Complementi di Analisi Matematica, Anno Accademico 2005-2006, Laurea Specialistica in Informatica

V.M. Tortorelli

III foglio di esercizi dal 7 marzo al 16 marzo 2006

Registro degli argomenti svolti e materiale relativo al corso possono essere reperiti in rete all'indirizzo http://www.dm.unipi.it/didactics/home.html ivi selezionando il nome del corso.

ESERCIZIO n. 1 Si studi l'esistenza dei limiti nei domini delle seguenti funzioni, al variare di eventuali parametri, e quando possibile se ne calcoli il valore:

$$\begin{array}{l} \frac{xy}{x^2+y^2}; \ \frac{\sin(xy)}{x^2+y^2}; \ x^2\log(x^2+y^2); \ \frac{x\sin y}{y\sin x}; \ \frac{x^2y^2}{x^2+y^4}; \ \frac{\sin(x|y|)}{x^2+|y|}; \ \frac{e^{x^2y}-x\sin(xy)-1}{(x^2+y^2)^2}: \ (x,y) \to (0,0); \\ \frac{x+y}{3x+2y}; \ \frac{x^3+y^2}{x^2y^2}; \ \frac{x^3+y^2}{x^3+y^3}; \ \frac{y^2+x+y}{x^2+x+y}; \ \frac{x^2y^2}{|x|^\alpha+|y|^\alpha}; \ \frac{P(x,y)}{Q(x,y)}: \ (x,y) \to (0,0), \ \alpha > 0, \ P, \ Q \ \text{polinomi nulli in } (0,0); \\ \frac{y}{x^2-y}: \ (x,y) \to (0,0); \ \frac{y}{x^2-y}: \ (x,y) \to (0,0); \\ x-y^2: \ x^2+y^2 \to \infty; \ x-y^2: \ x^2+y^2 \xrightarrow[y]{\geq |x|} \infty; \ \frac{x^2+y}{x^2+y^2+2xy}: \ x^2+y^2 \to \infty; \\ (*) \frac{x^\alpha y^\beta}{x^2+y^4}, \ \frac{x^\alpha+y^\beta}{x^2+y^4}: \ (x,y) \to (0,0), \ \alpha, \ \beta > 0. \end{array}$$

ESERCIZIO n. 2 Tra le seguenti implicazioni si provino quelle valide e si trovi un controesempio per ognuna di quelle false:

1.
$$\exists_{(x,y) \to (x_0,y_0)} f(x,y) \implies \exists \lim_{x \to x_0} \lim_{y \to y_0} f(x,y).$$

$$2. \ \exists \ \underset{x \to x_0}{\lim} \ \underset{y \to y_0}{\lim} \ f(x,y) = \underset{x \to x_0}{\lim} \ f(x,y) \implies \ \exists_{(x,y) \to (x_0,y_0)} \ f(x,y).$$

3.
$$\begin{cases} \exists \lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = \lambda_1 \\ \exists \lim_{y \to y_0} \lim_{x \to x_0} f(x, y) = \lambda_2 \\ \exists \lim_{(x,y) \to (x_0,y_0)} f(x,y) = \lambda_3 \end{cases} \Rightarrow \lambda_1 = \lambda_2 = \lambda_3.$$

ESERCIZIO n.4 a) Si studi la continuità delle seguenti funzioni:

$$\sqrt{|xy|}; \qquad \sqrt{|x|}\cos y; \qquad \int_{0}^{y} f(t,x)dt, \quad f \in \mathcal{C}(\mathbf{R}^{2}); \quad f(x,y) = \begin{cases} xy\frac{x^{2}-y^{2}}{x^{2}+y^{2}} & (x,y)\neq(0,0) \\ 0 & (x,y)=(0,0) \end{cases}
f(x,y) = \begin{cases} \frac{xy}{x^{2}+y^{2}} & (x,y)\neq(0,0) \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{xy^{3}}{x^{2}+y^{6}} & (x,y)\neq(0,0) \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} xy\frac{x^{2}-y^{2}}{x^{2}+y^{2}} & (x,y)\neq(0,0) \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{xy-\sin xy}{x^{6}+y^{6}} & (x,y)\neq(0,0) \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{xy^{2}}{x^{2}+y^{2}} & (x,y)\neq(0,0) \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}{x^{3}}e^{-\frac{y^{2}}{x^{4}}} & x\neq0 \\ 0 & (x,y)=(0,0) \end{cases}; \quad f(x,y) = \begin{cases} \frac{y^{2}}$$

b) Se ne studi la derivabilità nelle diverse direzioni.

ESERCIZIO n. 3 Se $f(x,y) = x^{x^{x^y}} + \log x(\arctan(\arctan(\arctan(\sin(\cos(xy) + \log(x+y))))))$, si calcoli la derivata rispetto a y nel punto (1,y) $\frac{\partial f}{\partial y}(1,y)$.

ESERCIZIO n. 4 a) Se $f: X \to Y$ è continua con inversa su tutto Y continua si provi che per $A \subset X$ si ha $f(\partial A) = \partial f(A)$. (si consiglia di usare il linguaggio degli spazi topologici piuttosto che quello degli spazi metrici).

- b) Si mostri con un esempio che se f è continua ed invertibile ma la sua inversa non è continua l'eguaglianza non è in generale vera. Quale inclusione è vera?
- c) Tenendo conto che nelle definizioni di misura di Peano Jordan e di misura esterna di Lebesgue gli iper-rettangoli cartesiani possono essere sostutuiti da ipercubi si provi che se fè una funzione da \mathbb{R}^n in se Lipschitziana allora trasforma insiemi di misura nulla in insiemi di misura nulla.
- d) Si provi che una funzione lineare L da \mathbb{R}^n in se trasforma un insieme A Peano Jordan misurabile in un insieme Peano Jordan misurabile. Ricordando che $mis(L[0;1]^n) = |detL|$ si provi che mis(L(A)) = |detL|mis(A).

ESERCIZIO n.5 Si definiscano gli insiemi :
$$\begin{cases} C_0 = [0;1] \\ C_{n+1} = \frac{1}{3}C_n \cup \left(\frac{2}{3} + \frac{1}{3}C_n\right) \end{cases}, C = \bigcap_{n=0}^{\infty} C_n$$
a) Si provi che C , é decrescente, C chiuso e non vuoto

- a) Si provi che C_n é decrescente, C chiuso e non vuoto
- b) Si provi che C è l'insieme dei numeri di [0;1] che ammettono un'espressione in base 3senza 1 ($x = \sum_{n \ge 1} \frac{a_n}{3^n}, \ a_n \in \{0, 2\}$).
- c) Si provi quindi che C non ha ne punti isolati ne punti interni, in particolare coincide con la sua frontiera, ed è più che numerabile.

ESERCIZIO n.6 Se $A \subseteq [0;1]$ e $a \in [0;1]$, si denoti con T_aA l'insieme $aA \cup ((1-a) + aA)$ $(e.g.\ C_n=T^n_{\frac{1}{3}}[0;1])$. Data $\{a_n\}_{n\in \mathbb{N}}$ una qualsiasi successione di numeri strettamente tra 0

ed
$$\frac{1}{2}$$
 si definisca
$$\begin{cases} D_0 = [0;1] \\ D_{n+1} = T_0 \cdots T_{a_n}[0;1] \end{cases}$$
, $D = \bigcap_{n=0}^{\infty} D_n$ a) Si provi che $D_{n+1} \subseteq D_n$, che D_n è composto da 2^n intervalli chiusi. Si calcoli la misura di D_n

- di D_n e si mostri una successione per cui tali misure convergno ad un numero strettamente compreso ta 0 ed 1.
- b) Si consideri la funzione $F_n:[0;1]\to[0;1]$ crescente, continua, affine a tratti, e nulla in 0 che trasforma C_n in D_n . Si provi che D è chiuso, senza punti isolati, senza punti interni e più che numerabile. Si mostri che se il limite delle misure dei D_n è non nullo allora D non è misurabile secondo Peano Jordan.
- c) Provare che la successione decrescente delle funzioni caratteristiche $x\mapsto \chi_{D_n}(x)$ dei D_n é di Cauchy rispetto alla seminorma $f \mapsto \int_0^1 |f(x)| dx$.
- d) Si provi che se vi fosse una funzione Riemann g integrabile per cui $\int_0^1 |g(x) \chi_{D_n}(x)| dx \to 0$ $0, n \to \infty$, allora sul complementare di ogni D_n , tranne al più un insieme di misura nulla secondo Peano. q dovrebbe essere nulla.

ESERCIZIO n.7 a) Si provi che data una funzione ψ Riemann integrabile $m^*\{x: |\psi(x)| \ge m\} \le \frac{1}{m} \int |\psi(x)| dx$

b) Ciò assodato, si completi quanto enunciato nell'ultimo punto del precedente esercizio mostrando che g deve essere eguale ad 1 su D tranne al più un insieme di misura di Peano nulla. Si concluda quindi mostrando che la seminorma $f \mapsto \int_0^1 |f(x)| dx$ non è completa.

ESERCIZIO n. 8 Si dica in quali sottoinsiemi di \mathbf{R} le seguenti successioni di funzioni, per $n \to +\infty$, convergono puntualmente, in quali uniformemente, giustificando la risposta:

$$x^{n} ; nx^{n} ; \frac{1}{1+x^{2n}}; \frac{n^{2}}{1+x^{2n}}; \frac{1}{1+(x-n)^{2}}; \min\{n; \frac{1}{x^{2}}\}; \frac{(1+x^{2})^{n+1}-1}{(1+x^{2})^{n}}; \frac{1}{x^{n}+nx}; \sin\frac{x}{n}; \sin\frac{x^{n}}{1+x^{2n}}; n^{2}xe^{-nx}; n^{\sqrt{x}}e^{-\frac{n}{x}}; e^{-n(e^{-nx})}; x^{\sqrt{n}}e^{-\frac{x}{n}}; |n+x|^{n+x}; e^{-nx}\log nx; (\sin x)^{n}; \left(\frac{1}{n}+\sin^{2}x\right)^{n}; \int_{1}^{n}\frac{e^{-xy}}{1+y^{2}}dy.$$

ESERCIZIO n.9 a) Per $n \in \mathbb{N}$ si definisca $f_n(x) = \frac{1}{n} (\arctan(nx+n) - \arctan x), x \in \mathbb{R}$.

- Si studi la convergenza puntuale ed uniforme sui sottoinsiemi di \mathbf{R} della successione $(f_n)_{n \in \mathbf{N}}$.
- Si studi la convergenza puntuale ed uniforme sui sottoinsiemi di ${\bf R}$ della serie $\sum_n f_n$.
- b) Si studi la convergenza puntuale ed uniforme sui sottoinsiemi di \mathbf{R} della successione di funzioni: $\frac{n^2 \sin^2\left(\frac{x}{n}\right)}{1 + n^2 \sin^2\left(\frac{x}{n}\right)}.$

c) Per
$$n \in \mathbb{N}$$
 si definisca: $g_n(x) = \begin{cases} \frac{x^3(\cos x)^n}{1-\cos x} & x \neq 0 \\ 0 & x = 0 \end{cases}$, $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$

Si studi la convergenza puntuale ed uniforme della successione di funzioni $(g_n)_{n\in\mathbb{N}}$.

d) Si studi la convergenza puntuale ed uniforme sui sottoinsiemi dei domini specificati delle successione di funzioni $\{f_n\}_{n\in\mathbb{N}}$, e detto f il limite si studi la convergenza puntuale ed uniforme e totale della serie $\sum_n (f_n - f)$:

$$\begin{cases} f_0(x) = 1 , & x \in [0; 1] \\ f_{n+1}(x) = \sqrt{x f_n(x)} \end{cases} \begin{cases} f_0(x) = \cos x , & x \in \mathbf{R} \\ f_{n+1}(x) = \cos (f_n(x)) \end{cases} \begin{cases} f_0(x) , & x \in [0; A] \\ f_{n+1}(x) = \int_0^x f_n(y) dy \end{cases}$$

ESERCIZIO n. 10 Provare che la successione di funzioni: $f_n(x) = (\sin(nx))^{2n}$, $x \in [0; 2\pi]$ non converge in tutti i punti del dominio. Si studi la convergenza verso zero delle successioni numeriche date dai seguenti integrali:

$$\int_0^{2\pi} f_n(x)dx , \quad \int_0^{2\pi} n f_n(x)dx.$$

ESERCIZIO n. 11 Dopo aver giustificato che le integrande sono integrabili si calcolino gli integrali giustificando la risposta: $\int_{\log 2}^{\log 3} \left(\sum_n n e^{-nx} \right) dx \;, \quad \int_0^\infty \left(\sum_n \frac{1}{4^n + x^2} \right) dx.$

DEFINIZIONE: data $f_n: X \to (V, ||v||)$ successione di funzioni limitate a valori in uno spazio normato si dice che $\sum_{n \in \mathbb{N}} f_n(x)$ converge totalmente se la serie numerica $\sum ||f(x)||$ converge. Se lo spazio è completo allora la convergenza totale implica la convergenza in norma ma non viceversa.

ESERCIZIO n. 12 Si dica in quali sottoinsiemi di \mathbf{R} le seguenti serie di funzioni, convergono puntualmente, in quali uniformemente, in quali totalmente, giustificando la risposta:

$$\sum_{n} \frac{1}{1+x^{n}}; \quad \sum_{n} \frac{1}{x^{n}+nx}, \quad x > 0; \quad \sum_{n} \frac{x^{3}}{1+x^{2n}}; \quad \sum_{n} \frac{x^{n}}{1-x^{n}}; \quad \sum_{n} \sin \frac{x}{2^{n}}; \quad \sum_{n} \frac{\sin nx}{n^{2}}$$

$$\sum_{n} n(\sin x)^{n}; \quad \sum_{n} \int_{1}^{\infty} e^{-xny^{2}} dy; \quad \sum_{n} (\arctan(nx+n) - \arctan nx); \quad (*) \quad \sum_{n} \frac{1}{n+(x-n)^{2}}, \quad x \in \mathbf{R}.$$

ESERCIZIO n.13 a) Si discuta la convergenza puntuale di ogni funzione tra quelle elencate.

- b) Se ne studi la convergenza uniforme: sul rispettivo dominio di definizione, sulle palle aperte, chiuse e sui complementari di queste.
- c) Quando specificato se ne studi la convergenza rispetto alle norme o distanze indicate.
- (c) $x^{\sqrt{n}}e^{-\frac{x}{n}}$

- (a) $n^{\sqrt{x}}e^{-\frac{n}{x}}$ (b) $e^{-n(e^{-nx})}$, $\int_{-\infty}^{0} |f|$ (c) $x^{\sqrt{n}}e^{-nx}$ (d) $|n+x|^{n+x}$ (e) $\left(\frac{1}{n}+\sin^2x\right)^n$, $\int_{0}^{2\pi}|f|$ (f) $\sin\frac{x}{n}$ (g) $e^{-nx}\log nx$, $\int_{0}^{+\infty}|f|$ (h) $\sin\frac{x^n}{1+x^{2n}}$, $\int |f|$

- (i) $\frac{2^n(x+y)}{1+n2^n(x^2+y^2)}$
- (j) $f_n := \frac{1}{x^n + y^n + ny}, x, y > 0$ (k) $\sum_n f_n$
- si studi anche la serie numerica $\sum_{n} \sup f_n$

- (1) $\sum_{n} n(\sin x)^{n}$ (0) $\int_{1}^{n} \frac{e^{-xy}}{1+y^{2}} dy$
- (m) $\sum_{n} e^{n(\Re ez \frac{z}{2} + 1)}$ (n) $\sum_{n} \int_{1}^{+\infty} e^{-xy^{2}} dy$ (p) $\sum_{n} \frac{|x y|^{n}}{n!} \log(n + x^{2} + y^{2})$

ESERCIZIO n.14 Studiare la continuitá delle seguenti funzioni tra spazi normati:

- a) $Id: (C^1[0;1], \int |f| + \int |f'|) \to (C[0;1], \sup |f|)$
- b) Data $f: \mathbf{R}^n \to \mathbf{R}$, se $h \in \mathbf{R}^n$, si definisce $\tau_h f$ la funzione $x \mapsto f(x+h)$, e quindi si definisce l'operatore τf da \mathbf{R}^n a valori funzioni dato dall'associazione $\tau f: h \mapsto \tau_h f$:
 - data f limitata $\tau f: \mathbf{R}^n \to (\mathcal{B}(\mathbf{R}^n), \sup |f|)$, ove $\mathcal{B}(\mathbf{R}^n)$ sono le funzioni limitate.
 - data f limitata uniformemente continua e limitata
 - $\tau f: \mathbf{R}^n \to (\mathcal{UCB}(\mathbf{R}^n), \sup |f|) \ (\mathcal{UCB}(\mathbf{R}^n) \text{ funzioni uniformemente continue e limitate}).$
 - data f continua e con norma L^p , $(\int |f|^p dx)^{\frac{1}{p}}$ finita, $\tau f: \mathbf{R} \to (\mathcal{C}(\mathbf{R}), |f|_{L^p})$.
- c) $P: (C[0;1], \int |f|) \to (C[0;1], \sup |f|)$, ove Pf é la funzione $x \mapsto \int_0^x f^2(s) ds$.
- d) $Id: (C[0;1],\sup|f|) \to (C[0;1],\underline{f|f|})$, e) $Id: (C[0;1],f|f|) \to (C[0;1],\sup|f|)$
- f) $Id: (C[0;1], \int |f|) \to \left(C[0;1], \sqrt{\int |f|^2}\right)$ g) $\frac{d}{dx}: (C^1[0;1], \sup |f|) \to (C[0;1], \int |f|)$
- h) $\frac{d}{dx}: (C^1[0;1], \int |f| + \hat{\int} |f'|) \to (C[0;1], \sup |f|)$

ESERCIZIO n.15 Per $n \in \mathbf{Z}$ sia $e_n(t) = \frac{1}{\sqrt{2\pi}}e^{int}, t \in [0; 2\pi]$. Per $f \in C([0; 2\pi], \mathbf{C})$ si ponga $c_n = \int f(t) \overline{e_n(t)} dt =: (f \cdot e_n)$

- a) Si provi $(e_m \cdot e_n) = \delta_{mn}$, $|S_N|^2 = \sum_{n=-N}^N |c_n|^2 \le \int_0^{2\pi} |f(t)|^2 dt$, e che per ogni successione $\gamma_n \in \mathbf{C}$ con $\sum |\gamma_n|^2 < \infty$ si ha $S_N = \sum_{n=-N}^N e_n \gamma_n$. è di Cauchy rispetto alla norma b) Per funzioni reali si considerino $p_0(t) = \frac{1}{\sqrt{2\pi}}, p_n(t) = \frac{1}{\sqrt{\pi}} \cos nx, d_n(t) = \frac{1}{\sqrt{\pi}} \sin nx, n > 0$ e
- $a_n = \int f(t)p_n(t)dt$, $b_n = \int f(t)d_n(t)dt$ e si provino gli analoghi.

ESERCIZIO n.16 a) Provare
$$\sum_{n=0}^N a_n b_n = b_N \sum_{n=0}^N a_n - \sum_{n=0}^{N-1} (b_{n+1} - b_n) \sum_{k=0}^n a_k$$

- b) Provare che se a_n ha somme limitate (cioè sup_N $|\sum^N a_n| \le C < \infty$) e b_n è infinitesima con variazione totale finita (cioè $\sum^{\infty} |b_{n+1} - b_n| < \infty$, e.g. decrescente) allora $\sum a_n b_n$ converge.
- c) Provare che se a_n ha serie convergente $(\exists \sum_{n=0}^{\infty} a_n)$ e b_n è solo con variazione totale finita allora $\sum a_n b_n$ converge.
- d) Con le notazioni del precedente esercizio se f(t) = t si studi la convergenza uniforme nei sottoinsiemi di $[0; 2\pi]$ della serie di funzioni $S_N = \sum_{n=-N}^N e_n c_n$.
- e) Se f(t)=t si studi la convergenza uniforme nei sottoinsiemi di $[-\pi;\pi]$ della serie di funzioni $S_N = \sum_{n=-N}^N e_n(t) \int_{-\pi}^{\pi} t \overline{e_n(t)} dt$.
- f) Se $f(t) = t^2 2\pi t$ si studi la convergenza uniforme nei sottoinsiemi di $[0; 2\pi]$ della serie di funzioni $S_N = \sum_{n=-N}^N e_n c_n$.

ESERCIZIO n.17 a) Usando il teorema di Stone Weiestrass astratto (un'algebra di funzioni continue chiusa per coniugio che separi i punti e contenga le costanti è densa) si provi che lo spazio vettoriale generato da e^{int} , $n \in \mathbf{Z}$ è denso con la norma uniforme nello spazio delle funzioni continue periodiche a valori complessi.

b) Si deduca che lo spazio vettoriale generato dalle costanti e dalle funzioni $\cos nt$, $\sin nt$ è denso rispetto alla norma $\left(\int_0^{2\pi}|f(t)|^2dt\right)^{\frac{1}{2}}$ nelle funzioni con quadrato integrabile c) Si provi che $\int_0^{2\pi}|f(t)|^2dt=\frac{1}{2\pi}\lim_n\sum_{-n}^n|\int_0^{2\pi}f(t)e^{-int}dt|^2$

c) Si provi che
$$\int_0^{2\pi} |f(t)|^2 dt = \frac{1}{2\pi} \lim_n \sum_{n=1}^n |\int_0^{2\pi} f(t) e^{-int} dt|^2$$

ESERCIZIO n.18 Si consideri lo spazio vettoriale V delle funzioni continue a media nulla su [0;1] (i.e. $\int_0^1 v(t)dt = 0$). Siano $(Cv)(x) = \int_0^x \int_0^y v(t)dtdy - x \int_0^1 \int_0^y v(t)dtdy$, $(Bv)(x) = (Cv)(x) - \int_0^1 (Cv)(t)dt$

- a) Si provi che l'immagine di B sono le funzioni derivabili due volte con continuità, periodiche e a media nulla con derivate prime periodiche e a media nulla. Si scriva l'inversa di B.
- b) Si trovino gli autovalori e le relative autofunzioni di B,
- c) Si mostri che B è simmetrico rispetto al prodotto scalare $(f,g) \mapsto \int_0^1 f(t)g(t)dt$
- d) Si provi che B trasforma limitati rispetto alla norma $(\int f^2(t)dt)^{\frac{1}{2}}$ in relativamente compatti rispetto alla norma uniforme.

Una serie del tipo $\sum a_n(z-z_0)^n$, $a_n, z \in \mathbb{C}$ si dice serie di potenze di centro z_0 . Se $\sum a_n w^n$ converge allora $\sum_n |a_n| r^n$ converge per ogni r < |w|, e quindi $\sum a_n z^n$ converge totalmente ed uniformemente nelle palle di centro 0 e raggio strettamente minore di |w|Se per qualche w la serie converge $\sup\{r: \sum |a_n| r^n \text{converge}\}\ \text{si dice } raggio\ di\ convergenza,$ altrimenti si dice che la serie ha raggio di convergenza nullo.

Dal criterio della radice per le serie a termini positivi si deduce che il reciproco di lim sup_{n \to \infty} $\sqrt[n]{|a_n|}$ è eguale al raggio di convergenza ($\limsup = \lim_{n \to \infty} \sup_{k \ge n} = \inf_{n \in \mathbf{N}} \sup_{k \ge n})$

ESERCIZIO n. 19 Calcolare le serie
$$\sum_{n} \frac{x^{4n-1}}{4n-1}$$
, $\sum_{n} \frac{x^{4n}}{4n-3}$, $\sum_{n} \frac{(-x)^{n+1}}{n(n+1)}$.

ESERCIZIO n.20 Si studi il dominio di convergenza delle serie di potenze

$$\sum_{n} x^{4n-2} , \sum_{n} \frac{x^{n}}{n(n+1)} , \sum_{n} x^{n} 10^{n} , \sum_{n} \frac{(-x)^{n}}{n} , \sum_{n} \frac{x^{n}}{n10^{n-1}} , \sum_{n} \frac{x^{n} \sin n!}{n(n+4)} ,$$

$$\sum_{n} x^{n} n! , \sum_{n} x^{2(n-1)} 2^{n-1} , \sum_{n} \frac{x^{n}}{n(n+1)} , \sum_{n} \frac{(-x)^{n}}{n - \log n} , \sum_{n} \frac{(n!)^{2} x^{n}}{(2n)!} , \sum_{n} x^{n!} , \sum_{n} 2^{n} x^{n^{2}} .$$

ESERCIZIO n. 21 Si studi la convergenza puntuale, uniforme e totale delle seguenti serie di funzioni: $\sum_{n} \frac{\log(1+nx)}{nx^n}$, $\sum_{n} \frac{a^n}{n^x} \stackrel{\circ}{(a>1)}$, $\sum_{n} \frac{a^n}{n^x} (a<1)$, $\sum_{n} x^{n^2} a^n$, $\sum_{n} \frac{\log n}{n^x}$

ESERCIZIO n. 22 Si studi il seguente problema di Cauchy per serie di potenze e si discuta

la convergenza della serie determinata:
$$\left\{ \begin{array}{l} (1+x^2)y''(x)+y(x)=0\ , \ \ x\in {\bf R} \\ \\ y(0)=\ y'(0)=1 \end{array} \right.$$

ESERCIZIO n.23 Si studino le seguenti serie di potenze in campo complesso all'interno del dominio di convergenza e si calcoli il limite delle prime due:

$$\sum_{n} z^{n} , \quad \sum_{n} \frac{z^{n}}{n(n+1)} , \quad \sum_{n} \frac{z^{n}}{n!} , \quad (*) \quad \sum_{n} \binom{\alpha}{n} z^{n} \ (\alpha \in \mathbf{C}).$$