Complementi di Matematica - Ingegneria Energetica/Elettrica/Sicurezza Prova scritta del 26 gennaio 2009

PRIMA PARTE (per tutti)

- (a.1) Sia α un parametro reale e si consideri la successione di funzioni $f_n: [0, +\infty[\to \mathbf{R} \text{ definite}]$ da $f_n(x) := n^{\alpha} x e^{-\frac{2x^2}{n}}$.
 - 1. Si dica per quali valori di α la successione (f_n) converge uniformemente su $[0, +\infty[$;
 - 2. Si trovi l'insieme degli α per cui la serie $\sum_{n=1}^{\infty} f_n$ converge totalmente su $[0, +\infty[$.
 - 3. Si dica se per $\alpha = -\frac{5}{4}$ la serie $\sum_{n=1}^{\infty} f_n$ converge uniformemente su [0,1].
 - 4. (*) Si trovi l'insieme degli α per cui la serie $\sum_{n=1}^{+\infty} f_n$ converge uniformemente su $[0, +\infty[$.
- (a.2) Si calcoli l'integrale

$$\int_{-\infty}^{+\infty} \frac{\sin(x)}{x(x^2 + 2x + 10)} dx.$$

(b.1) Si trovino tutte le soluzioni del problema differenziale su R:

$$\begin{cases} y'' + 2y' + 10y = \cos(t)e^{-|t|} \\ y \in L^2(\mathbf{R}) \end{cases}.$$

- (b.1) Dati il parametro reale α e la successione di funzioni del punto (a.1)
 - 1. si trovino i valori di α per cui la serie $\sum_{n=1}^{\infty} f_n$ converge in $L^1([0,+\infty[);$
 - 2. si dica se, per $\alpha = -2$, la la serie $\sum_{n=1}^{\infty} f_n$ converge in $L^2([0, +\infty[)$

SECONDA PARTE (solo per gli energetici)

(c.1) Si consideri il problema differenziale su R:

$$\begin{cases} y'' + 2y' + 10y = f \\ y(t) = 0 \text{ per } t < 0. \end{cases}$$

Si trovi la soluzione y nei due casi seguenti:

- 1. $f = \delta'$;
- 2. $f(t) = H(t)\cos(t)$.
- (c.2) Si trovino tutte le distribuzioni u tali che:

1.
$$\left(1 - \frac{1}{1 + t^2}\right)u = 1;$$

$$2. \ (\star) \quad t^2 u = \delta.$$