ON THE STRUCTURE OF FIXED-POINT SETS OF NONEXPANSIVE MAPPINGS

Andrzej Wiśnicki Maria Curie-Skłodowska University, Lublin, Poland

 $NonStandard\ Methods\ and\ Applications\ in$ Mathematics Pisa, May 25-31, 2006

Banach's Contraction Principle. Let (M, ρ) be a complete metric space and $T: M \to M$ a contraction:

$$\rho\left(Tx,Ty\right) \leq k\rho\left(x,y\right)$$

for some k < 1 and every $x, y \in M$.

Then T has a unique fixed point: $Tx_0 = x_0$.

Definition. A mapping $T: M \to M$ is called nonexpansive if

$$\rho\left(Tx, Ty\right) \le \rho\left(x, y\right)$$

for every $x, y \in M$.

Our standard assumptions:

C - a bounded closed and convex subset of a Banach space X,

T:C o C - nonexpansive:

$$||Tx - Ty|| \leq ||x - y||.$$

Example: $X = l^1$,

$$C = \left\{ (x_n) \in l^1 : x_n \geq 0, \|x\| = 1
ight\},$$

$$Tx = T(x_1, x_2, ...) = (0, x_1, x_2, ...)$$
.

Then $T:C\to C$ is an isometry without fixed points. Definition. We say that a Banach space X has the fixed point property (FPP) if every nonexpansive mapping $T:C\to C$ (defined on a closed convex bounded set C) has a fixed point: Tx=x.

The first existence results were obtained by F. Browder, D. Göhde and W. A. Kirk in 1965.

Problem:

- Does reflexivity imply FPP?
- Does FPP imply reflexivity?

Theorem (Maurey [1981], Dowling, Lennard [1997]). Let $X = L_1[0,1]$ and Y be a (closed) subspace of X. Then

Y is reflexive iff Y has FPP.

Let T:C o C be nonexpansive, fix $x_0\in C,$ and put

$$T_nx=rac{1}{n}x_0+\left(1-rac{1}{n}
ight)Tx,\,\,x\in C.$$

Then $T_n: C \to C$ is a contraction and, by Banach's contraction principle, there exists $x_n \in C$ such that

$$T_n x_n = x_n$$
.

Consequently, we obtain the so-called approximate fixed point sequence (x_n) for T:

$$\lim_{n\to\infty}\|Tx_n-x_n\|=0.$$

Question:

ullet Let T,S:C o C be commuting, nonexpansive mappings: $T\circ S=S\circ T.$ Does there exist a sequence (x_n) such that

$$\lim_{n o\infty}\|Tx_n-x_n\|=\lim_{n o\infty}\|Sx_n-x_n\|=0?$$

Nonstandard reformulation:

Consider ${}^*T, {}^*S: {}^*C \to {}^*C$ and define nonexpansive mappings

$$\widehat{T},\widehat{S}:\widehat{C}
ightarrow\widehat{C}$$

by putting

$$\widehat{T}\left({^{\circ}\mathsf{x}}
ight) = {^{\circ}}\left({^{*}}T\mathsf{x}
ight), \ \ \widehat{S}\left({^{\circ}\mathsf{x}}
ight) = {^{\circ}}\left({^{*}}T\mathsf{x}
ight),$$

where

$$\widehat{C} = {}^{\circ}({}^*C) = \{{}^{\circ}\mathsf{x} : \mathsf{x} \in {}^*C\}$$

and

$$^{\circ}\mathsf{x} = \{\mathsf{y} \in \ ^{*}E: \|\mathsf{x} - \mathsf{y}\|_{*} pprox 0\}$$

denotes the (generalized) standard part of x).

Question:

ullet Does there exist $\hat{x} \in \widehat{C}$ such that $\widehat{T}\hat{x} = \widehat{S}\hat{x} = \hat{x}$?

Definition. Fix T is said to be a non-expansive retract of C if there exists a nonexpansive mapping $r:C \to Fix T$ such that

$$rx = x$$

for every $x \in Fix T$.

Theorem ([2003]). Suppose T, S: $C \to C$ are commuting nonexpansive mappings and $Fix \hat{T}$ is a nonexpansive retract of \hat{C} . Then there exists $\hat{x} \in \hat{C}$ such that

$$\hat{T}\hat{x}=\hat{S}\hat{x}=\hat{x}$$
.

and, consequently,

$$\lim_{n o\infty}\|Tx_n-x_n\|=\lim_{n o\infty}\|Sx_n-x_n\|=0$$
 for some $(x_n).$

Proof sketch: the mixture of Bruck's ideas [1973] and (iterated) nonstandard techniques.

Let $r:\widehat{C} \to \operatorname{Fix} \widehat{T}$ be a nonexpansive retraction onto $\operatorname{Fix} \widehat{T}$.

- By transfer, $\widehat{r}:\widehat{\widehat{C}} \to \widehat{\operatorname{Fix}\widehat{T}}$ is a non-expansive retraction in the (double) nonstandard hull $\widehat{\widehat{X}}$.
- ullet If $x\in \operatorname{Fix} \widehat{T}$, then $\widehat{T}\circ \widehat{S}\, x=\widehat{S}\circ \widehat{T}\, x=\widehat{S}\, x$ and hence $\widehat{S}\left(\operatorname{Fix} \widehat{T}
 ight)\subset \operatorname{Fix} \widehat{T}.$ By transfer, $\widehat{\widehat{S}}\left(\widehat{\operatorname{Fix} \widehat{T}}\right)\subset \widehat{\operatorname{Fix} \widehat{T}}.$
- If $(\widehat{\hat{S}} \circ \widehat{r}) x = x$, then $x \in \widehat{\operatorname{Fix}} \widehat{T}$, $\widehat{r}x = x$, (since \widehat{r} is a retraction), and consequently $(\widehat{\hat{S}} \circ \widehat{r}) x = \widehat{\hat{S}} x = x$. (Bruck's argument).
- Hence

$$\widehat{\operatorname{Fix} \widehat{S}} \cap \operatorname{Fix} \widehat{\widehat{S}} = \operatorname{Fix} (\widehat{\widehat{S}} \circ \widehat{r})
eq \emptyset,$$

(it follows from \aleph_1 -saturation and the existence of an approximate fixed

point sequence:

$$\widehat{\widehat{S}} \circ \widehat{r}: \widehat{\widehat{C}} o \widehat{\operatorname{Fix} \widehat{T}}$$

is a nonexpansive and neocontinuous mapping defined on a neocompact set $\widehat{\widehat{C}}$).

• But

$$\operatorname{Fix} \widehat{\widehat{T}} \cap \operatorname{Fix} \widehat{\widehat{S}} \supset \widehat{\operatorname{Fix} \widehat{T}} \cap \operatorname{Fix} \widehat{\widehat{S}} \neq \emptyset$$

and consequently

$$\lim_{n o\infty}\left\|\widehat{T}\,x_n-x_n
ight\|=\lim_{n o\infty}\left\|\widehat{S}\,x_n-x_n
ight\|=0.$$

for some sequence (x_n) in \widehat{C} .

• By neocompactness again,

$$\operatorname{Fix} \widehat{T} \cap \operatorname{Fix} \widehat{S} \neq \emptyset.$$

Question:

• If $T:C\to C$ is a nonexpansive mapping, is then $Fix\,\widehat{T}$ a nonexpansive retract of \widehat{C} ?

(Note that $Fix\,T$ need not be a non-expansive retract of C but a mapping $\widehat{T}:\widehat{C}\to\widehat{C}$ is much more regular).

Theorem ([2006]). For any (at most) countable set $A \subset \operatorname{Fix} \widehat{T}$ there exists a nonexpansive mapping $r: \widehat{C} \to \operatorname{Fix} \widehat{T}$ such that rx = x for $x \in A$.

Proof sketch:

• Fix $\mathsf{x} \in {}^*C, \ \omega \in {}^*\mathbb{N} \setminus \mathbb{N}, \ \mathrm{and} \ \mathrm{consider} \ \mathrm{an} \ (\mathrm{internal}) \ \mathrm{mapping} \ \mathsf{T}_\mathsf{x} : {}^*C \to {}^*C \ \mathrm{defined} \ \mathrm{by}$

$$\mathsf{T}_{\mathsf{x}}\mathsf{z} = rac{1}{\omega}\mathsf{x} + \left(1 - rac{1}{\omega}
ight)\,^*T\mathsf{z},\; \mathsf{z} \in \,^*C.$$

• By transfer of the Banach Contraction Principle, there exists exactly one point, say, $F_{\omega}x \in {}^*C$ such that $T_xF_{\omega}x = F_{\omega}x$. This defines a mapping $F_{\omega}: {}^*C \to {}^*C$ which is *-nonexpansive. Moreover

$$\mathsf{T}_{\mathsf{x}}\mathsf{F}_{\omega}\mathsf{x} = \mathsf{F}_{\omega}\mathsf{x} = rac{1}{\omega}\mathsf{x} + \left(1 - rac{1}{\omega}
ight)^*T\mathsf{F}_{\omega}\mathsf{x}$$
 for $\mathsf{x} \in {}^*C.$

• Hence

and

$$\left\| {^*T}\mathsf{F}_{\omega}\mathsf{x} - \mathsf{F}_{\omega}\mathsf{x}
ight\|_* \leq rac{1}{\omega} \mathrm{diam} C$$

$$\|\mathsf{F}_{\omega}\mathsf{x} - \mathsf{x}\|_{*} < (\omega - 1) \|^{*}T\mathsf{x} - \mathsf{x}\|_{*}$$
.

• Put

$$r_{\omega}{}^{\circ}\mathsf{x}={}^{\circ}\left(\mathsf{F}_{\omega}\mathsf{x}
ight),\;\mathsf{x}\in{}^{*}C.$$

and notice that $r_{\omega}:\widehat{C}\to \operatorname{Fix}\widehat{T}$ is a well-defined nonexpansive mapping.

• By \aleph_1 -saturation, for any countable set $A \subset \operatorname{Fix} \widehat{T}$ there exists $\omega \in {}^*\mathbb{N} \setminus \mathbb{N}$ such that

$$rx = x$$
 for $x \in A$.

(The argument is not very easy in the language of Banach space ultraproducts).

For more details:

A. Wiśnicki, On fixed-point sets of nonexpansive mappings in nonstandard hulls and Banach space ultrapowers, Nonlinear Anal., to appear.