CORSO DI LAUREA IN INFORMATICA

ESERCITAZIONI DI ANALISI MATEMATICA

BREVI RICHIAMI DELLA TEORIA DEI LIMITI

1. Confronto di infinitesimi.

Sia A sottoinsieme di \mathbb{R} , sia x_0 punto di accumulazione di A nella topologia di $\overline{\mathbb{R}}$ (quindi può anche essere $x_0 = +\infty$ o $x_0 = -\infty$ e siano f e g due funzioni reali definite in A le quali siano infinitesime per x che tende a x_0 :

$$\lim_{x \to x_0} f(x) = 0, \quad \lim_{x \to x_0} g(x) = 0.$$

Definizione 1. Diciamo che f e g sono infinitesime (per x che tende a x_0) dello stesso ordine se esistono un numero reale $K \neq 0$, un intorno V di x_0 ed una funzione reale h, definita su $V \cap A \setminus \{x_0\}$ e infinitesima per x che tende a x_0 , tali che

$$f(x) = g(x)\{K + h(x)\}, \quad \forall x \in V \cap A \setminus \cap \{x_0\}$$
 (1)

Definizione 2. Diciamo che f è un infinitesimo per x che tende a x_0 di ordine superiore a g, oppure g è un infinitesimo di ordine inferiore a f se esiste un intorno V di x_0 ed una funzione h definita su $V \cap A$ e infinitesima per x che tende a x_0 tali che

$$f(x) = g(x) \cdot h(x), \quad \forall x \in V \cap A \setminus \{x_0\}. \tag{2}$$

Facciamo alcune considerazioni in merito a queste definizioni. Innanzitutto è ragionevole attendersi che accanto alla relazione (1) debba sussistere una analoga relazione in cui f e g sono "scambiate di posto". In effetti è così. Supponiamo che valga la relazione (1); per le ipotesi fatte

$$\lim_{x \to x_0} \{K + h(x)\} = K \neq 0$$

e quindi esiste un intorno U di x_0 tale che

$$K + h(x) \neq 0 \quad \forall x \in U \cap V \cap A \setminus \{x_0\} = W \cap A \setminus \{x_0\}$$

(si è posto $W=U\cap V; W$ è ancora intorno di x_0). Allora in $W\cap A\setminus\{x_0\}$ è definita la funzione $\frac{1}{K+h(x)}$ e sussiste la relazione

$$\frac{1}{K+h(x)} = \frac{1}{K} - \frac{h(x)}{K[K+h(x)]}, \quad \forall x \in W \cap A \setminus \{x_0\}.$$
 (3)

Da (1) e (3) segue che

$$g(x) = f(x) \left\{ \frac{1}{K} + v(x) \right\} \quad \forall x \in W \cap A \setminus \{x_0\}$$

dove, $\frac{h(x)}{K[K+h(x)]}$ è una funzione definita in $W \cap A \setminus \{x_0\}$ e infinitesima per x che tende a x_0 .

Dalla relazione (1) segue che f si annulla in un punto $x \in U \cap A \setminus \{x_0\}$ se e solo se g si annulla in x e quindi, in un intorno di x_0 , f e g sono entrambe diverse da zero oppure "hanno gli stessi zeri". Supponiamo che f e g siano diverse da zero in un intorno di x_0 . In questa ipotesi

Proposizione 1. f e g sono infinitesimi dello stesso ordine per x che tende a x_0 se e solo se la funzione $\frac{f}{g}$, che è definita in un intorno di x_0 , è convergente per x che tende a x_0 ed il limite è un numero reale diverso da 0

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = K \neq 0 \tag{4}$$

Questa proposizione è assai utile perchè suggerisce un procedimento semplice per stabilire se due infinitesimi sono dello stesso ordine. La dimostrazione di questa proposizione è elementare. Supponiamo che valga la (1) e supponiamo che in un intorno di x_0 sia $f \neq 0$ e $g \neq 0$ allora esiste un intorno W di x_0 tale che

$$\frac{f(x)}{g(x)} = K + h(x) \quad \forall x \in W \cap A \setminus \{x_0\}$$

e quindi

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = K \neq 0$$

Viceversa, supponiamo che f e g siano diverse da 0 in un intorno U di x_0 e che valga la $(\ref{eq:condition})$. Per $x \in U \cap A$ possiamo scrivere

$$\frac{f(x)}{g(x)} = K + \left\{ \frac{f(x)}{g(x)} - K \right\} = K + h(x)$$

e quindi

$$f(x) = g(x)\{K + h(x)\}$$

Per l'ipotesi (4), la funzione $h(x) = \frac{f(x)}{g(x)} - K$ è infinitesima per x che tende a x_0 . Considerazioni della stessa natura si possono fare in relazione alla Definizione 2. Supponiamo

che f e g siano diverse da zero in un intorno U di x_0 e quindi le funzioni $\frac{f}{g}$ e $\frac{g}{f}$ sono definite per $x \in U \cap A \setminus \{x_0\}$. In tali ipotesi vale la seguente proposizione

Proposizione 2. Condizione necessaria e sufficiente perchè f sia infinitesima di ordine superiore a g è che valga

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0 \quad \text{oppure} \quad \lim_{x \to x_0} \left| \frac{g(x)}{f(x)} \right| = +\infty$$
 (5)

Infatti se f e g sono diverse da zero in un intorno di x_0 e se (2) è vera, allora esiste un intorno W di x_0 tale che

$$\frac{f(x)}{g(x)} = h(x), \quad \forall x \in W \cap A$$

e quindi

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} h(x) = 0.$$

Viceversa supponiamo che f e g siano diverse da zero in un intorno U di x_0 e che $\lim_{x\to x_0} \frac{f(x)}{g(x)} = 0$. Per $x \in U \cap A$ possiamo scrivere

$$f(x) = g(x) \cdot \frac{f(x)}{g(x)} = g(x) \cdot h(x)$$

e la funzione $h(x) = \frac{f(x)}{g(x)}$ è infitinitesima per x che tende a x_0 .

ESEMPIO 1

Consideriamo le funzioni $f: x \to \sin x$ e $g: x \to x$ $x \in \mathbb{R}$ ed entrambe infinitesime per x che tende a 0. f e g sono infintesime dello stesso ordine, infatti

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

ESEMPIO 2

Siano $A = [-1, 1], f(x) = x^2, g(x) = x.$ $f \in g$ sono infinitesime per $x \to 0$ e f è infinitesimo di ordine superiore a g; infatti $\forall x \in [-1, 1]$ si può scrivere

$$f(x) = g(x) \cdot x.$$

Altra verifica

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} x = 0.$$

ESEMPIO 3

Siano A = (0, 1], $f(x) = x \cdot \sin \frac{1}{x}$ e g(x) = x. f e g sono infinitesime per x che tende a zero ma f e g sono infinitesimi non confrontabili tra loro.

Siano f e g due funzioni reali definite in $A \subset \mathbb{R}$, entrambe infinitesime per x che tende a x_0 , e sia α un numero reale positivo. Supponiamo che in un intorno di x_0 sia definita la funzione $x \to [g(x)]^{\alpha}$.

Definizione 3. Si dice che f è un infinitesimo per x che tende a x_0 di ordine α rispetto a g se f e g^{α} sono infinitesimi dello stesso ordine.

Se ciò avviene devono esistere una costante $K \neq 0$, un intorno U di x_0 ed una funzione h definita in $U \cap A \setminus \{x_0\}$ infinitesima per x che tende a x_0 tali che

$$f(x) = g^{\alpha}(x)[K + h(x)] \quad \forall x \in U \cap A \setminus \{x_0\}$$
 (6)

o anche

$$\lim_{x \to x_0} \frac{f(x)}{[g(x)]^{\alpha}} = K. \tag{7}$$

In tal caso diremo che $K g^{\alpha}(x)$ è la parte principale dell'infinitesimo f rispetto all'infinitesimo all'infinitesimo g. Se esistono due numeri K e α che rendono vera la (6) (o la (7)) essi sono univocamente determinati.

ESEMPIO 4

Siano $A = [0, 1], f(x) = 1 - \cos x, g(x) = x.$

 $f \in g$ sono infinitesime per x che tende a zero

f è di ordine 2 rispetto a g e la parte principale di f rispetto a g è $\frac{1}{2}x^2$. Infatti:

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}.$$

Il seguente teorema è molto utile nello studio del limite del rapporto $\frac{f}{g}$ nel caso di indeterminazione $\frac{0}{0}$.

Teorema 1. Principio di sostituzione degli infinitesimi

Siano f, g, F, G quattro funzioni definite in $A \subset \mathbb{R}$ e infinitesime per x che tende a x_0 . Supponiamo che f, g, F, G siano diverse da zero in un intorno di x_0 e inoltre

- 1. F è infinitesimo di ordine superiore ad f,
- 2. G è infinitesimo di ordine superiore a g.

In tali ipotesi

$$\lim_{x \to x_0} \frac{f(x) + F(x)}{g(x) + G(x)} = L \iff \lim_{x \to x_0} \frac{f(x)}{g(x)} = L, \quad L \in \overline{\mathbb{R}}.$$
 (8)

Dimostrazione.

Esiste un introno U di x_0 tale che

$$f(x) \neq 0, \ g(x) \neq 0, \ f(x) + F(x) \neq 0, \ g(x) + G(x) \neq 0, \ \forall x \in U \cap A \setminus \{x_0\}.$$

Per ogni $x \in U \cap A \setminus \{x_0\}$ risulta

$$\frac{f(x) + F(x)}{g(x) + G(x)} = \frac{f(x)}{g(x)} \cdot \frac{1 + \frac{F(x)}{f(x)}}{1 + \frac{G(x)}{g(x)}}.$$
 (9)

Poiché $\lim_{x \to x_0} \frac{F(x)}{f(x)} = \lim_{x \to x_0} \frac{G(x)}{g(x)} = 0$, si ha che

$$\lim_{x \to x_0} \frac{1 + \frac{F(x)}{f(x)}}{1 + \frac{G(x)}{g(x)}} = 1. \tag{10}$$

Da (9) e (10) segue la tesi.

ESEMPIO 5

Si calcoli il limite

$$\lim_{x \to 0} \frac{x^2 + \sqrt{x}}{2x + \sqrt{x}}$$

Poiché

- 1. x^2 è un infinitesimo (per $x \to 0$) di ordine superiore a \sqrt{x} .
- 2. 2x è un infinitesimo (per $x \to 0$) di ordine superiore a \sqrt{x} ,

risulta

$$\lim_{x \to x_0} \frac{x^2 + \sqrt{x}}{2x + \sqrt{x}} = \lim_{x \to x_0} \frac{\sqrt{x}}{\sqrt{x}} = 1.$$

ESEMPIO 6

Siano $f(x) = \sqrt{|x+x^2|}$ e $g(x) = 2\sqrt{|x|} + x^2$; f e g definite \mathbb{R} . Si calcoli il limite

$$\lim_{x \to 0} \frac{\sqrt{|x + x^2|}}{2\sqrt{|x|} + x^2}.$$

Consideriamo l'infinitesimo (per $x \to 0$)

$$h(x) = |x|$$

f è di ordine $\frac{1}{2}$ rispetto ad h in quanto

$$\lim_{x \to 0} \frac{f(x)}{\sqrt{h(x)}} = 1 \neq 0$$

gè di ordine $\frac{1}{2}$ rispetto ad h in quando

$$\lim_{x \to 0} \frac{g(x)}{\sqrt{h(x)}} = 2 \neq 0$$

Ne segue che in x = 0 sarà

$$f(x) = \sqrt{|x|} + F(x), \quad g(x) = 2\sqrt{|x|} + G(x)$$

con F e G infinitesimi di ordine superiore a f e g rispettivamente. Conclusione:

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{\sqrt{|x|}}{2\sqrt{|x|}} = \frac{1}{2}.$$

2. Il simbolo di Landau

Siano $f, g: A \to R$, A intervallo di R e x_0 punto di accumulazione per A. Supponiamo inoltre che f, g siano infinitesime per x che tende a x_0 .

Se f è un infinitesimo di ordine superiore rispetto a g (per x che tende a x_0) ovvero

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$

scriveremo f(x) = o(g(x)) (che si legge f è o-piccolo di g per x che tende a x_0). Quindi

$$\lim_{x \to x_0} \frac{o(g(x))}{g(x)} = 0$$

ESEMPIO 1

$$\sin x - x = o(x)$$
 per $x \to 0$

perché

$$\lim_{x \to 0} \frac{\sin x - x}{x} = 0 \quad \text{in quanto} \quad \lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Possimo scrivere quindi

$$\sin x = x + o(x). \tag{11}$$

In maniera analoga si deducono le seguenti eguaglianze (per x che tende a zero).

$$a^{x} = 1 + \log a \ x + o(x) \qquad \text{perch\'e} \quad \lim_{x \to 0} \frac{a^{x} - 1}{x} = \log a$$

$$e^{x} = 1 + x + o(x) \qquad \text{perch\'e} \quad \lim_{x \to 0} \frac{e^{x} - 1}{x} = 1$$

$$\log(1 + x) = x + o(x) \qquad \text{perch\'e} \quad \lim_{x \to 0} \frac{\log(1 + x)}{x} = 1$$

$$\cos x = 1 - \frac{1}{2} x^{2} + o(x^{2}) \qquad \text{perch\'e} \quad \lim_{x \to 0} \frac{1 - \cos x}{x^{2}} = \frac{1}{2}$$

$$\tan x = x + o(x) \qquad \text{perch\'e} \quad \lim_{x \to 0} \frac{\tan x}{x} = 1$$

$$(12)$$

Analogamente

$$(1+x)^{\alpha} = 1 + \alpha x + o(x)$$

perchè

$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha$$

Infatti

$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \lim_{x \to 0} \frac{e^{\alpha \log(1+x)} - 1}{x} =$$

$$= \lim_{x \to 0} \frac{1 + \alpha \log(1+x) + o(\alpha \log(1+x)) - 1}{x} =$$

(per il Principio di sostituzione degli infinitesimi)

$$= \lim_{x \to 0} \frac{\alpha \log(1+x)}{x} = \alpha$$

Nel limite sopra abbiamo posto $y = \alpha \log(1+x)$ ed utilizzato lo sviluppo $e^y = 1+y+o(y)$ (vedi gli sviluppi (12)), tenuto conto che per $x \to 0$ si ha che $y \to 0$.

Si osservi che con la scrittura f(x) = o(g(x)) non si indica una eguaglianza tra funzioni ma l'appartenenza di f ad un insieme di funzioni. Sarebbe quindi più corretto scrivere $f \in o(g)$.

Ad esempio, scriveremo $x^3=o(x),\ x^4=o(x)$ (per $x\to 0$) perché $\lim_{x\to 0}\frac{x^3}{x}=0$ e $\lim_{x\to 0}\frac{x^4}{x}=0$, naturalmente, per quanto osservato sopra, non potremo applicare in questo caso la proprietà transitiva dell'uguaglianza e dedurre che le funzioni x^3 e x^4 sono uguali. Nel calcolo dei limiti è utile disporre di alcune regole di calcolo con gli o-piccoli. Riportiamo qui sotto le principali nel caso degli $o(x^m)$ per $x\to 0$. In maniera analoga si procederà negli altri casi.

$$k o(x^n) = o(x^n) (13)$$

$$o(x^m) \pm o(x^n) = o(x^n), \quad n \le m \tag{14}$$

$$o(x^n) \ o(x^m) = o(x^{m+n})$$
 (15)

$$[o(x^n)]^m = o(x^{mn}) \tag{16}$$

$$x^m o(x^n) = o(x^{m+n}) \tag{17}$$

$$o(x^n + o(x^n)) = o(x^n)$$
(18)

Dimostriamo (13)

$$\lim_{x \to 0} \frac{k o(x^n)}{x^n} = k \lim_{x \to 0} \frac{o(x^n)}{x^n} = 0$$

Dimostriamo (14)

$$\lim_{x \to 0} \frac{o(x^n) \pm o(x^m)}{x^n} = \lim_{x \to 0} \frac{o(x^n)}{x^n} \pm \frac{o(x^m)}{x^n} = \lim_{x \to 0} 0 \pm \frac{o(x^m)}{x^m} x^{m-n} = 0$$

Dimostriamo (15)

$$\lim_{x \to 0} \frac{o(x^n)o(x^m)}{x^{n+m}} = \lim_{x \to 0} \frac{o(x^n)o(x^m)}{x^n x^m} = \lim_{x \to 0} \frac{o(x^n)}{x^n} \frac{o(x^m)}{x^m} = 0$$

Dimostriamo (16)

$$\lim_{x \to 0} \frac{[o(x^n)]^m}{x^{nm}} = \lim_{x \to 0} \left[\frac{o(x^n)}{x^n} \right]^m = 0$$

Dimostriamo (17)

$$\lim_{x \to 0} \frac{x^m o(x^n)}{x^{n+m}} = \lim_{x \to 0} \frac{o(x^n)}{x^n} = 0$$

Dimostriamo (18)

$$\lim_{x \to 0} \frac{o(x^n + o(x^n))}{x^n} = \lim_{x \to 0} \frac{o(x^n + o(x^n))}{x^n + o(x^n)} \ \frac{x^n + o(x^n)}{x^n} = \lim_{x \to 0} 0 \cdot \left(1 + \frac{o(x^n)}{x^n}\right) = 0.$$

ESERCIZI SUI LIMITI 1

CALCOLARE IL VALORE DEI SEGUENTI LIMITI DI FUNZIONE

$$(1) \lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^{3x}$$

$$(2) \lim_{x \to +\infty} \left(1 + \frac{2}{x}\right)^x$$

(2)
$$\lim_{x \to +\infty} \left(1 + \frac{2}{x}\right)^x$$
 (3)
$$\lim_{x \to +\infty} \left(1 - \frac{1}{x}\right)^x$$

$$(4) \lim_{x \to +\infty} \left(3 + \frac{1}{x}\right)^{3x}$$

$$(5) \lim_{x \to +\infty} \left(3 - \frac{1}{x}\right)^{x}$$

(5)
$$\lim_{x \to +\infty} \left(3 - \frac{1}{x}\right)^x$$
 (6)
$$\lim_{x \to +\infty} \left(\frac{x+3}{x-1}\right)^{x+3}$$

(7)
$$\lim_{x\to 0+} \left(\frac{2^x+3^x-2}{x}\right)$$

(8)
$$\lim_{x \to 0+} \left(\frac{2^x - 3^x}{3^x - 4^x} \right)$$
 (9) $\lim_{x \to 0+} x^x$

(9)
$$\lim_{x \to 0+} x^{2}$$

(10)
$$\lim_{x\to 0+} x^{x^x}$$

(11)
$$\lim_{x \to +\infty} \left(\arctan x - \frac{\pi}{2} \right) x$$

(12)
$$\lim_{x\to 0+} \frac{a^{a^x}-a}{a^x-1}$$
, $(a\neq 1, a>0)$

(13)
$$\lim_{x \to +\infty} x \log \left[\frac{\log(x+1)}{\log x} \right]$$
 (14) $\lim_{x \to a} \frac{x^a - a^x}{\sin(x-a)}$, $(a > 0)$ (15) $\lim_{x \to +\infty} \frac{\log\left(\frac{x+1}{x}\right)}{\log\left(\frac{x-1}{x}\right)}$

(16)
$$\lim_{x \to 0+} \left(\frac{x}{\sin x} \right)^{\frac{\sin x}{x - \sin x}}$$

(17)
$$\lim_{x \to 0} \log \left(\frac{2^x - 1}{4^x - 2^x} \right)$$

(17)
$$\lim_{x \to 0} \log \left(\frac{2^x - 1}{4^x - 2^x} \right)$$
 (18) $\lim_{x \to 0} \log \left(\frac{2^x - 1}{4^x - 3^x} \right)$

(19)
$$\lim_{x \to 0} \frac{4^x - 2^{x+1} + 1}{x^2}$$

(19)
$$\lim_{x \to 0} \frac{4^x - 2^{x+1} + 1}{x^2}$$
 (20) $\lim_{x \to 0+} \frac{\log(1 + \sqrt{x^2 + x})}{x}$ (21) $\lim_{x \to 0} \frac{\tan^2 x - \sin^2 x}{x^4}$

(21)
$$\lim_{x\to 0} \frac{\tan^2 x - \sin^2 x}{x^4}$$

(22)
$$\lim_{x \to +\infty} x \arctan \frac{1}{x}$$

(22)
$$\lim_{x \to +\infty} x \arctan \frac{1}{x}$$
 (23) $\lim_{x \to 0+} \frac{\sqrt{1 - \cos x}}{\arctan x}$ (24) $\lim_{x \to 1+} \frac{1 - x}{(\arccos x)^2}$

(24)
$$\lim_{x \to 1+} \frac{1-x}{(\arccos x)^2}$$

(25)
$$\lim_{x \to \frac{\pi}{2}} \frac{\arctan\left(x - \frac{\pi}{2}\right)}{\cos x}$$
 (26) $\lim_{x \to 0} \frac{\arctan x}{x}$ (27) $\lim_{x \to 0} \frac{\log(1 + \sin^2 x)}{1 - \cos x}$

$$(26) \lim_{x \to 0} \frac{\arctan x}{x}$$

(27)
$$\lim_{x \to 0} \frac{\log(1 + \sin^2 x)}{1 - \cos x}$$

(28)
$$\lim_{x \to 0+} \frac{e^{\sin x} - 1}{\log(1 + 2\sqrt{x^2 + x})}$$
 (29) $\lim_{x \to 0} \frac{\cos[\log(1 + x^2)] - 1}{x^4}$ (30) $\lim_{x \to 0+} x^{\frac{1}{x}}$

(29)
$$\lim_{x \to 0} \frac{\cos[\log(1+x^2)] - 1}{x^4}$$

(30)
$$\lim_{x \to 0+} x^{\frac{1}{x}}$$

(31)
$$\lim_{x\to 0} \frac{(1+x)^x - 1}{x^2}$$

(32)
$$\lim_{x\to 0} \frac{\log \cos x}{r^2}$$

(31)
$$\lim_{x \to 0} \frac{(1+x)^x - 1}{x^2}$$
 (32) $\lim_{x \to 0} \frac{\log \cos x}{x^2}$ (33) $\lim_{x \to 0} \frac{(\cos x)^x - 1}{x^3}$

(34)
$$\lim_{x \to +\infty} \frac{\sin \frac{1}{x}}{\log \left(\frac{x+1}{x}\right)}$$

$$(35) \lim_{x\to+\infty} \left(e^{\frac{1}{\log x}} - 1\right) x$$

(36)
$$\lim_{x \to 0+} \frac{\sin\sqrt{\frac{x}{x^2+1}}}{\log(1+\sqrt{x}+x)}$$

(37)
$$\lim_{x \to 0+} \frac{1 - \cos(\sin^2 x)}{\log(1 + x^2)}$$

(38)
$$\lim_{x \to 0+} \frac{\sin(1-\cos 2x)}{e^{3x^2}-1}$$

(39)
$$\lim_{x \to 0+} \frac{\log(1 + \sqrt{1 - \cos x})}{1 - e^{\sin 3x}}$$

(40)
$$\lim_{x \to 0+} \frac{\log(1+\sqrt{x+x^3})}{\sqrt{x} \left[\log x - \log(\sin 2x)\right]}$$
 (41) $\lim_{x \to 0+} \frac{e^{\sqrt{x+x^2}} - 1}{\sqrt{x} \left[\log \tan 4x - \log x\right]}$

(41)
$$\lim_{x \to 0+} \frac{e^{\sqrt{x+x^2}} - 1}{\sqrt{x} \left[\log \tan 4x - \log x \right]}$$

$$(42) \lim_{x \to 0+} \frac{\sin(\sqrt{x^2 + x^4})}{\left[2 \log x - \log(1 - \cos x)\right] x} \quad (43) \lim_{x \to 0+} \frac{\tan(x + x^2)}{\left[\log x - \log(e^{2x} - 1)\right] \sin x}$$

(43)
$$\lim_{x \to 0+} \frac{\tan(x+x^2)}{[\log x - \log(e^{2x} - 1)] \sin x}$$

$$(44) \lim_{x \to 0} \frac{\sqrt[4]{1 + 4x^2} - 1}{(e^{-x} + 1) \log(4 - 3\cos x)} \qquad (45) \lim_{x \to 0} \frac{\log(1 + \tan x)}{(\sqrt[3]{1 + 2x} - 1)(2 + \arctan x)}$$

(45)
$$\lim_{x \to 0} \frac{\log(1 + \tan x)}{(\sqrt[3]{1 + 2x} - 1)(2 + \arctan x)}$$

(46)
$$\lim_{x\to 0} \frac{\sqrt[3]{1+3x^2}-1}{\log(1+\sin^2 x)(2+\arcsin x)}$$

Calcolare al variare di $x \in \mathbb{R}$ il valore dei seguenti limiti di successioni:

$$(47) \lim_{n \to +\infty} \log \left(\cos \frac{1}{n}\right) n^{x} \quad (48) \lim_{n \to +\infty} \frac{3^{n^{x}} - 2^{n^{x}}}{n^{x}} \qquad (49) \lim_{n \to +\infty} n^{x} \log \left(1 + \frac{1}{n}\right)$$

$$(50) \lim_{n \to +\infty} n^x \sin \frac{1}{n^3} \qquad (51) \lim_{n \to +\infty} n^{-x} \left(2^{n^x} - 1 \right) (52) \lim_{n \to +\infty} n^x \left(\sqrt[n]{n} - 1 \right)$$

RISULTATI

(1)
$$e^3$$
 (2) e^2 (7) $\log 6$ (8) $\frac{\log 2/3}{\log 3/4}$

$$(3) \frac{1}{6}$$

$$(4) + \infty$$

$$(5) + \infty \qquad (6) e$$

$$(7) \log 6$$

8)
$$\frac{\log 2/3}{\log 3/4}$$

$$(10)\ 0$$

(3)
$$\frac{1}{e}$$
 (4) $+\infty$ (5) $+\infty$ (6) e^4 (9) 1 (10) 0 (11) -1 (12) $a \log a$

$$(13) \ 0$$

$$\log 3/4$$

$$(17) \ 0$$

$$(14) \ a^{a} (1 - \log a) \quad (15) \ -1 \qquad (16) \ e \qquad (17) \ 0 \qquad (18) \ \log \frac{\log 2}{\log 4/3}$$

$$(23) \frac{\sqrt{2}}{2}$$
 (24)

$$(25) - 1$$

$$(26)\ 1$$

$$(21)$$
 1 (27) 2

$$(28)\ 0$$

$$(23) \frac{\sqrt{2}}{2}$$
 $(24) \frac{2}{2}$ $(29) -\frac{1}{2}$ $(30) 0$

$$(31)$$
 1

$$(20)^{-1}$$
 $(32)^{-} - \frac{1}{2}$

$$(28)\ 0$$

$$(35) + \infty$$
 (36) 1

$$(38) \frac{2}{3}$$

$$(39) - \frac{2}{3\sqrt{2}}$$

$$(40)$$
 $-\frac{1}{\log 2}$

$$(42) \frac{1}{\log x}$$

$$(45) \frac{3}{4}$$

$$(46)^{\frac{1}{2}}$$

(47)
$$-\frac{1}{2}$$
 per $x = 2$, $-\infty$ per $x > 2$ 0 per $x < 2$

(49) 1 per
$$x = 1$$
, 0 per $x < 1$, $+\infty$ per $x > 1$

(50) 1 per
$$x = 3$$
, 0 per $x < 3$, $+\infty$ per $x > 3$;

(51)
$$\log 2 \text{ per } x < 0, +\infty \text{ per } x > 0, 1 \text{ per } x = 0$$
 (52) $+\infty \text{ per } x \ge 1, 0 \text{ per } x < 1.$

$$(52) + \infty \text{ per } x \ge 1, \ 0 \text{ per } x < 1.$$

Svolgimento Esercizio (1)

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^{3x} = \lim_{x \to +\infty} e^{3x \log\left(1 + \frac{1}{x}\right)}$$

Posto $y = \frac{1}{x}$ osserviamo che per $x \to +\infty$ $y \to 0+$, calcolare il limite proposto equivale a calcolare il seguente:

$$\lim_{y \to 0+} e^{3\frac{\log(1+y)}{y}} = e^3$$

perchè $\lim_{y\to 0} \frac{\log(1+y)}{y} = 1$

Svolgimento Esercizio (2)

$$\lim_{x \to +\infty} \left(1 + \frac{2}{x}\right)^x = \lim_{x \to +\infty} e^{x \log\left(1 + \frac{2}{x}\right)}$$

Posto $y = \frac{1}{x}$ osserviamo che per $x \to +\infty$ $y \to 0+$, calcolare il limite proposto equivale a calcolare il seguente:

$$\lim_{y \to 0+} e^{\frac{\log(1+2y)}{y}} == \lim_{y \to 0+} e^{\frac{2y+o(y)}{y}} = e^2$$

Perchè $\lim_{y \to 0+} \frac{2y + o(y)}{y} = \lim_{y \to 0+} \frac{2y}{y} = 2.$

Svolgimento Esercizio (3)

$$\lim_{x \to +\infty} \left(1 - \frac{1}{x}\right)^x = \lim_{x \to +\infty} e^{x \log\left(1 - \frac{1}{x}\right)}$$

Posto $y = \frac{1}{x}$ osserviamo che per $x \to +\infty$ $y \to 0+$, calcolare il limite proposto equivale a calcolare il seguente:

$$\lim_{y \to 0+} \ e^{\frac{\log(1-y)}{y}} == \lim_{y \to 0+} \ e^{\frac{-y+o(y)}{y}} = e^{-1}$$

Perchè $\lim_{y \to 0+} \frac{-y + o(y)}{y} = \lim_{y \to 0+} \frac{-y}{y} = -1.$

Svolgimento Esercizio (4)

$$\lim_{x \to +\infty} \left(3 + \frac{1}{x}\right)^{3x} = \lim_{x \to +\infty} e^{3x \log\left(3 + \frac{1}{x}\right)}$$

Posto $y = \frac{1}{x}$ osserviamo che per $x \to +\infty$ $y \to 0+$, calcolare il limite proposto equivale a calcolare il seguente:

$$\lim_{y \to 0+} e^{\frac{3\log(3+y)}{y}} = \lim_{y \to 0+} e^{\frac{3\log[3(1+\frac{y}{3})]}{y}} = \lim_{y \to 0+} e^{\frac{3\log(3+3\log(1+\frac{y}{3}))}{y}} = \lim_{y \to 0+} e^{\frac{\log 27}{y} + \frac{y + o(y)}{y}} = +\infty$$

Perchè
$$\lim_{y \to 0+} \frac{y + o(y)}{y} = \lim_{y \to 0+} \frac{y}{y} = 1$$
, mentre $\lim_{y \to 0+} e^{\frac{\log 27}{y}} = +\infty$.

Svolgimento Esercizio 5

$$\lim_{x \to +\infty} \left(3 - \frac{1}{x}\right)^x = \lim_{x \to +\infty} e^{x \log\left(3 - \frac{1}{x}\right)}$$

Posto $y = \frac{1}{x}$ osserviamo che per $x \to +\infty$ $y \to 0+$, calcolare il limite proposto equivale a calcolare il seguente:

$$\lim_{y \to 0+} e^{\frac{\log(3-y)}{y}} = \lim_{y \to 0+} e^{\frac{\log[3(1-\frac{y}{3})]}{y}} = \lim_{y \to 0+} e^{\frac{\log 3 + \log(1-\frac{y}{3})}{y}} = \lim_{y \to 0+} e^{\frac{\log 9 + \log(1-\frac{y}{3})}{y}} = \lim_{y \to 0+} e^{\frac{\log 9 + \log(1-\frac{y}{3})}{y}} = +\infty$$

Perchè
$$\lim_{y \to 0+} \frac{\frac{-y}{3} + o(y)}{y} = \lim_{y \to 0+} \frac{-y}{3y} = -\frac{1}{3}$$
, mentre $\lim_{y \to 0+} e^{\frac{\log 9}{y}} = +\infty$.

Svolgimento Esercizio 6

$$\lim_{x \to +\infty} \left[\frac{x \left(1 + \frac{3}{x} \right)}{x \left(1 - \frac{1}{x} \right)} \right]^{x+3} = \lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x} \right)^x \left(1 + \frac{3}{x} \right)^3}{\left(1 - \frac{1}{x} \right)^x \left(1 - \frac{1}{x} \right)^3} = \lim_{x \to +\infty} \frac{e^{x \log(1 + \frac{3}{x})}}{e^{x \log(1 - \frac{1}{x})}} = e^4$$

Perchè $\lim_{x\to +\infty} \left(1+\frac{3}{x}\right)^3 = 1$ e $\lim_{x\to +\infty} \left(1-\frac{1}{x}\right)^3 = 1$, mentre per il calcolo del limite relativo agli altri termini si procede come negli esercizi precedenti.

Svolgimento Esercizio 7

Utilizziamo nel limite lo sviluppo della funzione esponenziale (vedi gli sviluppi (12)) con a = 2 e a = 3:

$$\lim_{x \to 0+} \frac{1 + x \log 2 + o(x) + 1 + x \log 3 + o(x) - 2}{x} =$$

(Principio di sostituzione degli infinitesimi)

$$= \lim_{x \to 0+} \frac{x(\log 2 + \log 3)}{x} = \log 6.$$

Svolgimento Esercizio 8 Utilizziamo nel limite lo sviluppo della funzione esponenziale (vedi gli sviluppi (12)) con a = 2, a = 3 e a = 4:

$$\lim_{x \to 0+} \frac{1 + x \log 2 - 1 - x \log 3 + o(x)}{1 + x \log 3 - 1 - x \log 4 + o(x)}$$

Abbiamo utilizzato il fatto che o(x) - o(x) = o(x). Quindi per il Principio di sostituzione degli infinitesimi:

$$\lim_{x \to 0+} \frac{x(\log 2 - \log 3)}{x(\log 3 - \log 4)} = \frac{\log \frac{2}{3}}{\log \frac{3}{4}}.$$

Svolgimento Esercizio 9

Scriviamo il limite proposto nella forma $\lim_{x\to 0+} e^{x\log x} = 1$, perché $\lim_{x\to 0+} x\log x = 0$.

Svolgimento Esercizio 10

Scriviamo il limite proposto nella forma $\lim_{x\to 0+} e^{x^x \log x} = 0$, perché $\lim_{x\to 0+} x^x = 1$, (vedi Esercizio 9) e $\lim_{x\to 0+} \log x = -\infty$, quindi il limite assume la forma $e^{-\infty}$ che dà 0.

Svolgimento Esercizio 11

I)metodo

Effettuiamo il seguente cambiamento di variabile: $y = \arctan x$. Quindi per $x \to +\infty$ si ha $y \to \frac{\pi}{2}^-$, il limite proposto diventa

$$\lim_{y \to \frac{\pi}{2}^{-}} \left(y - \frac{\pi}{2} \right) \tan y = \lim_{y \to \frac{\pi}{2}^{-}} \left(y - \frac{\pi}{2} \right) \frac{\sin y}{\cos y} = 1 \cdot \lim_{y \to \frac{\pi}{2}^{-}} \frac{y - \frac{\pi}{2}}{\cos y},$$

posto $z=y-\frac{\pi}{2}$ ed osservato che per $y\to \frac{\pi}{2}^-$ si che $z\to 0^-,$ otteniamo

$$\lim_{z \to 0^{-}} \frac{z}{\cos\left(z + \frac{\pi}{2}\right)} = -\lim_{z \to 0^{-}} \frac{z}{\sin z} = 1.$$

II) metodo

Scriviamo il limite nella forma seguente

$$\lim_{x \to +\infty} \frac{\arctan x - \frac{\pi}{2}}{\frac{1}{x}}$$

in modo da ottenere una forma indeterminata, del tipo $\frac{0}{0}$, possiamo applicare il *Teorema dell'Hospital*:

$$\lim_{x \to +\infty} \frac{D\left(\arctan x - \frac{\pi}{2}\right)}{D\frac{1}{x}} = \lim_{x \to +\infty} \frac{\frac{1}{1+x^2}}{-\frac{1}{x^2}} = -\lim_{x \to +\infty} \frac{x^2}{1+x^2} = \lim_{x \to +\infty} \frac{1}{1+\frac{1}{x^2}} = -1.$$

Perché $\lim_{x \to +\infty} \frac{1}{x^2} = 0.$

Esercizio 12

Scriviamo il limite nella forma

$$\lim_{x \to 0} a \frac{a^{a^x - 1} - 1}{a^x - 1} = a \lim_{y \to 0} \frac{a^y - 1}{y} = a \log a,$$

perchè abbiamo posto $y=a^x-1,$ e per $x\to 0,$ $y\to 0,$ vedi i limiti notevoli (12)

Esercizio 13

$$\lim_{x \to +\infty} x \log \left\{ \frac{\log \left[x \left(1 + \frac{1}{x} \right) \right]}{\log x} \right\} = \lim_{x \to +\infty} x \log \left[\frac{\log x + \log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right] = \lim_{x \to +\infty} x \log \left[1 + \frac{\log \left(1 + \frac{1}{x} \right)}{\log x} \right]$$

Si pone $y = \frac{\log(1 + \frac{1}{x})}{\log x}$ e si osserva che per $x \to +\infty$ si ha che $y \to 0$, si può quindi utilizzare lo sviluppo $\log(1 + y) = y + o(y)$.

$$= \lim_{x \to +\infty} x \frac{\log\left(1 + \frac{1}{x}\right)}{\log x} + x o\left(\frac{\log\left(1 + \frac{1}{x}\right)}{\log x}\right) =$$

$$= \lim_{x \to +\infty} \frac{\log\left(1 + \frac{1}{x}\right)^x}{\log x} + \left(\frac{\log\left(1 + \frac{1}{x}\right)^x}{\log x}\right) o\left(\frac{\log\left(1 + \frac{1}{x}\right)}{\log x}\right) \left[\frac{\log\left(1 + \frac{1}{x}\right)^x}{\log x}\right]^{-1} = 0$$
Perché $\lim_{x \to +\infty} x \frac{\log\left(1 + \frac{1}{x}\right)}{\log x} = \lim_{x \to +\infty} \frac{\log\left(1 + \frac{1}{x}\right)^x}{\log x} = \lim_{x \to +\infty} \frac{1}{\log x} = 0.$

Esercizio 14

(I metodo) (Sviluppo di Taylor)

Osservato che per $x \to a$ si ha che $(x-a) \to 0$ possiamo utilizzare gli sviluppi (12) dell'esponenziale e del logaritmo:

$$a^{a} \lim_{x \to a} \frac{\left(\frac{x}{a}\right)^{a} - a^{x-a}}{x - a + o(x - a)} = a^{a} \lim_{x \to a} \frac{e^{a \log \frac{x}{a}} - 1 - (x - a) \log a + o(x - a)}{x - a + o(x - a)} =$$

$$= a^{a} \lim_{x \to a} \frac{1 + a \log \frac{x}{a} + o(\log \frac{x}{a}) - 1 - (x - a) \log a + o(x - a)}{x - a + o(x - a)} =$$

$$= a^{a} \lim_{x \to a} \frac{a \log \left(\frac{x - a}{a} + 1\right) + o(\log \left[\frac{x - a}{a} + 1\right]) - (x - a) \log a + o(x - a)}{x - a + o(x - a)} =$$

$$= a^{a} \lim_{x \to a} \frac{a \frac{x - a}{a} + a o(x - a) + o\left(\frac{x - a}{a} + o(x - a)\right) - (x - a) \log a + o(x - a)}{x - a + o(x - a)} =$$

Tenuto conto delle proprietà (14) e (18) degli o-piccoli ed utilizzando il Principio di sostituzione degli infinitesimi, si ha infine

$$= a^{a} \lim_{x \to a} \frac{x - a - (x - a)\log a + o(x - a)}{x - a + o(x - a)} = a^{a} \lim_{x \to a} \frac{(x - a)(1 - \log a)}{x - a} = a^{a} (1 - \log a)$$

(II metodo) (Teorema dell'Hospital, notare in questo caso la differenza!!)

$$\lim_{x \to a} \frac{D(x^a - a^x)}{D\sin(x - a)} = \lim_{x \to a} \frac{ax^{a-1} - a^x \log a}{\cos(x - a)} = a^a (1 - \log a).$$

Esercizio 15

$$\lim_{x \to +\infty} \frac{\log\left(1 + \frac{1}{x}\right)}{\log\left(1 - \frac{1}{x}\right)} = \lim_{x \to +\infty} \frac{\frac{1}{x} + o\left(\frac{1}{x}\right)}{-\frac{1}{x} + o\left(\frac{1}{x}\right)} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{-\frac{1}{x}} = -1.$$

Perché per $x \to \infty$ $\frac{1}{x} \to 0+$, si applica quindi lo sviluppo del logaritmo (vedi (12)).

Esercizio 16 Scriviamo l'espressione nella forma

$$\lim_{x \to 0+} e^{\frac{\sin x}{x - \sin x} \log \frac{x}{\sin x}}$$

e consideriamo l'argomento dell'esponenziale:

$$\lim_{x \to 0+} \frac{\sin x}{x - \sin x} \log \left(\frac{x}{\sin x} - 1 + 1 \right) = \lim_{x \to 0+} \frac{\sin x}{x - \sin x} \left[\frac{x}{\sin x} - 1 + o\left(\frac{x - \sin x}{\sin x} \right) \right] = 1 + \lim_{x \to 0+} \frac{o\left(\frac{x - \sin x}{\sin x} \right)}{\frac{x - \sin x}{\sin x}} = 1$$

Il valore del limite assegnato è quindi e.

Esercizio 17

$$\lim_{x \to 0+} \ \log \left(\frac{1 + x \log 2 + o(x) - 1}{1 + x \log 4 + o(x) - 1 - x \log 2 + o(x)} \right) = \lim_{x \to 0+} \ \log \left(\frac{x \log 2 + o(x)}{x (\log 4 - \log 2) + o(x)} \right) = 0$$

Perché

$$\lim_{x \to 0+} \frac{x \log 2 + o(x)}{x(\log 4 - \log 2) + o(x)} = \lim_{x \to 0+} \frac{x \log 2}{x \log 2} = 1$$

Esercizio 18

$$\lim_{x \to 0+} \log \left(\frac{1 + x \log 2 + o(x) - 1}{1 + x \log 4 + o(x) - 1 - x \log 3 + o(x)} \right) = \lim_{x \to 0+} \log \left(\frac{x \log 2 + o(x)}{x (\log 4 - \log 3) + o(x)} \right) = \log \left(\frac{\log 2}{\log 4/3} \right)$$

Perché

$$\lim_{x \to 0+} \frac{x \log 2 + o(x)}{x(\log 4 - \log 3) + o(x)} = \lim_{x \to 0+} \frac{x \log 2}{x \log 4/3} = \frac{\log 2}{\log 4/3}.$$

Esercizio 19

$$\lim_{x \to 0} \frac{(2^x - 1)^2}{x^2} = \lim_{x \to 0} \left(\frac{2^x - 1}{x}\right)^2 = (\log 2)^2$$

Esercizio 20

Applicando il teorema dell'Hospital si ha

$$\lim_{x \to 0+} \frac{\frac{2x+1}{\sqrt{x^2+x}}}{1} = +\infty$$

Perché assume la forma $\frac{1}{0+}$

Utilizzando invece lo sviluppo della funzione logaritmo, cioè $\log(1+y)=y+o(y)$, con $y=\sqrt{x^2+x}$, si ha

$$\lim_{x \to 0+} \frac{\sqrt{x^2 + x} + o(\sqrt{x^2 + x})}{x} =$$

(principio di sostituzione degli infinitesimi)

$$= \lim_{x \to 0+} \frac{\sqrt{x^2 + x}}{x} = \lim_{x \to 0+} \frac{\sqrt{x}\sqrt{x + 1}}{x} = \lim_{x \to 0+} \frac{1}{\sqrt{x}} = +\infty.$$

Esercizio 21

$$\lim_{x \to 0} \frac{\frac{\sin^2 x}{\cos^2 x} - \sin^2 x}{x^4} = \lim_{x \to 0} \frac{\sin^2 x \frac{1 - \cos^2 x}{\cos^2 x}}{x^4} = \lim_{x \to 0} \frac{\sin^4 x}{\cos^2 x} = 1 \cdot \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^4 = 1$$

Esercizio 22

Poniamo $y = \arctan \frac{1}{x}$, quindi $x = \frac{1}{\tan y}$, in particolare per $x \to +\infty$ si ha che $y \to 0+$

$$\lim_{x \to 0+} \frac{y}{\tan y} = 1$$

Esercizio 23

Osserviamo che $\lim_{x\to 0} \frac{\arctan x}{x} = 1$. Infatti basta porre $y = \arctan x$, da cui $x = \tan y$, di conseguenza per $x\to 0$ si ha che $y\to 0$. Il limite diventa $\lim_{y\to 0} \frac{y}{\tan y} = 1$. Ragionando quindi come abbiamo fatto per ottenere gli sviluppi (12) si ha arctan x = x + o(x). Quindi il limite proposto si può risolvere nel modo che segue.

$$\begin{split} &\lim_{x\to 0+} \sqrt{\frac{1-\cos x}{(\arctan x)^2}} = \lim_{x\to 0+} \sqrt{\frac{1-\left[1-\frac{x^2}{2}+o(x^2)\right]}{[x+o(x)]^2}} = \\ &= \lim_{x\to 0+} \sqrt{\frac{\frac{x^2}{2}+o(x^2)}{x^2+o(x^2)}} = \lim_{x\to 0+} \sqrt{\frac{\frac{x^2}{2}}{x^2}} = \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2}. \end{split}$$

Esercizio 24

Poniamo $y = \arccos x$, da cui $x = \cos y$. Per $x \to 1$ si ha che $y \to 0$. Il limite proposto si scrive nella forma

$$\lim_{y \to 0} \frac{1 - \cos y}{y^2} = \frac{1}{2}$$

Esercizio 25

Poniamo $y=x-\frac{\pi}{2}$. Di conseguenza per $x\to\frac{\pi}{2},\ y\to 0$. Il limite si scrive nella forma

$$\lim_{y \to 0} \frac{\arctan y}{\cos \left(y + \frac{\pi}{2}\right)} = \lim_{y \to 0} \frac{\arctan y}{-\sin y} = \lim_{y \to 0} \frac{y + o(y)}{-y - o(y)} = \lim_{y \to 0} \frac{y}{-y} = -1.$$

Perché (vedi Esercizio 22) $\arctan y = y + o(y)$.

Esercizo 26

Vedi la risoluzione dell'Esercizio 22

Esercizio 27

Osserviamo che posto $y = \sin x$ dalla scomposizione $\log(1+y) = y + o(y)$ (vedi (12)) otteniamo $\log(1+\sin^2 x) = \sin^2 x + o(\sin^2 x)$. Inoltre tenuto conto che $\sin^2 x = (x+o(x))^2 = x^2 + 2xo(x) + o(x^2) = x^2 + o(x^2)$, possiamo scrivere $\log(1+\sin^2 x) = x^2 + o(x^2) + o(x^2 + o(x^2))$ da questa per (18) otteniamo $\log(1+\sin^2 x) = x^2 + o(x^2)$. Di conseguenza il limite proposto diventa

$$\lim_{x \to 0} \frac{x^2 + o(x^2)}{1 - (1 - \frac{x^2}{2} + o(x^2))} = \lim_{x \to 0} \frac{x^2 + o(x^2)}{\frac{x^2}{2} + o(x^2)} = \lim_{x \to 0} \frac{x^2}{\frac{x^2}{2}} = 2.$$

Esercizio 28

Scriviamo lo sviluppo delle funzioni che compaiono nell'espressione (vedi (12) ed esercizi precedenti):

$$e^{\sin x} = 1 + \sin x + o(\sin x) = 1 + x + o(x) + o(x + o(x)) = 1 + x + o(x).$$
$$\log(1 + 2\sqrt{x^2 + x}) = 2\sqrt{x^2 + x} + o(\sqrt{x^2 + x}) = 2\sqrt{x}\sqrt{x + 1} + o(\sqrt{x}\sqrt{1 + x}) = 2\sqrt{x}\sqrt{1 + x} + o(\sqrt{x}).$$

Sostituendo:

$$\lim_{x \to 0} \frac{1 + x + o(x) - 1}{2\sqrt{x}\sqrt{1 + x} + o(\sqrt{x})} = \lim_{x \to 0} \frac{x}{2\sqrt{x}\sqrt{1 + x}} = 0.$$

Esercizio 29

Scriviamo lo sviluppo delle funzioni che compaiono nell'espressione (vedi (12) ed esercizi precedenti):

$$\log(1+x^2) = x^2 + o(x^2)$$

$$\cos(\log(1+x^2)) = \cos(x^2 + o(x^2)) = 1 - \frac{(x^2 + o(x^2))^2}{2} + o((x^2 + o(x^2))^2) = 1 - \frac{x^4 + o(x^4)}{2} + o(x^4 + o(x^4)) = 1 - \frac{x^4}{2} + o(x^4)$$

Perché $-\frac{o(x^4)}{2} + o(x^4 + o(x^4)) = o(x^4) + o(x^4) = o(x^4)$. Sostituiamo nel limite:

$$\lim_{x \to 0} \frac{\cancel{1} - \frac{x^4}{2} + o(x^4) - \cancel{1}}{x^4} = \lim_{x \to 0} \frac{-\frac{x^4}{2}}{x^4} = -\frac{1}{2}.$$

Esercizio 30

$$\lim_{x \to 0+} x^{\frac{1}{x}} = \lim_{x \to 0+} e^{\frac{1}{x} \log x} = 0$$

Perché il limite assume la forma $e^{-\infty}$ in quanto $\lim_{x\to 0+}\frac{1}{x}\log x=-\infty$, si tratta di una forma $+\infty\cdot(-\infty)=-\infty$.

Eseercizio 31

Osserviamo che

$$(1+x)^x = e^{x\log(1+x)} = 1 + x\log(1+x) + o(x\log(1+x)) = 1 + x[x+o(x)] + o(x[x+o(x)]) = 1 + x^2 + o(x^2) + o(x^2 + o(x^2)) = 1 + x^2 + o(x^2) + o(x^2) = 1 + x^2 + o(x^2)$$

Sostituamo nel limite

$$\lim_{x \to 0} \frac{A + x^2 + o(x^2) - A}{x^2} = \lim_{x \to 0} \frac{x^2}{x^2} = 1.$$

Esercizio 32

Osserviamo che

$$\log \cos x = \log \left[1 - \frac{x^2}{2} + o(x^2) \right] = -\frac{x^2}{2} + o(x^2) + o(\frac{x^2}{2} + o(x^2)) = -\frac{x^2}{2} + o(x^2) + o(x^2) = -\frac{x^2}{2} + o(x^2).$$

Sostituiamo nel limite

$$\lim_{x \to 0} \frac{-\frac{x^2}{2} + o(x^2)}{x^2} = \lim_{x \to 0} \frac{-\frac{x^2}{2}}{x^2} = -\frac{1}{2}.$$

Esercizio 33

Tenuto conto che

$$(\cos x)^{x} = e^{x \log(\cos x)} = 1 + x \log(\cos x) + o(x \log(\cos x)) = 1 + x \log\left[1 - \frac{x^{2}}{2} + o(x^{2})\right] + o\left(x \log\left[1 - \frac{x^{2}}{2} + o(x^{2})\right]\right) = 1 + x \left[-\frac{x^{2}}{2} + o(x^{2})\right] + o\left(-x \left[\frac{x^{2}}{2} + o(x^{2})\right]\right) = 1 - \frac{x^{3}}{2} + o(x^{3}) + o(x^{3} + o(x^{3})) = 1 - \frac{x^{3}}{2} + o(x^{3}) + o(x^{3}) = 1 - \frac{x^{3}}{2} + o(x^{3}),$$

sostituamo nel limite

$$\lim_{x \to 0} \frac{1 - \frac{x^3}{2} + o(x^3) - 1}{x^3} = \lim_{x \to 0} -\frac{x^3}{2x^3} = -\frac{1}{2}.$$