

a: Per I = [0, 1] si mostri un esempio in cui q non risulta derivabile in qualche punto, pur essendo f differenziabile infinite volte.

[Si consideri il sopragrafico di g in termini di quello di f]

b: - Se $y \mapsto f(x,y)$ è continua si provi che: $o(1) \ge g(y+h) - g(y)$, per $h \to 0$ - se poi esiste $\frac{\partial f}{\partial y}$ si provi: $h \cdot \frac{\partial f}{\partial u}(x,y) + o(h) \ge g(y+h) - g(y)$, per $h \to 0$ e $x \in C(y)$

c: Se f è continua su $I \times \mathbf{R}$, $(x_n, y_n) \to (x, y) \in I \times \mathbf{R}$ e $x_n \in C(y_n)$ si provi che $x \in C(y)$.

d: Si assuma che I = [a; b] sia limitato e chiuso.

- Si provi che se f è continua su $I \times \mathbf{R}$ anche q lo è su \mathbf{R} ;

[Si usi giustificatamente l'uniforme comtinuità di f sui sottoinsiemi limitati di $I \times \mathbf{R}$]

- (*) se poi vi è $\frac{\partial f}{\partial y}$ continua allora g ha derivata "in avanti" eguale al minimo di $\frac{\partial f}{\partial y}$ su C(y):

$$\exists \left(\lim_{h\to 0^+} \frac{g(y+h)-g(y)}{h} := \right) \frac{d^+}{dy} \min_x f(x,y) = \min_{x\in C(y)} \frac{\partial f}{\partial y}(x,y)$$
 [Ci si riduca ad usare il teorema del valor medio, uniforme continuità, sottosuccessioni e il risultato del terzo punto]

e: Si mostri, anche con una semplice esemplificazione grafica, che vi sono f differenziabili infinite volte su $\mathbf{R} \times \mathbf{R}$ per cui q non è continua né a destra né a sinistra.