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Prologue

The results presented in this talk grew out of long-year unsuccessful attempts to prove (or
disprove) Gordon’s conjecture [1991], concerning a natural nonstandard version of the Pontryagin-
vanKampen (PvK) duality for locally compact abelian groups.

Given a hyperfinite abelian group G (in an ω1-saturated nonstandard universe) with two dis-
tinguished subgroups G0 ⊆ Gω ⊆ G, where G0 is a Π

0
1 subgroup of infinitesimals and Gω is a Σ

0
1

subgroup of finite elements, such that #S/#R is finite for any internal sets G0 ⊆ R ⊆ S ⊆ G, one
can form a (classical) locally compact, metrizable and σ-compact group as the quotient Gω/G0.

One can also form the internal dual G∧ = ∗Hom(G, ∗T) of G (where T denotes the multiplicative
group of complex units) and consider the infinitesimal annihilators

G⊥
0 = {α ∈ G∧; (∀x ∈ G0)(α(x) ≈ 1)} (S-continuous internal characters),

G⊥
ω = {α ∈ G∧; (∀x ∈ Gω)(α(x) ≈ 1)} (internal characters infinitesimal on Gω),

of G0 and Gω, respectively. Then the triple
(
G∧, G⊥

ω , G⊥
0

)
satisfies the same above mentioned

conditions as the original triple (G, G0, Gω).
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Gordon’s conjecture states that the canonic map Φ from G⊥
0 /G⊥

ω to the (classical) dual group

Ĝω/G0 of Gω/G0, making the diagram

Gω
α↾Gω

−−−−→ ∗T
y

y◦

Gω/G0 −−−−→
Φ(α)

T

commute for each α ∈ G⊥
0 (with Gω → Gω/G0 denoting the restriction of the canonic projection

G → G/G0 to Gω and
◦ : ∗T → T denoting the standard part map), is indeed a continuous

homomorphism of topological groups. As it is an isomorphisms of G⊥
0 /G⊥

ω onto a closed subgroup

in Ĝω/G0, the only problem is the surjectivity of Φ.

It is known that Gordon’s conjecture is true whenever there is an internal subgroup K such that
G0 ⊆ K ⊆ Gω. In particular, this is the case for triples of the form (G, {1}, Gω) with countable
discrete Gω = Gω/{1}, and (G, G0, G) with compact G/G0.

We will use the countable discrete special case to derive certain almost-near theorems in the sense
of Anderson [1986], with rather strong uniformity properties, for (partial almost) homomorphisms
of abelian groups into the group T and for dual lattices of integral point lattices.
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Introduction

Let G, H be groups, the latter endowed with a (left) invariant metric ρ, and ε > 0. A mapping
f : S → H, where S ⊆ G, is called a partial ε-homomorphism if ρ(f(xy), f(x)f(y)) ≤ ε for all
x, y ∈ S such that xy ∈ S. If S = G then f is called an ε-homomorphism.

If f : S → H satisfies the homomorphy condition f(xy) = f(x)f(y) whenever x, y, xy ∈ S, then
f is called a partial homomorphism.

Two mappings f : U → H, g : V → H, where U, V ⊆ G, are said to be ε-close on a set S ⊆ U∩V
if ρ(f(x), g(x)) ≤ ε for each x ∈ S.

The topic can be traced back to Ulam. Some conditions under which a (continuous) δ-homo-
morphism f : G → H is ε-close on G to a (continuous) homomorphism ϕ : G → H were studied,
e.g., by Kazhdan [1982], Grove, Karcher and Ruh [1974], Alekseev, Glebskii and Gordon [1999],
Špakula and Zlatoš [2004]; extensive reference lists in can be found in Hyers and Rassias [1992],
and Székelyhidi [2000].

In this talk we will examine the problem when a partial δ-homomorphism f : R → T from
a finite subset R of an abelian group G to the multiplicative group of all complex units T is ε-close
to a homomorphism ϕ : G → T on a set S ⊆ R. Alternatively, we will use terms like (partial)
ε-character and (partial) character.
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Not even all partial homomorphisms can be extended to homomorphisms. The necessary and
sufficient condition can easily be stated:

A partial homomorphism f : S → H, defined on a subset S of a group G extends to a homo-
morphism ϕ : 〈S〉 → H if and only if, for any integer n > 0 and all x1, . . . , xn ∈ S, the equality
x1 . . . xn = 1 in G implies the equality f(x1) . . . f(xn) = 1 in H, or, equivalently, if f extends to
a partial homomorphism 〈S〉n → H for each n > 0, where

〈S〉n =
(
S ∪ {1} ∪ S−1

)n
and 〈S〉 =

⋃

n∈N

〈S〉n

is the subgroup of G generated by S. For G abelian and H = T, this automatically implies the
extendability of f to a character ϕ : G → T.

As a finite set S ⊆ G may contain elements of arbitrarily big order, there seems to be no
reason for the existence of an integer n, depending uniformly just on the number #S of elements
of S, such that the extendability of f : S → T to a partial character 〈S〉n → T would guarantee
its extendability to a character ϕ : G → T for all G abelian, S and f . Therefore it is perhaps
surprising that the approximative version of this statement is true.
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Kazhdan’s theorem

An amenable group G is a locally compact group, endowed with an invariant mean M ; i.e.,
M : L∞(G)→ C is a (left) invariant positive linear functional, assigning the value 1 to the constant
function 1: G → C.

Theorem 1. (Kazhdan [1982] Let G be an amenable group, H = U(X) be the group of all
unitary operators on some Hilbert space X with the usual operator norm, and ε < 1/200. Then any
(continuous) ε-homomorphism f : G → H is 2ε-close to a (continuous) homomorphism ϕ : G → H.

A more elementary proof, working for amenable G and finite dimensional compact Lie group H,
was given by Alekseev, Glebskii and Gordon [1999].
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For H = T = U(C) one can give even a more elementary proof, under a considerably weaker
restriction on ε and a better estimation of the distance of both maps.

We use the arc or angular metric |arg(a/b)| on T, instead of the euclidean metric |a − b|.

Theorem 2. Let G be an amenable locally compact group, and 0 < ε < π
2 . Then for every

ε-homomorphism f : G → T there exists a homomorphism ϕ : G → T such that

∣∣∣∣arg
ϕ(x)

f(x)

∣∣∣∣ ≤ ε

for each x ∈ G. Moreover, if f is continuous then one can assume the same for ϕ.

Sketch of proof. Let 0 < ε < π
2 , and f : G → T be an ε-homomorphism. Define ϕ : G → T by

ϕ(x) = f(x) exp

(
iMt

[
arg

f(xt)

f(x)f(t)

])
,

where Mt denotes the invariant mean M on G with the argument regarded as a function of t.
Then ϕ obviously is ε-close to f and continuous if f is. Its homomorphy can be established by a
fairly straightforward computation.
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Gordon’s theorem

We will actually need a special case of one of Gordon’s results, only, formulated in terms of
ultraproducts of abelian groups with respect to a nontrivial (hence countably incomplete) ultrafilter
over the set N. On the other hand, we will slightly generalize this result from hyperfinite to all
internal groups. This could be done just by an inspection of Gordon’s proof, or by proving the
ultraproduct version directly.

Theorem 3. (Gordon [1991]) Let G =
∏

i∈N
Gi/D be an ultraproduct of a system of abelian

groups Gi with respect to a nontrivial ultrafilter D on N, and X be a countable subgroup of G.
Then for each character g : X → T there exists an internal character γ : G → ∗T such that

g(x) = ◦γ(x),

for each x ∈ X.
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Sketch of proof. Let Γi = Ĝi = Hom(Gi, T) denote the dual group of Gi,

Γ =
∏

i∈N

Γi/D and ∗
T = T

N/D

Thus the elements of Γ are exactly all the internal characters γ : G → ∗T, and (neglecting topol-
ogy) Γ plays the role of the dual group of G within the “world of internal objects.” Similarly,

X̂ = Hom(X, T) denotes the (usual) dual group of the discrete abelian group X. Thus X̂ is a com-
pact metrizable topological group.

Consider the map Φ : Γ → X̂ given by Φ(γ) = ◦γ ↾ X, i.e., Φ(γ)(x) = ◦γ(x) for γ ∈ Γ , x ∈ X.
Obviously, Φ is a group homomorphism. The proof will be complete once we show that Φ is onto.

To this end it is enough to prove that Φ[Γ ] is both closed and dense in X̂, i.e., it separates points
in X.

9



Approximate extension of partial ε-characters to characters

Theorem 4. Let 0 < δ < ε ≤ π
2 and 1 ≤ q ∈ N. Then there exists a positive integer n ∈ N

(depending just on δ, ε and q) such that for any abelian group G, a set S ⊆ G, satisfying #S ≤ q,
and a partial δ-character f : 〈S〉n → T there is a character ϕ : G → T such that

∣∣∣∣arg
ϕ(x)

f(x)

∣∣∣∣ < ε,

for each x ∈ S.
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Sketch of proof. Assume the contrary and choose a δ, ε and q witnessing it. Then there is a sequence
Gi of abelian groups with subsets Si ⊆ Gi, #Si ≤ q, and partial δ-characters fi : 〈Si〉i → T, such
that for each genuine character ϕi : Gi → T there is an xi ∈ Si subject to∣∣∣∣arg

ϕi(xi)

fi(xi)

∣∣∣∣ ≥ ε.

Let D be any nontrivial ultrafilter on the set N and G =
∏

i∈N
Gi/D. Put

Sik = 〈Si〉k

for i, k ∈ N, and denote

Xk =
∏

i∈N

Sik/D ⊆ G and X =
⋃

k∈N

Xk.

Then X is a countable subgroup of G, and the restriction of the internal map f = (fi)/D to X
gives rise to a δ-character ◦f ↾ X of X such that

∣∣∣∣arg
γ(x)
◦f(x)

∣∣∣∣ ≥ ε.

for any internal character γ ∈ Ĝ and some x = (xi)/D ∈ X, which can be shown to contradict the
conjunction of Theorems 2 and 3.
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Application to duals of integral point lattices

A point lattice in Rq is a discrete subgroup of Rq; an integral point lattice in Rq is a subgroup
of Zq. A point lattice H ⊆ Rq has full rank if its linear span [H] equals Rq.

The dual group Ẑq = Hom(Zq, T) of Zq is canonically isomorphic to Tq; the action of an
α = (α1, . . . , αq) ∈ Tq on Zq is given by

x 7→ αx = αx1
1 . . . αxq

q ,

for x = (x1, . . . , xq) ∈ Zq. For any set X ⊆ Zq we denote by

X ′ =
{
α ∈ T

q; (∀x ∈ X)(αx = 1)
}

the annihilator of X in Tq; it is always a subgroup of Tq.

If H ⊆ Zq is an integral point lattice in Rq, then, by the PvK duality, there are canonic group
isomorphisms

Ĥ ∼= T
q/H ′ and Ẑq/H ∼= H ′
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We also denote

B1 =
{
x ∈ R

q; ‖x‖1 ≤ 1
}
, and B∞ =

{
x ∈ R

q; ‖x‖∞ ≤ 1
}
,

the closed unit balls with respect to the ℓ1-norm ‖x‖1 =
∑q

i=1 |xi|, and with respect to the ℓ∞-
norm ‖x‖∞ = maxi≤q |xi| on Rq, respectively. The interior of any set X ⊆ Rq or X ⊆ T is denoted
by X◦. Additionally,

Λδ =
{
c ∈ T; |arg c| ≤ δ

}
,

and
T

q(X, A) =
{
α ∈ T

q; (∀x ∈ X)(αx ∈ A)
}
,

for any X ⊆ Zq, A ⊆ T.
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Theorem 5. Let 0 < δ < 2π
3 , ε > 0 and 1 ≤ q ∈ N. Then there exists a positive integer n ∈ N

(depending just on δ, ε and q) such that for every integral point lattice H ⊆ Zq we have

T
q(H ∩ nB1, Λδ) ⊆ H ′ · (Λ◦

ε)
q,

i.e., for each α ∈ Tq, satisfying αx ∈ Λδ for any x ∈ H such that ‖x‖1 ≤ n, there is a β ∈ H ′,
such that |arg(αj/βj)| < ε whenever 1 ≤ j ≤ q.

Sketch of proof. The result can be derived from Theorem 4 by rather elementary, though not quite
straightforward accounts, using the fact that the abelian group G = Zq/H is generated by the
at most q-element set S = {e1 + H, . . . , eq + H}, where ei ∈ Zq has 1 in the ith place and 0’s
elwewhere.

The first integer n ≥ 1 satisfying the condition of Theorem 5 for δ, ε and q will be denoted by
N(δ, ε, q).
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Remark. Gordon’s theorem seems to add certain uniformity to the discrete-compact case of PvK
duality. The latter implies the existence of such an n depending not just on δ, ε and q but also
on H.

On the other hand, using the PvK-duality in full generality, one can prove the following more
general but less uniform result (the weakened version of the last theorem being a special case for
the discrete group G = Zq and Sn = Zq ∩ nB1):

Let G be a σ-compact LCA group and Ĝ be its dual group. Assume that Sn ⊆ Sn+1 is a sequence
of symmetric compact neighborhoods of the unit element 1 ∈ G, such that G =

⋃
n∈N

Sn, and H is
a closed subgroup of G. Then for any δ ∈ (0, 2π/3), ε > 0, there is a positive integer n ∈ N such
that

Ĝ(H ∩ Sn, Λδ) ⊆ H ′ · Ĝ(S1, Λ
◦
ε),

where
Ĝ(S, A) =

{
ϕ ∈ Ĝ; ϕ[S] ⊆ A

}

for S ⊆ G, A ⊆ T, and H ′ = Ĝ(H, 1) is the annihilator of H in Ĝ.

Probably, the proof of Gordon’s conjecture would require to add similar uniformity to the general
PvK duality, as well.
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For any set X ⊆ Rq, let us denote

X+ =
{
y ∈ R

q; (∀x ∈ X)(xy ∈ Z)
}

its integral annihilator, where xy = x1y1 + . . .+ xqyq is the usual scalar product in Rq.

If H ⊆ Zq is an integral point lattice in Rq, then Zq = (Zq)+ ⊆ H+, and the dual group of the
quotient Zq/H is isomorphic to H ′ ∼= H+/Zq.

The dual (also called polar or reciprocal) lattice of a point lattice H ⊆ Rq is defined by

H⋆ = H+ ∩ [H].

Thus, for a full rank lattice, we have H⋆ = H+.

We also denote
X(δ) =

{
y ∈ R

q; (∀x ∈ X)(∃ c ∈ Z)(|xy − c| ≤ δ)
}
,

for X ⊆ Rq, δ > 0.
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With all this in mind, changing the scale from 2π to 1 one can readily translate Theorem 5 into
the language of duals of full rank integral point lattices.

Theorem 6. Let 0 < δ < 1
3 , ε > 0 and 1 ≤ q ∈ N. Then for each n ≥ N(δ, ε, q) and every full

rank integral point lattice H ⊆ Zq we have

(H ∩ nB1)
(δ) ⊆ H⋆ + εB◦

∞,

i.e., for each u ∈ (H ∩ nB1)
(δ) there is a v ∈ H⋆ such that ‖u − v‖∞ < ε.

17



Final remark. It would be interesting if somebody could prove any of the Theorems 4, 5 or 6
in a more constructive way, avoiding the assumption of existence of nontrivial ultrafilters on N, as
well as any higher choice related axioms of set theory. E.g., one could try to prove any of them by
induction on q.

Furthermore, restricting the values of δ and ε to some sequences of the form δk = 1/ak,
εk = 1/bk, where ak > 3, bk > 0 are some fixed strictly increasing primitive recursive sequences
of integers, Theorem 6 can relatively easily be re-formulated within the language of Peano arith-
metic (PA). Thus it is natural to ask the following question:

Question. Is (the above modification of) Theorem 6 provable in PA?

A closely related question can be stated as follows:

Question. Let W (k) denote the first n ≥ 1 satisfying the conclusion of Theorem 6 for, say,
δ = 1/(k + 4), ε = 1/(k + 1), q = k + 1. Is the function W : N → N (primitive) recursive?
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