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Abstract
In the late 2000s, Ekedahl introduced a variation of the standard Grothendieck ring of algebraic varieties which contains

the classes of all (reasonable) algebraic stacks. This ring K0(Stk/k) turns out to be a localization of the usual ring K0(Var/k).
There are many important open questions on this ring, one being whether a for a connected algebraic group G the class {BG}
of its classifying stack satisfies the“expected class formul” {BG} = {G}−1.

Counterexamples are believed to exist, but none has been found yet. We investigate the question for the algebraic groups
G2 and Spinn, showing that G2 and Spinn for n lower than nine satisfy the formula. We reduce the question for general n to
a question on the class of B∆n for a particular finite group ∆n ⊂ Spinn which is tied to many unexpected behaviors of the
groups Spinn for n ≥ 15, such as the exponential growth of their essential dimension.

The Grothendieck ring of varieties
notation: k is a field with char(k) 6= 2, containing

√
−1. All schemes and algebraic stacks will be over k.

Given an algebraic group G acting on a scheme X we denote by [X/G] the corresponding quotient stack.

Grothendieck: ring K0(Var/k) of isomorphism classes {X} of algebraic varieties over k. Two relations:
1. Given an open subset U of X whose complement is V , we have {X} = {U} + {V } (scissor relation).

2. Given varieties X, Y we have {X × Y } = {X}{Y } (product relation).

K0(Var/k) is a unital ring, with {Spec(k)} = 1. Using the two relations one can see that

• If E → X is a vector (or affine) bundle of rank d, we have {E} = {Ad}{X}.
• If T → X is a G-torsor for a special1 algebraic group G, we have {T} = {G}{X}.
The second result does not hold for a general algebraic group G, and in fact Ekedahl proves:

Theorem (Ekedahl). Let G be a connected and reductive non-special affine algebraic group. Then there is a
G-torsor T → X such that {T} 6= {G}{X}.

An important element of K0(Var/k) is the Lefschetz motive L, which is the class of A1. Two interesting
results involving it:

Theorem (Larsen, Lunts). The quotient K0(Var/k)/{L} is in 1 : 1 correspondence with the set of projective
varieties up to stable birationality.

Theorem (Borisov). The class L is a zero divisor in K0(Var/k).

The Grothendieck ring of algebraic stacks
Ekedahl, 2009: ring K0(Stk/k) of isomorphism classes of algebraic stacks over k of finite type and with

affine stabilizers. Had already appeared in various forms in works of Behrend, Dhillon and Toën.
Idea: formally add to K0(Var/k) all isomorphism classes of algebraic stacks, and impose the usual scissor

and product relations.
Problems: The classifying stack BG of G-torsors is topologically a point, so the scissor relation is useless.

Vector bundles do not in general have the same class as the trivial one, as they may not be Zariski-locally
trivial2.

Solution: force the vector bundle formula as an additional relation, so that our new relations are
1. Given an open subset U of X whose complement is V , we have {X } = {U } + {V } (scissor relation).

2. Given algebraic stacks X ,Y we have {X × Y } = {X }{Y } (product relation).

3. Given a vector bundle E →X , we have {E } = {Ad}{X } = Ld{X } (vector bundle relation).

With these relations it turns out that K0(Stk/k) is a localization of K0(Var/k):

Theorem (Ekedahl). Let ΦL be the submonoid of Z [L] generated by L and all cyclotomic polynomials in L.
Then

K0(Stk/k) = Φ−1
L K0(Var/k).

We will try to explain why the theorem works and give an idea how to do computations on K0(Stk/k). Our
main source of vector bundles to apply the relations comes from the following fact:

Lemma. Let V be a representation of an algebraic group G. Then the projection [V/G] → BG is a vector
bundle.

Sample computations: Gm multiplicative group acting on A1. By the lemma
[
A1/Gm

]
→ BGm is a vector

bundle of rank one. Then

{
[
A1/Gm

]
} = L{BGm} (vector bundle relation)

{
[
A1/Gm

]
} = {[Gm/Gm]} + {[0/Gm]} = 1 + {BGm} (scissor relation).

Putting the two equations together we get

L{BGm} = 1 + {BGm} ⇒ (L− 1){BGm} = 1⇒ {BGm} = (L− 1)−1 = {Gm}−1.

So the class of BGm is equal to the inverse of the class of Gm.
µq ⊂ Gm group of q-th roots of unit. Again we have it act on A1 through the action of Gm. Then

{
[
A1/µq

]
} = L{Bµq} (vector bundle relation)

{
[
A1/µq

]
} = {

[
Gm/µq

]
} + {[0/Gm]} = {Gm} + {Bµq} = L− 1 + {Bµq} (scissor relation).

as the quotient Gm/µq is equal to Gm itself. Putting the two together we get

L{Bµq} = L− 1 + {Bµq} ⇒ (L− 1){Bµq} = L− 1⇒ {Bµq} = 1

so the class of Bµq is equal to the class of a point. With similar methods one can compute the class of any
GLn-torsor:

Theorem (Ekedahl). Let E →X be a GLn-torsor. We have

{E } = {GLn}−1{X } = ((Ln − 1)(Ln − L) . . . (Ln − Ln−1))−1{X }.

In particular {BGLn} = {GLn}−1.

Let G be an affine algebraic group, consider a representation G → GLn.The quotient X = GLn/G is a
variety. We have an isomorphism BG = [X/GLn]. The map X → [X/GLn] is a GLn torsor, so

{BG} = {GLn}−1{X} = (Ln − 1)−1 . . . (Ln − Ln−1)−1{X}

that is, we can express the class of BG as an element in K0(Var/k) divided by a power of L and some
cyclotomic polynomials in L. Extending this method the same is shown for all (reasonable) algebraic stacks.

The expected class formula
It’s a theorem by Ekedahl that in general if G is special, we have {E } = {G}−1{X } for a G-torsor E X .

For a general connected G it’s not true that any torsor has the same class as a trivial torsor, so we expect this
not to hold for Spec(k)→ BG, which is the“most complicated” torsor.

The extended Euler characteristic, which is a morphism from K0(Var/k) to a certain Grothendieck ring of
Galois representations K̂0(Cohk), gives us an expected class for BG, which in particular is
• 1 if G is a finite group, and

• {G}−1 if G is connected.

Question: are there algebraic groups which do not satisfy the formula in the two cases?
Finite groups: positive answers are known. The unramified Brauer group is an obstruction. Note that the

unramified Brauer group is also an obstruction to the much more famous Noether’s problem3, showing that
the two problems might be related. The “simplest” positive answer, surprisingly, is for G = Z/47Z, when the
field k does not contain a 47th rooth of 1.4

Connected groups: no positive answer is known. The groups PGL2 and PGL3 are known to satisfy the
formula due to Bergh, and the groups On and SOn are known to satisfy the formula for all n due to Dhillon,
Young, Talpo and Vistoli.

The Spinn family and G2

Let V be an n-dimensional vector space and let q be the split quadratic form defined by{
q(x) = x1xm+1 + x2xm+2 + . . . + xmx2m when n = 2m

q(x) = x1xm+1 + . . . + xmx2m + x2
2m+1 when n = 2m + 1.

and let O(q) := On be the subgroup of GLn fixing it. It has two connected components, and we denote by
SOn the connected component of the identity.

The algebraic group Spinn maps 2 : 1 to SOn. The map is a group homomorphism. If k = C the map is the
universal covering of SOn. The Spinn family exhibits unusual behavior regarding essential dimension5

Theorem (Brosnan, Reichstein, Vistoli). For n ≥ 15 the essential dimension of Spinn increases exponentially.

Making it a natural candidate to give a negative answer to Noether’s problem

Conjecture (Merkurjev). The group Spinn should provide a negative answer to Noether’s problem for con-
nected groups when n ≥ 15.

The authors conjecture that the same should happen for the expected class formula

Conjecture (P-T). The group Spinn should provide a negative answer to the expected class formula for con-
nected groups when n ≥ 15.

Many of the unusual behaviors of the Spinn family seem to depend on a particular finite subgroup of order
2n

∆n ⊂ Spinn

which is the inverse image of diagonal matrices in SOn. Essential dimension of ∆n provides an exponential
lower bound to that of Spinn and Noether’s problem for Spinn is equivalent to Noether’s problem for ∆n.

The algebraic group G2 is the automorphism group of the complexified Octonion algebra O⊗C. Its Lie coun-
terpart, the automorphism groups of the Octonions, is the smallest exceptional Lie group. When k = C there
is a fibration Spin7 → S6 with fiber G2, and in general we can see G2 as a subgroup of Spin7 by considering
the stabilizer of a vector v ∈ k7 with q(v) = 1.

Results
Our main result is reducing the problem of computing the class BSpinn to the same problem for the finite

group ∆n:
Theorem (P-T). The formula {BSpinn} = {Spinn}−1 holds for all n ≤ N if and only if the formula
{B∆n} = 1 holds for all n ≤ N .

More precisely, if {B∆N} 6= 1 and {B∆n} = 1 for n < N then {BSpinN} 6= {SpinN}−1

Moreover we computed the classes for some low dimensional cases, including the algebraic group G2, which
appears in the computation for Spin7.

Theorem (P-T). We have {BG2} = {G2}−1 and {BSpinn} = {Spinn}−1 for n ≤ 8. In particular, this also
shows that {B∆n} = 1 for n ≤ 8.

Forthcoming Research
Ekedahl: invariants Hi : K0(Stk/k)→ L0(Ab), where the RHS is generated by classes of finitely generated

abelian groups modulo {A⊕ B} = {A} + {B}. Applied to the class of BG for a finite group G they provide
obstructions to the expected class formula. When i = 2 they recover the unramified Brauer group.

We plan to try and understand the invariants Hi({B∆n}) for i ≥ 3 (for i = 1, 2 we know them to be zero).
Finding a non-zero invariant would give a counterexample to the expected class formula for connected alge-
braic groups6.
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1That is, every G-torsor is Zariski-locally trivial.
2In general a vector bundle over an algebraic stack will be smooth-locally trivial.
3Given G algebraic group, is there a faithful representation V of G such that V/G is rational? Finding a connected counterexample is a big open problem in the theory of algebraic groups.
4Otherwise we would have Z/47Z = µ47 and the class would be trivial by the computation above
5The minimum number of independent parameters needed to define a G-torsor.
6For technical reasons, a direct computation on the class of B∆n has no chance to successfully discover a counterexample.


