ANALISI MATEMATICA II-A

CORSO DI LAUREA IN FISICA

Prova scritta del 20/7/2009

TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ESERCIZIO 1. (Punti 8)

Calcolare mediante la formula di Taylor il valore del seguente limite

$$\lim_{x \to 0+} \frac{\left[\sin(\sqrt{1+4x} - 1)\right]^2 - \log(1+4x^2)}{e^{-2x^2} - \cos 2x}$$

ESERCIZIO 2. (Punti 8)

Si consideri la funzione

$$f(x) = \log \frac{x^2 + x + 16}{x},$$

determinare:

- (a) campo di esistenza, limiti agli estermi del C.E. ed eventuali asintoti,
- (b) intervalli di monotonia ed eventuali punti di massimo e di minimo relativo,
- (c) intervalli di concavità o convessità ed eventuali flessi.

Tracciare un grafico approssimato di f.

ESERCIZIO 3. (Punti 8)

Dato il problema di Cauchy

$$\begin{cases} u'(t) = t^4 \left[\sin u(t)\right]^4 \\ u\left(\frac{15}{2}\right) = \frac{\pi}{2}, \end{cases}$$

- (i) Determinare l'espressione che definisce in maniera implicita la soluzione u.
- (ii) Determinare l'intervallo massimale di esistenza di u.
- (iii) Calcolare $\lim_{x \to +\infty} u(t)$.
- (iii) Tracciare un grafico approssimato di u.

ESERCIZIO 4. (Punti 8)

Stabilire il comportamento delle serie seguenti

(a)
$$\sum_{n=1}^{+\infty} \frac{n^2}{1+n^3} \frac{3n+4(\log n)^2}{2n+3(\log n)^2}, \quad \text{(b)} \sum_{n=1}^{+\infty} \left(\sqrt[n]{n+3}-\sqrt[n]{n+2}\right) x^n, \ x \in \mathbb{R}.$$

SOLUZIONI

ESERCIZIO 1. (Punti 8)

Calcolare mediante la formula di Taylor il valore del seguente limite

$$\lim_{x \to 0+} \frac{\left[\sin(\sqrt{1+4x} - 1)\right]^2 - \log(1+4x^2)}{e^{-2x^2} - \cos 2x}$$

Svolgimento.

Consideriamo gli sviluppi di Taylor, con punto iniziale $x_0 = 0$, delle funzioni che compaiono nell'espressione del limite cominciando con la radice quadrata.

$$\sqrt{1+t} = 1 + \frac{1}{2}t - \frac{1}{8}t^2 + o(t^2)$$
, posto $t = 4x$, abbiamo $\sqrt{1+4x} = 1 + 2x - 2x^2 + o(x^2)$.

da cui

$$\sqrt{1+4x} - 1 = 2x - 2x^2 + o(x^2).$$

$$\sin^2 t = \left[t - \frac{1}{6}t^3 + o(t^3)\right]^2 = t^2 - \frac{1}{3}t^4 + o(t^4),$$

posto
$$t = 2x - 2x^2 + o(x^2)$$
, abbiamo

$$\sin^2(\sqrt{1+4x}-1) = [2x-2x^2+o(x^2)]^2 - \frac{1}{3}[2x-2x^2+o(x^2)]^4 + o([2x-2x^2+o(x^2)]^4) = 4x^2-8x^3+o(x^3).$$

Perché

$$[2x - 2x^{2} + o(x^{2})]^{2} = 4x^{2} - 8x^{3} + 4x^{4} + o(x^{4}) + 4xo(x^{2}) - 4x^{2}o(x^{2}) =$$

$$= 4x^{2} - 8x^{3} + o(x^{3}) + o(x^{4}) + o(x^{3}) + o(x^{4}) = 4x^{2} - 8x^{3} + o(x^{3});$$

$$[2x - 2x^{2} + o(x^{2})]^{4} = 16x^{4} + o(x^{4}) = o(x^{3})$$

$$\log(1+t) = t - \frac{1}{2}t^2 + o(t^2)$$
, posto $t = 4x^2$, abbiamo $\log(1+4x^2) = 4x^2 - 8x^4 + o(x^4)$,

$$e^{t} = 1 + t + \frac{1}{2}t^{2} + o(t^{2})$$
, posto $t = -2x^{2}$, abbiamo $e^{-2x^{2}} = 1 - 2x^{2} + 2x^{4} + o(x^{4})$

$$\cos t = 1 - \frac{1}{2}t^2 + \frac{1}{24}t^4 + o(t^4)$$
, posto $t = 2x$, abbiamo $\cos 2x = 1 - 2x^2 + \frac{2}{3}x^4 + o(x^4)$.

Quanto ottenuto finora ci permette di scrivere

$$\left[\sin(\sqrt{1+4x}-1)\right]^2 - \log(1+4x^2) = 4x^2 - 8x^3 + o(x^3) - 4x^2 + 8x^4 + o(x^4) = -8x^3 + o(x^3)$$
$$e^{-2x^2} - \cos 2x = 1 - 2x^2 + 2x^4 + o(x^4) - 1 + 2x^2 - \frac{2}{3}x^4 + o(x^4) = \frac{4}{3}x^4 + o(x^4)$$

Sostituiamo nel limite, applichiamo il principio di sostituzione degli infinitesimi e semplifichiamo

$$\lim_{x \to 0+} \frac{\left[\sin(\sqrt{1+4x}-1)\right]^2 - \log(1+4x^2)}{e^{-2x^2} - \cos 2x} = \lim_{x \to 0+} \frac{-8x^3 + o(x^3)}{\frac{4}{3}x^4 + o(x^4)} = -6 \lim_{x \to 0+} \frac{1}{x} = -\infty.$$

ESERCIZIO 2. (Punti 8)

Si consideri la funzione

$$f(x) = \log \frac{x^2 + x + 16}{x},$$

determinare:

- (a) campo di esistenza, limiti agli estermi del C.E. ed eventuali asintoti,
- (b) intervalli di monotonia ed eventuali punti di massimo e di minimo relativo,
- (c) intervalli di concavità o convessità ed eventuali flessi.

Tracciare un grafico approssimato di f.

Svolgimento.

Il campo di esistenza della funzione è dato dall'insieme degli x dove l'argomento del logaritmo è positivo. Osserviamo che il discriminante al numeratore della frazione dell'argomento del logaritmo è negativo, quindi $x^2 + x + 16 > 0$ per ogni valore di $x \in \mathbb{R}$, si ha dunque che $C.E = \{x : x > 0\}$.

$$\lim_{x \to 0+} f(x) = +\infty, \quad \lim_{x \to +\infty} f(x) = +\infty$$

Per verificare se esistono asintoti, per $x \to +\infty$, calcoliamo

$$\lim_{x \to 0+} \frac{f(x)}{x} = 0$$

Non esistono dunque asintoti.

Determiniamo gli intervalli di monotonia di f calcolando la sua derivata prima.

$$f'(x) = \frac{x^2 - 16}{x(x^2 + x + 16)}$$

Gli zeri di f'(x) sono $x_1 = -4$ e $x_2 = 4$. Il polinomio al numeratore risulta negativo per valori interni e positivo per quelli esterni. D'altra parte la funzione è definita solo per x > 0, e quindi possimo concludere, tenuto conto del segno del denominatore che

f'(x) < 0 per $x \in (0,4)$, il che implica che la funzione in questo intervallo decresce;

f'(x) > 0 per $x \in (0, +\infty)$, il che implica che la funzione in questo intervallo è crescente.

Il punto $x_2 = 4$ è di minimo relativo (anche assoluto) per f.

Determiniamo gli intervalli di concavità e di convessità per f calcolando la sua derivata seconda.

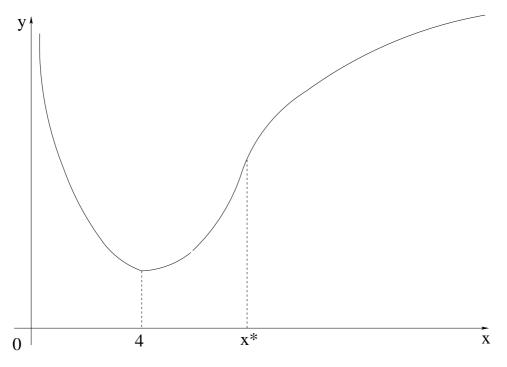
$$f''(x) = \frac{-x^4 + 64x^2 + 32x + 256}{x^2(x^2 + x + 16)^2}$$

Il segno di f'' è determinato dal numeratore, che scriveremo quindi nel modo seguente

$$-x^4 + 64x^2 + 32x + 256 = (x+8)(-x^3 + 8x^2 + 32)$$

Per x>0 si ha x+8>0. Studiamo il segno di $g(x)=-x^3+8x^2+32$. Essendo $g'(x)=-3x^2+16x$, si ha che g'(x)>0 per $x<\frac{8}{3}$ e g'(x)<0 per $x>\frac{8}{3}$. La funzione g risulta crescente per $0< x<\frac{8}{3}$ e decrescente per $x>\frac{8}{3}$. In particolare il punto $x=\frac{8}{3}$ è di massimo relativo per g. Infine $\lim_{x\to+\infty}g(x)=-\infty$. In base a queste considerazioni possiamo stabilire che esiste uno ed un solo punto $x^*>\frac{8}{3}$ dove $g(x^*)=0$, ovvero $f''(x^*)=0$. Per $0< x< x^*$ si ha f''(x)>0, mentre per $x>x^*$ si ha f''(x)<0. f risulta dunque convessa sull'intervallo $(0,x^*)$ e concava su $(x^*,+\infty)$. Il punto x^* risulta punto di flesso per f. Si osservi che $x^*>4$ perché f''(4)>0.

Possiamo ora utilizzare tutte le osservazioni fatte sopra tracciando un grafico approssimato di f.



ESERCIZIO 3. (Punti 8)

Dato il problema di Cauchy

$$\begin{cases} u'(t) = t^4 \left[\sin u(t)\right]^4 \\ u\left(\frac{15}{2}\right) = \frac{\pi}{2}, \end{cases}$$

- (i) Determinare l'espressione che definisce in maniera implicita la soluzione u.
- (ii) Determinare l'intervallo massimale di esistenza di u.
- (iii) Calcolare $\lim_{x\to +\infty} u(t)$.
- (iii) Tracciare un grafico approssimato di u.

Svolgimento.

Posto $A(t) = t^4$ e $B(u) = \sin^4 u$, osserviamo che il dato iniziale è compreso tra due radici di B, ovvero tra 0 e π , mentre A è definita su tutto \mathbb{R} . La soluzione esisterà e sará unica su tutto \mathbb{R} . Per calcolarla consideriamo l'equazione

$$\frac{u'(t)}{\sin^4 u(t)} = t^4,$$

ed integriamo tra $\frac{15}{2}$ e t:

$$\int_{\frac{15}{2}}^t \; \frac{u'(s)}{\sin^4 u(s)} \, ds \, = \, \int_{\frac{15}{2}}^t \; s^4 \; ds.$$

Al secondo membro si ha

$$\int_{\frac{15}{2}}^{t} s^4 ds = \left[\frac{1}{5}t^5\right]_{\frac{1}{15}}^{t} = \frac{1}{5}t^5 - \frac{1}{5}\frac{(15)^5}{32}.$$

Al primo membro effettuiamo il cambiamento di variabile r=u(t), e quindi per $t=\frac{15}{2}$ $r=\frac{\pi}{2}$.

$$\int_{\frac{15}{2}}^{t} \frac{u'(s)}{\sin^{4} u(s)} ds = \int_{\frac{\pi}{2}}^{u(t)} \frac{1}{\sin^{4} r} dr = \int_{1}^{\tan \frac{u(t)}{2}} \frac{(1+\sigma^{2})^{4}}{16 \sigma^{4}} \frac{2}{1+\sigma^{2}} d\sigma = \int_{1}^{\tan \frac{u(t)}{2}} \frac{1+3\sigma^{2}+3\sigma^{4}+\sigma^{6}}{8 \sigma^{4}} d\sigma.$$

Nel 'integrale sopra abbiamo effettuato il cambiamento di variabile:

$$\tan \frac{r}{2} = \sigma$$
, quindi $dr = \frac{2}{1+\sigma^2} d\sigma$, $\sin r = \frac{2r}{1+\sigma^2}$.

Procedendo nel calcolo abbiamo

$$\int_{1}^{\tan \frac{u(t)}{2}} \frac{1 + 3\sigma^{2} + 3\sigma^{4} + \sigma^{6}}{8\sigma^{4}} d\sigma = \int_{1}^{\tan \frac{u(t)}{2}} \left(\frac{1}{\sigma^{4}} + 3\frac{1}{\sigma^{2}} + 3 + \sigma^{2}\right) d\sigma = \frac{1}{8} \left[-\frac{1}{3} \frac{1}{\sigma^{3}} - \frac{3}{\sigma} + 3\sigma + \frac{1}{3}\sigma^{3}\right]_{1}^{\tan \frac{u(t)}{2}} = \frac{-1}{24} \frac{1}{\tan^{3} \frac{u(t)}{2}} - \frac{3}{8} \frac{1}{\tan \frac{u(t)}{2}} + \frac{3}{8} \tan u(t) + \frac{1}{24} \tan^{3} \frac{u(t)}{2} - \frac{35}{12}.$$

In definitiva la soluzione del problema di Cauchy proposto è data implicitamente dall'espressione:

$$\frac{-1}{24} \frac{1}{\tan^3 \frac{u(t)}{2}} - \frac{3}{8} \frac{1}{\tan \frac{u(t)}{2}} + \frac{3}{8} \tan u(t) + \frac{1}{24} \tan^3 \frac{u(t)}{2} - \frac{35}{12} = \frac{1}{5} t^5 - \frac{1}{5} \frac{(15)^5}{32}.$$

Per risolvere il punto (iii) deduciamo, dall'equazione, che la derivata prima dalla soluzione è sempre positiva in quanto il termine al secondo membro, $t^4 \sin^4 u(t)$ è sempre maggiore di zero. Di conseguenza u è monotona crescente. Per il teorema di regolarità delle funzioni monotone u ammette limite sia per x che tende a $+\infty$ sia per x che tende a $-\infty$. Tale limite è un numero reale l in quanto u è limitata tra 0 e π , che sono gli zeri di B (vedi le considerazioni che abbiamo fatto all'inizio sulla tesi del teorema di essitenza di soluzioni delle equazioni differenziali a variabili separabili).

Per calcolare l integriamo primo e secondo membro dell'equazione di partenza

$$u(t) - \frac{15}{2} = \int_{\frac{15}{2}}^{t} u'(s) ds = \int_{\frac{15}{2}}^{t} s^4 \left[\sin u(s) \right]^4 ds$$

ovvero

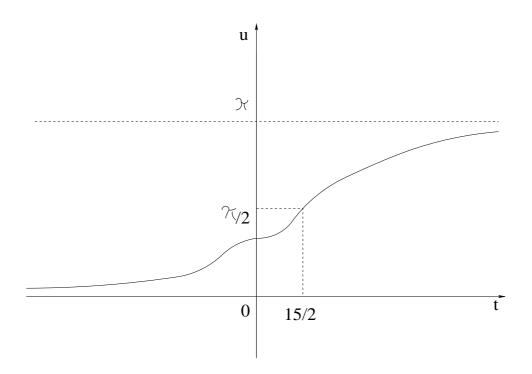
$$u(t) = \frac{15}{2} + \int_{\frac{15}{2}}^{t} s^4 \left[\sin u(s) \right]^4 ds \tag{1}$$

Se fosse $\lim_{x\to +\infty} u(t) = l \text{ con } 0 < l < \pi \text{ si avrebbe } \lim_{x\to +\infty} \sin^4 u(t) = \sin^4 l \neq 0$. Ma in questo caso in (1) il primo membro tenderebbe al valore finito l mentre il secondo membro andrebbe a $+\infty$. Infatti, dato che $\sin^4 u(t)$ tende a $\sin^4 l$ per t che tende a $+\infty$, esisterebbe t_0 tale che per ogni $t > t_0 \sin^4 u(t) > \frac{\sin^4 l}{2}$. In tal caso in (1) si avrebbe

$$u(t) = \frac{15}{2} + \int_{\frac{15}{2}}^{t} s^4 \left[\sin u(s) \right]^4 ds > \int_{\frac{15}{2}}^{t} \frac{15}{2} \frac{\sin^4 l}{2} > \left(t - \frac{15}{2} \right) \frac{15}{2} \frac{\sin^4 l}{2} \xrightarrow{x \to +\infty} +\infty.$$

Assurdo perché u è limitata. Quindi L'unica possibilità è che $l=\pi$. Nello stesso modo si ragione se $x\to -\infty$ per stabilire che l=0.

Il grafico di u è il seguente.



ESERCIZIO 4. (Punti 8)

Stabilire il comportamento delle serie seguenti

(a)
$$\sum_{n=1}^{+\infty} \frac{n^2}{1+n^3} \frac{3n+4(\log n)^2}{2n+3(\log n)^2}, \quad \text{(b)} \quad \sum_{n=1}^{+\infty} \left(\sqrt[n]{n+3}-\sqrt[n]{n+2}\right) x^n, \ x \in \mathbb{R}.$$

Svolgimento.

(a)

Il termine generale della serie è composto dal prodotto di due successioni $\{b_n\}_{n\in\mathbb{N}}, \{c_n\}_{n\in\mathbb{N}\setminus\{0\}}$.

$$b_n = \frac{n^2}{1+n^3}, \quad c_n = \frac{3n+4(\log n)^2}{2n+3(\log n)^2}.$$

Osserviamo che valgono le seguenti diseguaglianze:

$$\forall n \in \mathbb{N} \setminus \{0\} : b_n = \frac{n^2}{1+n^3} \ge \frac{1}{2n}, \quad c_n = \frac{3n+4(\log n)^2}{2n+3(\log n)^2} > 1.$$

Da questo deduciamo che vale la maggiorazione:

$$\forall n \in \mathbb{N} \setminus \{0\}: \ b_n \cdot c_n = \frac{n^2}{1+n^3} \ \frac{3n+4(\log n)^2}{2n+3(\log n)^2} \ge \frac{1}{2n}$$

Da questo e dal teorema del confronto, per le serie a termini positivi, deduciamo che la serie data è divergente in quanto il suo termine generale è minorato dal termine generale della serie

$$\sum_{i=1}^{+\infty} \frac{1}{2n} = \frac{1}{2} \sum_{i=1}^{+\infty} \frac{1}{n} = +\infty,$$

perché quest'ultima è una serie armonica con esponente $\alpha=1.$

(b)

Consideriamo la convergenza assoluta della serie applicando il criterio della radice ennensima al valore assoluto del termine generale della serie:

$$\lim_{n \to +\infty} \sqrt[n]{\sqrt[n]{n+3} - \sqrt[n]{n+2} |x|^n} = \lim_{n \to +\infty} \sqrt[n]{\sqrt[n]{n+3} - \sqrt[n]{n+2} |x|} = |x|.$$

Perché il limite da calcolare si può scrivere nella forma

$$\lim_{n \to +\infty} \left[\left(e^{\frac{1}{n} \log(3+n)} - e^{\frac{1}{n} \log(2+n)} \right) \right]^{\frac{1}{n}} = \lim_{n \to +\infty} \left[e^{\frac{1}{n} \log(2+n)} \left(e^{\frac{1}{n} \log(3+n) - \frac{1}{n} \log(2+n)} - 1 \right) \right]^{\frac{1}{n}}$$

Osserviamo che $\lim_{n\to+\infty}e^{\frac{1}{n}\log(2+n)}=1$. Inoltre l'argomento dell'esponenziale contenuto nella parentesi può essere sviluppato come segue:

$$\frac{1}{n}\log(3+n) - \frac{1}{n}\log(2+n) = \frac{1}{n}\left[\log(3+n) - \log(2+n)\right] =$$

$$= \frac{1}{n}\left[\log(2+n) + \log\left(1 + \frac{1}{n+2}\right) - \log(2+n)\right] = \frac{1}{n}\log\left(1 + \frac{1}{n+2}\right) =$$

$$= \frac{1}{n}\left[\frac{1}{n+2} + o\left(\frac{1}{n+2}\right)\right] = \frac{1}{n(n+2)} + o\left(\frac{1}{n^2}\right)$$

Perché

$$o\left(\frac{1}{n}\right) = o\left(\frac{1}{n+2}\right)$$

Tenuto conto degli sviluppi eseguiti sopra, e del principio di sostituzine degli infinitesimi:

$$\lim_{n \to +\infty} \left\{ \left[\frac{1}{n(n+2)} + o\left(\frac{1}{n^2}\right) \right] \right\}^{\frac{1}{n}} = \lim_{n \to +\infty} e^{\frac{1}{n} \log\left[\frac{1}{n(n+2)} + o\left(\frac{1}{n^2}\right)\right]} = 1$$

Tornando alla serie e tenuto conto del criterio del limite possiamo affermare che:

se x > 1 la serie diverge, perché in questo caso |x| = x,

se |x| < 1 la serie converge assolutamente e quindi converge.

Se x = 1 consideriamo

$$\sum_{n=1}^{+\infty} \sqrt[n]{n+3} - \sqrt[n]{n+2}$$

Se effettuiamo di nuovo gli sviluppi visti sopra si ha che

$$\sqrt[n]{n+3} - \sqrt[n]{n+2} = e^{\frac{1}{n}\log(3+n)} - e^{\frac{1}{n}\log(2+n)} = e^{\frac{1}{n}\log(2+n)} \left(e^{\frac{1}{n}\log(3+n) - \frac{1}{n}\log(2+n)} - 1 \right) = e^{\frac{1}{n}\log(2+n)} \left[\frac{1}{n(n+2)} + o\left(\frac{1}{n^2}\right) \right].$$

Il termine che abbiamo ottenuto si può confrontare mediante il criterio del confronto asintotico con il termine generale di una serie armonica convergente: $\frac{1}{n^2}$, infatti

$$\lim_{n \to +\infty} \frac{e^{\frac{1}{n}\log(2+n)}\left[\frac{1}{n(n+2)} \,+\, o\left(\frac{1}{n^2}\right)\right]}{\frac{1}{n^2}} = 1$$

Deduciamo quindi che nel caso x = 1 la serie converge.

Sia x = -1. La serie è a termini di segno alterno e sono verificate le ipotesi del teorema di Leibniz, di conseguenza converge.

Se x < -1 la serie è indeterminata perché è a termini di segno alterno ma non è infinitesimo il fattore di $(-1)^n$ dato che possiamo scrivere

$$(\sqrt[n]{n+3} - \sqrt[n]{n+2}) x^n = (-1)^n (\sqrt[n]{n+3} - \sqrt[n]{n+2}) |x|^n,$$

e quindi

$$\lim_{n \to +\infty} \left(\sqrt[n]{n+3} - \sqrt[n]{n+2} \right) |x|^n = +\infty.$$