
DIVISOR THEORY ON TROPICAL AND LOG SMOOTH CURVES

MATTIA TALPO

Abstract. Tropical geometry is a relatively new branch of algebraic geometry, that aims to
prove facts about algebraic varieties by studying their “tropicalizations”, which are piecewise
linear objects, amenable to combinatorial study. A prominent topic in recent research in the
area, that is leading to new insights about “classical” open questions, is a theory of divisors
on tropical curves. In this talk I will survey some of the related ideas, and explain how they
are connected to line bundles on log smooth curves (joint work with Foster, Ranganathan
and Ulirsch).
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1. Introduction

I want to talk a bit about recent techniques for studying degenerations of line bundles and
linear series to nodal curves, coming from tropical and logarithmic geometry. There is a nice
survey by Matt Baker and Dave Jensen (“Degeneration of linear series...”), where you can
find a lot more. I will stay on a fairly elementary level, and try to avoid the technicalities.

2. Degenerations of line bundles on nodal curves

Let me start from line bundles on nodal curves.
If C → T is a family of smooth curves, then the Jacobians of the fibers also form a family

of abelian varieties Jac(C) → T , with nice properties (the morphism is proper). This gives
a universal Jacobian over the whole moduli stack, which is a “relative” abelian variety.

It is interesting to consider the situation where the fibers of the family are singular (nodal).
Sometimes, degenerating a smooth high genus curve to a nodal one with rational components
helps. For example, the Brill-Noether theorem was proved by a degeneration argument
(involving also limit linear series). This is also related to the problem of compactifying the
universal Jacobian J acdg,n →Mg,n (or its rigidification).

Assume that C → SpecR is a flat family of curves, with smooth generic fiber, and nodal
central fiber C0/k. Here R is a DVR, with quotient field F and residue field k. Let us also
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assume that the total space C is regular, and that the irreducible components of the central
fiber are smooth (these are sometimes called regular “strictly” or “strongly” semistable
degenerations, I think). Can we still construct a relative Jacobian? Is it still proper? These
questions are difficult. Two basic questions: given a line bundle LF on the generic fiber CF ,
does it always extend across the central fiber? Does it extend uniquely? I will focus on the
second aspect in this talk.

The very first problem is that line bundles very often do not extend uniquely. Assume
that C0 = C1 ∪ C2 ∪ · · · ∪ Cr are the irreducible components. Given a line bundle LF on
CF , there is always at least one extension (take a Weil divisor to represent the line bundle
on CF ⊆ C, and take the closure in C). If L ∈ Pic(C) is an extension, then for every i also
L⊗OC(Ci) is an extension of LF , and the two line bundles are not isomorphic over the total
family (nor are the restrictions to the central fiber). Thus, the “naive” Jacobian will not be
separated (the same object can have different limits). Of course you can twist by integral
linear combinations of these divisors Ci, and in the situation that I’ve put myself in, two
line bundles extending the same LF differ from one of these twists (think of them as Weil
divisors again).

In joint work with Foster, Ranganathan and Ulirsch, we relate these twists by components
of the central fiber to chip firing on graphs. Part of our observation was already implicit in
earlier work of Amini and Baker, what we do is put the observation in a more systematic
framework, using logarithmic geometry (which I’ll try to get to, towards the end of the talk).

A first quantity to look at for degenerations of LF to the central fiber, is the degree di
of the restriction of L to the component Ci. This vector (d1, . . . , dr) ∈ Zr is called the
multidegree of L.

Twisting by OC(Ci) changes the multidegree, according to how the components intersect.
More precisely, if we denote by αij = Ci · Cj the number of points where the two components
intersect, twisting by OC(Ci) increases dj by αij and decreases di by

∑
j αij (note that the

“total degree” stays the same). Of course the multidegree does not completely determine the
degeneration, unless the components are all rational (because otherwise a line bundle on a
smooth curve is not determined by its degree). The “all rational” case is called “maximally
degenerate”, and the geometry of the nodal curve is completely encoded by the combinatorics
of the “dual graph”, which is coming up next.

This is related to the divisor theory on the dual graph of the central fiber C0, in a way
that I will now explain.

3. Divisors on (metric) graphs and metrized complexes

I will start with the simplest situation of an “abstract” graph, and then later refine it by
considering metric graphs, and metrized complexes.

Recall that the dual graph of the central fiber is defined as follows: it has a vertex vi for
each irreducible component Ci of C0, and an edge eij connecting vi and vj, for every node in
Ci ∩Cj (note that there might be more than one, and you could allow i = j - let us exclude
this for now). These graphs are already important in relation to the moduli space of stable
curves M g, because they describe the combinatorics of how the components of the boundary
intersect.
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On such a graph, there is a divisor theory that has remarkable similarities with the usual
situation on a smooth algebraic curve. This is due to Baker and Norine, although some of the
stuff about graphs is more classical, the new thing that they proved was the Riemann-Roch
theorem (along with some stuff about the Abel-Jacobi map).

3.1. Divisor theory on a graph. Assume that in general G = (V,E) is a graph.

Definition 3.1. A divisor on G is a formal combination
∑

v∈V D(v) · v on the vertices of G,
where ev ∈ Z. Usually one thinks of such a thing as a configurations of “chips” or “dollars”
on the vertices of the graph. A negative number signifies a debt. Let us denote by Div(G)
the abelian group of divisors on G (for the obvious operation).

There are two basic moves that one can do to such a configuration (“chip firing” moves):
a borrowing move at v, where each adjacent vertex gives a dollar to v along each edge, or
the opposite lending move, where each vertex adjacent to v gets a dollar from v along each
edge. This should remind you of what was happening to the multi-degree (edges are nodes,
so points of intersection of the two components).

Draw an example

Formally, two divisors D and D′ on G are equivalent if one can be obtained from the other
via these chip firing moves. One can also formulate this by defining “principal divisors” as
divisors of “zeros and poles” of functions f : V → Z on the vertex set of G, and mod out by
them, the result is the same. Let us denote by Pic(G) the quotient group Div(G)/ ∼.

There is a degree morphism deg : Div(G)→ Z, defined by sending D =
∑

v∈V D(v) · v to∑
v∈V D(v), and equivalent divisors have the same degree, so deg descends to deg : Pic(G)→

Z. In terms of chip firing, the degree is the total number of chips. The preimage of 0, denoted
Pic0(G) is the Jacobian of the graph G. Fun fact: the cardinality of Jac(G) (which is a finite
abelian group) is the number of spanning trees in the graph (trees that touch every vertex).
This number is also called the complexity of the graph, and the Jacobian also goes by other
names.

3.1.1. Riemann-Roch. Let us talk about Riemann-Roch for graphs. Recall that for a smooth
projective curve C over some field k, Riemann-Roch says that

l(D)− l(K −D) = degD − g + 1

where g is the genus of the curve, and

l(D) = dimkH
0(C,OC(D))− 1 = dimP(H0(C,OC(D))).

To formulate the analogue for graphs, we need to make sense of l(D) and of the genus g.
The genus is the easiest part: the graph G has a first betti number b1(G), that is by

definition the genus. This is the first betti number of a topological realization of the graph,
and can also be defined combinatorially, as #edges−#vertices + 1.

Let us define the combinatorial rank r(D) for D ∈ Div(G).

Definition 3.2. A divisor is effective if D(v) ≥ 0 for all v ∈ V .



4 MATTIA TALPO

We set r(D) = −1 if D is not equivalent to an effective divisor. Otherwise, r(D) is the
maximum of the natural numbers r such that D − E is linearly equivalent to an effective
divisor, for every effective divisor E of degree r. One can check that for curves, this same
definition gives the number l(D).

In terms of chip firing, a divisor D is linearly equivalent to an effective divisor if, starting
from the configuration corresponding to D and using the chip firing moves, we can get to
a configuration where no vertex is in debt. The condition above says that r(D) = r if, by
subtracting r dollars in any possible way from D, we can still get to a position where no
vertex is in debt.

Let KG be the canonical divisor of G, defined as KG =
∑

v∈V (#edges adjacent to v−2) ·v.

Theorem 3.3 (Baker-Norine, Riemann-Roch for graphs). We have the equality

r(D)− r(KG −D) = degD − g(G) + 1.

One consequence, is that if a divisor D has degD ≥ g, then by using the chip firing moves
one can get to a configuration where no vertex is in debt.

Remark 3.4. I will explain now how this is related to tropical geometry. The proof of
Baker-Norine is entirely combinatorial, and it would be interesting to have an “algebraic”
proof, that mimics the classical one in the tropical setting. Even sheaf cohomology is missing
for now in the tropical world!

Also, this is quite orthogonal with respect to the “usual” Riemann-Roch theorem. There
are no implications between the two. The Riemann-Roch theorem for metrized complexes,
on the other hand, generalizes both.

The multidegree gives a sort of (very coarse) “tropicalization” of divisors, Trop: Pic(C)→
Pic(G). Tropicalization is a process that replaces a variety (or algebro-geometric object)
with a piecewise linear “shadow”, that still retains some information, and is amenable to
combinatorial handling.

The ranks l(D) and r(Trop(D)) are related: we always have l(D) ≤ r(Trop(D)), and
equality holds when the central fiber is maximally degenerate. This is important, because it
allows to have information about the rank of a divisor on a smooth curve via combinatorial
methods. This type of argument also helps in studying linear series.

3.2. Metric graphs and metrized complexes.

3.2.1. Metric graphs. Now let us be a bit more sophisticated. This combinatorial picture can
be mixed with the algebraic geometry, to allow for more general degenerations than these
strongly semistable ones, and for finite extensions of the base DVR.

Assume that C → SpecR is a degeneration of curves, and only assume that the central
fiber is a nodal curve. In this setting, the dual graph of the central fiber loses information,
about how exactly the curve is degenerating. For example, if t is a uniformizer of R, around
a node of C0 the family will have some equation of the form xy − atn where a is a unit, and
we might want to record the integer n. This is encoded in a specified length for the edge
corresponding to the node in the dual graph.
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In this way, we are led to consider metric graphs Γ, where on top of the structure of a
graph, every edge has a length in R>0, and we consider as “equivalent” graphs with an edge
length function that admit a common refinement.

Draw an example

For some people, a “tropical curve” is a metric graph. If the fraction field of R is a
complete non-archimedean field, the tropical curve associated with a degeneration as above
can be identified with a subset of the Berkovich space of the smooth projective curve CF/F
(possibly base-changed to F ), called a “skeleton”. If you’ve never seen Berkovich spaces,
these are some kind of analytic spaces over a non-archimedean field. One can think of (CF )an

as a union of all skeleta of all possible semistable models (not strictly semistable) of the curve
CF/F .

For a metric graph Γ, when defining divisors one also allows points in the interior of the
edges, i.e. a divisor is a formal sum

∑
v∈ΓD(v) · v, where D(v) = 0 for all but finitely many

points. Chip firing is more complicated, and best expressed in terms of principal divisors:
given a piecewise linear function f : Γ → R with integral slope, one defines ordv(f) as the
sum of the incoming slopes along the edges containing v.

Draw an example

The divisor of f is
∑

v∈Γ ordv(f) ·v, and we mod out by these principal divisors. This time
there is a tropicalization map Trop: Pic(CF )→ Pic(Γ) that extends Trop: Pic(C)→ Pic(G),
where G is a “model” for Γ.

The Jacobian in this case turns out to be a real torus. There are also Abel-Jacobi maps,
the Torelli theorem, and a number of other things. There is also a Riemann-Roch theorem,
formulated exactly as before.

3.2.2. Metrized complexes. Let me also briefly mention metrized complexes. The point here
is that even recording the lengths loses information if the components of the central fiber
are not rational, and this even more refined point of view retains all the information about
the components of the central fiber.

Assume k is algebraically closed.

Definition 3.5. A metrized complex C of algebraic curves over k is a metric graph Γ as
above with a specified model G (i.e. you know who the vertices are), together with a smooth,
irreducible, projective curve Cv over k for each vertex v ∈ V , and a set of points xev ∈ Cv(k),
in bijection with the half-edges e incident to v.

The genus g(C) is the sum of the genus of the graph Γ and of the
The idea is that the Cv are the components of the special fiber, and the specified points

are the nodes. The “half-edges” bit is to allow for self-intersecting components.

Draw an example

The divisor theory on such a thing will be a mix of the divisor theory of the graph, and
of the curves corresponding to the vertices.

Definition 3.6. A divisor D on C is an element (DΓ, Dv) of Div(Γ)⊕
⊕

v Div(Cv), such that
degDv = DΓ(v). The degree of such a thing is deg(DΓ).
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We can define principal divisors in this case as well: a rational function f on C is a “rational
function” fΓ on Γ, as defined before, together with a rational function fv on Cv for every v.
The divisor of such a thing is

div(fΓ)⊕
∑
v

(div(fv) + divv(fΓ))

where divv(fΓ) =
∑

e∈v slopee(fΓ) · xev with slopee(fΓ) being the outgoing slope of fΓ from v
in direction e.

As usual, two divisors are linearly equivalent if the difference is principal. The degree is
invariant for linear equivalence.

A divisor is effective if DΓ and the Dv are effective. We define the rank r(D) as for divisors
on graphs.

There is also a canonical divisor K, given by KΓ⊕
∑

v(Kv+Av), where KΓ =
∑

v(valG(v)+
2gv− 2) · v, and for every vertex v, the divisor Kv is a canonical divisor on Cv, and Av is the
sum of the distinguished points on Cv corresponding to the nodes.

Theorem 3.7 (Amini-Baker, Riemann-Roch for metrized complexes). We have the equality

r(D)− r(K−D) = degD− g(C) + 1

This specializes to both the classical Riemann-Roch on curves, and the one on graphs.
Also, for any semistable model C of C over the valuation ring of F , one has an associated
metrized complex C, and there is a specialization morphism τ∗ : Div(C)→ Div(C) (extending
the tropicalization map mentioned before). In this setting as well we have a specialization
inequality l(D) ≤ r(τ∗(D)), that strengthens the one mentioned before.

Amini and Baker go further, and define a notion of limit linear series for these objects, even
for curves not of compact type (that correspond to the case where the “tropical Jacobian”
is trivial, so the combinatorics is not needed).

4. Log geometry and log line bundles

Very briefly, let me tell you what we do in our paper with the other guys.
We point out that this business of chip firing and degenerations of line bundles is related

to the logarithmic picard group, and we translate the Amini-Baker Riemann-Roch theorem
to a Riemann-Roch theorem for log line bundles on log smooth curves.

There is this theory of logarithmic schemes. These are schemes that have some extra
structure, that is keeping track of either a boundary divisor, or of some data relative to a
degeneration, of which your scheme is a fiber. Non-smooth morphisms sometimes become
log smooth (i.e. smooth in the sense of log geometry) when equipped with the correct log
structures. In particular families of nodal curves have canonical log structures (on the base
and on the total space), that make the family log smooth.

The log Picard group is an analogue of the Picard group for log schemes. For nodal curves,
it turns out to be exactly the quotient of the “usual” Picard group of the nodal curve with
respect to twisting by the components (chip firing). We define a notion of rank r(L) for a
log line bundle L (similar to the ones described above), and prove a Riemann-Roch theorem,
by reducing to metrized complexes. The canonical divisor in this case corresponds to the
relative sheaf of log differentials of the curve, that is the same as the dualizing sheaf.
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Theorem 4.1 (Foster-Ranganathan-T.-Ulirsch). We have the equality

r(L)− r(ωlog ⊗ L−1) = degL − g + 1

Our point is that log schemes are somewhat more natural objects than these metrized
complexes, and their theory is much more developed. We plan to use this point view to
study limit linear series on the logarithmic side. It would also be interesting to have an
“algebraic” proof of this Riemann-Roch theorem, for example by interpreting the LHS as an
Euler characteristic (as in the classical case), but this is missing so far.
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