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r-bounded Exponential-Logarithmic
Power Series Fields.

Abstract:

e Since Wilkie’s result [9] (which established that the el-
ementary theory Tey, of (R, exp) is model complete and
o-minimal), many o-minimal expansions of the reals have
been investigated. The problem of constructing nonar-
chimedean models of Tey, (and more generally, of an o-
minimal expansion of the reals) gained much interest.

e [n [2] it was shown that fields of generalized power series
cannot admit an exponential function.

e Elaborationg on an idea of [3], we construct in [4] fields
of generalized power series with support of bounded car-
dinality which admit an exponential.

e In this talk, we present the construction given in
[4]: We give a natural definition of an exponential, which
makes these fields into models of the o-minimal expansion
Tionexp = the theory of the reals with restricted analytic
functions and exponentiation.

e We present preliminary ideas on how to introduce deriva-
tion operators on these models. The aim is to present a
new class of ordered differential fields, with many interest-
ing properties.
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Notations and Preliminaries.

The natural valuation.

e Let G be a totally ordered abelian group. The archimedean
equivalence relation on G is defined as follows. For 0 # x,

0#yedG:
r ~yif In € Nst. njz| > |y| and n|y| > |z|

where |z| := max{z, —x}. Weset v << yifforalln € N,
n|x| < |y|. We denote by [z] is the archimedean equiva-
lence class of x. We totally order the set of archimedean
classes as follows: [y] < [z] if z << .

o Let (K,+,-,0,1,<) be an ordered field. Using the
archimedean equivalence relation on the ordered abelian
group (K, +,0,<), we can endow K with the natural
valuation v:

for z,y € K, z,y # 0 define v(z) := [z] and [z]+]y] := [zy].

Notation:

Value group: v(K) :={v(x) |z € K,x # 0}.
Valuation ring:, R, = {z |z € K and v(x) > 0}.
Valuation ideal: [, :={z |z € K and v(z) > 0}.
Group of positive units:

UV ={z|x€R,z>0v(x)=0}
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Ordered Exponential Fields.

An ordered field K is an exponential field if there exists
a map

exp: (K, +,0,<) — (K7 . 1,<)

such that exp is an isomorphism of ordered groups. A map
exp with these properties will be called an exponential
on K. A logarithm on K is the compositional inverse
log = exp~! of an exponential. WLOG, we require the
exponentials (logarithms) to be v-compatible:

exp(R,) = U Y or log(U") = R, > .

We are interested in exponentials (logarithms) satisfying
the growth axiom scheme: (GA):

Vn € N: x> log(x") = nlog(z) forall z € K"\ R, .
Via the natural valuation v, this is equivalent to

v(z) < v(log(z)) for all z € K7\ R, . (1)
A logarithm log is a (GA)-logarithm if it satisfies (1).



Hahn Groups and Fields.

e Let I' be any totally ordered set and R any ordered
abelian group. Then R' is the set of all maps g from T’
to R such that the support {y € I' | g(v) # 0} of g is
well-ordered in I'. Endowed with the lexicographic order
and pointwise addition, R' is an ordered abelian group,
called the Hahn group.

e Representation for the elements of Hahn groups:
Fix a strictly positive element 1 € R (if R is a field, we
take 1 to be the neutral element for multiplication). For
every 7 € I', we will denote by 1, the map which sends ~
to 1 and every other element to 0 (1, is the characteristic
function of the singleton {v}.) For g € R' write

g = Z 9717
~vel

(where g, = g(v) € R).
e For G # 0 an ordered abelian group, k an archimedean
ordered field, k((G)) is the (generalized) power series
field with coefficients in k£ and exponents in G. As an
ordered abelian group, this is just the Hahn group k¢. A
series s € k((G)) is written

s= Y s4tY

geCG

with s, € k and well-ordered support {g € G | s, # 0}.



e The natural valuation on k((G)) is v(s) = min support s
for any series s € k((G)). The value group is G and the
residue field is k. The valuation ring k((G=")) consists of
the series with non-negative exponents, and the valuation
ideal k((G=")) of the series with positive exponents. The
constant term of a series s is the coefficient sg. The
units of k((G=Y)) are the series in k((G=")) with a non-

zero constant term.

e Additive Decomposition Given s € k((G)), we can
truncate it at its constant term and write it as the sum of
two series, one with strictly negative exponents, and the
other with non-negative exponents. Thus a complement
in (k((G)),+) to the valuation ring is the Hahn group
kG~ We call it the canonical complement to the
valuation ring and denote it by k((G=")).

e Multiplicative Decomposition Given s € k((G))”",
we can factor out the monomial of smallest exponent g €
G and write s = t9u with u a unit with a positive constant
term. Thus a complement in (k((G))”Y, ) to the subgroup
U; 0 of positive units is the group consisting of the (monic)
monomials t9. We call it the canonical complement
to the positive units and denote it by Mon k((G)).



r—bounded Hahn Groups and Fields.

Fix a regular uncountable cardinal .

e The k-bounded Hahn group (R'), C R' consists
of all maps of which support has cardinality < k.

e The k-bounded power series field k((G)), C k((G))
consists of all series of which support has cardinality < k.
It is a valued subfield of k((G)). We denote by k((G=")),
its valuation ring. Note that k((G)), contains the monic
monomials. We denote by k((G<")), the complement to
E((G=1))

e Our first goal is to define an exponential (logarithm)
on k((G)), (for appropriate choice of G). From the above
discussion, we get;:

Proposition 0.1 Set K = k((G)),. Then (K,+,0, <)
decomposes lexicographically as the sum:

(K, +,0,<) = k(G™)), @ k((G="))s - (2)
(K=Y, -, 1,<) decomposes lexicographically as the prod-
uct:
(K7, .,1,<) = Mon (K) x U." (3)
Moreover, Mon (K) is order isomorphic to G through
the 1somorphism t9 — —g.

Proposition 0.1 allows us to achieve our goal in two main
steps; by defining the logarithm on Mon (K) and on U,
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The Main Theorem

Theorem 0.2 Let I be a chain, G = (RY), and K =
R((G)),. Assume that

[T — G

15 an embedding of chains. Then [ induces an embed-
ding of ordered groups (a prelogarithm)
log : (K°°,-,1,<) — (K, +,0,<)
as follows: given a € K°, write a = t97(1 + &) (with
g = ergy1,, 1 € R, ¢ infinitesimal), and set
log(a) = — £ gt +logr+ 3 (~1)¢V= (1)
~vel 1=1 1

This prelogarithm satisfies
v(logt?) = I(min support g) (5)

Moreover, log is surjective (a logarithm) if and only if
[ 1s surjective, and log satisfies GA if and only if

I(minsupportg) >¢g  forallge G=".  (6)

dokokokkkk



Prelogarithmaic fields of power series.

Example 0.3 Power Series fields endowed with a ba-
sic prelogaritm: Let I' be any chain, G = (R"), and
K =R((G))x. Then

0T — G=Y defined by v +— —1,

is an embedding of chains, and gives rise to prelogaritm
on K. However, this prelogarithm is neither surjective nor
does it satisty GA.

e To get a prelogarithm satisfying GA, we choose o €
Aut (I') with the property that

o(y) >~ forally el (7)

(We say that o is an increasing automorphism). We set
[=100. Now

[ : T — G~ defined by v — —1,(7)

is an embedding of chains satisfying (6), so gives rise to a
prelogaritm on K satisfying GA.

We call (K, log) the prelogarithmic field of x-bounded
power series over (I',0).

e To get a surjective prelogarithm, we have to modify I'
as in the next section.
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The k-th iterated lexicographic power
of a chamn.

Proposition 0.4 Let I" # () be a given chain. There is
a canonically constructed chain I'y O I' together with
an isomorphism of ordered chains

b i T — G20
where G, == (R'"),.. Moreover, every increasing o €

Aut (I') extends canonically to an increasing o, € Aut (I'y)

We call the pair (I'y, t,) the k-th iterated lexicographic
power of .

We are now ready to summarize the procedure of con-
structing the Exponential-Logarithmic field of x-
bounded series over (I',0). Let I' be given and ¢ an
increasing automorphism.

e Construct I'., G., ., ando,..

e Set K := R((Gy))x and [ := 1, 0 0. Note that [ is
surjective and satisfies (6).

e Denote by log the surjective GA logarithm induced on
K>% by [ and set exp = log™'.

o (K, exp) is a model of Tyy exp-
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Growth Rates.

e Let I' be a chain and o € Aut (I') an increasing auto-
morphism. By induction, we define the n-th iterate of
o: ol(y) :== o(y) and 0" (v) := o(0"(~)). Define an
equivalence relation on I' as follows: For v,~" € T', set

v~y it dn e Nst. o(y) >4 and o"(y) > ~.

The equivalence classes [7], of ~, are convex and closed
under application of o (they are the convex hulls of the
orbits of o). The order of I' induces an order on I'/~,.
The order type of I'/~, is the rank of (I', o).

Example 0.5 Let [' = Z17Z (i.e. the lexicographically
ordered Cartesian product Z x Z) endowed with the au-
tomorphism o((z,y)) == (z,y + 1). The rank of o is Z.
Now consider the increasing automorphism
7((x,y)) .= (x + 1,y). The rank of 7 is 1.

e Let K be a real closed field and log a (GA)- logarithm
on KU Define an equivalence relation on K=\ R,:

a ~pg @' iff In € N sit. log,(a) < (') and log,(a') < a

(where log,, is the n-th iterate of the log). The order type of
the chain of equivalence classes is the logarithmic rank
of (K~9,log).
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We can compute the logarithmic rank of the Exponential-
Logarithmic field of k-bounded series over (I, o):

Theorem 0.6 The logarithmic rank of (R((G,,))>", log)
is equal to the rank of (I', o).

This proof (as many other proofs) is based on the observa-
tion that every series is log-equivalent to a fundamental
monomial, that is a monomial of the form

tb withy eT.
Next one observes that
forall v,~ e T': ¢t 1 ~log ¢t~ if and only if v ~, 7.

This in turn is based on the following useful formula for
log,, (t~17): by induction,

log , (t74) = ¢ 1o

Remark 0.7 If ' admits automorphisms of distinct rank,
then (R((G,)) admits logarithms of distinct logarithmic
rank. We can also use this observation to introduce tran-
sexponentials, as illustrated in the next example.
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Example 0.8 Let I' = ZIIZ, o((z,y)) = (z,y + 1),
(K, log) the corresponding k-bounded model. For the au-
tomorphism 7((z,y)) = (z + 1,y) , let L, respectively
T := L~! be the corresponding induced logarithm and
exponential on K.
Effect of ¢, 7 on the fundamental monomials:
let v = (z,y) € I, then

log(t™1) =t~ 1et
Whereas

Lt )=t
We see that, for any fundamental monomial X = ¢t~
and any n € N we have:

L(X) <log,(X) .

Also, a simple computation (using the fact that o and 7
commute) shows that also, for all n € N:

T(X) > exp,(X) .
FHRAA A

In the next section, we see how the logarithm determines
the derivation. We expect to obtain fields equipped with
several distinct derivations.

okokoskoskoskok
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Introducing Operators.

Main Motivation: We want a “Kaplansky embedding
Theorem” for ordered differential fields. The k-bounded
fields of power series are good candidates as “universal
domains”. But for this to make sense, we need first to
endow them with a good differential structure.

Main project: Given (I', o), introduce, if possible, deriva-
tion and composition operators on Exponential-Logarithmic
field of k-bounded series over (I, o).

[t seems to be enough to focus on the following

Main subproject: Given (I', o), introduce, if possible,
derivation and composition operators on the prelogarith-
mic field of k-bounded series over (I, o).
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Indeed, in [6] a method is developed showing the follow-
ing: given derivation and composition operators (satisfying
some good properties) on a “field of transseries” T, one can
extend these operators to the “exponential closure” TP,
[t seems that this method may be adapted to our con-
text: given derivation and composition operators (satisfy-
ing some good properties) on the prelogarithmic field of
r-bounded series over (I', o), one can extend these oper-
ators to the Exponential-Logarithmic field of k-bounded
series over (I, o).

Final Goal Find necessary and sufficient conditions on

(T', o) so that the corresponding prelogarithmic field of k-
bounded series (and the corresponding Exponential-Logarithmic
field of k-bounded series) admit a surjective derivation.

16



Derivations: We want to endow the prelogarithmic field
of k-bounded series over (I', o) with a derivation D satis-
fying the following properties:

e [ is strongly linear, that is
DY rg? = Y r,Dt?. (8)
g g
e [ satisfies Leibniz rule:
D(ab) = aD(b) + D(a)b (9)

e D satisfies the rule for the logarithmic derivative for

a > 0:
Dloga = Da/a (10)
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Reductions: The above rules direct us to perform a
number of steps in trying to define derivatives:

(i) From (8) and (9), it is clear that we only need to
determine D9, for g € G=0.

(ii) From (10) determining DtY reduces to determining
D logt9.
(iii) By definition of log, this in turn reduces to deter-
mining D logt~17, for a fundamental monomial ¢~ with
vyel.
(iv) Applying (10) again we see that for any v € I’y we
have:

Dt~ =Dt

(v) Finally from (iv), we see that we only need to define
Dt 1o for a fixed representative 7y € I' of an orbit of o
in I
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Example 0.9 Let I' = Z endowed with the automor-
phism o(z) := z + 1. For simplicity, let us choose vy = 0
and set

T=t"and DT =1.
Thent1n =log, T'ifn > 0,and t 1 = exp_, T'ifn < 0.
Therefore, for n > 0

n—1 n
Dt7tn = 1] t% and Dt =t 1+
k=0 k=1

[t is non-trivial to verify that these definitions induce a
well-defined derivative!

Example 0.10 Let [' = Z 117 endowed with the auto-
morphism o((x,y)) = (x,y + 1). The rank of o is Z.
For each orbit of gy we fix a representative z € Z. We
set T, := t~ 1=, Then {T.; z € Z} will represent in-
finitely many algebraically independent variables, which
will determine an infinite family {0.} of commuting par-
tial derivatives.

What about a derivation induced by the automorphism
7((x,y)) = (x +1,y) of rank one? This is more challeng-
ing. We have countably many distinct orbits but with a
single common convex hull. This suggests defining “ arbi-
trary iterates” log, T of the log, to capture the derivative
of every fundamental monomial.

Fokokokoskoskk
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