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κ-bounded Exponential-Logarithmic
Power Series Fields.

Abstract:

• Since Wilkie’s result [9] (which established that the el-

ementary theory Texp of (R, exp) is model complete and

o-minimal), many o-minimal expansions of the reals have

been investigated. The problem of constructing nonar-

chimedean models of Texp (and more generally, of an o-

minimal expansion of the reals) gained much interest.

• In [2] it was shown that fields of generalized power series

cannot admit an exponential function.

• Elaborationg on an idea of [3], we construct in [4] fields

of generalized power series with support of bounded car-

dinality which admit an exponential.

• In this talk, we present the construction given in

[4]: We give a natural definition of an exponential, which

makes these fields into models of the o-minimal expansion

Tan,exp := the theory of the reals with restricted analytic

functions and exponentiation.

•We present preliminary ideas on how to introduce deriva-

tion operators on these models. The aim is to present a

new class of ordered differential fields, with many interest-

ing properties.
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Algébriques Ordonnées, Séminaires 1995-1996.
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Notations and Preliminaries.

The natural valuation.

• Let G be a totally ordered abelian group. The archimedean

equivalence relation on G is defined as follows. For 0 6= x,

0 6= y ∈ G:

x +∼ y if ∃n ∈ N s.t. n|x| ≥ |y| and n|y| ≥ |x|
where |x| := max{x,−x}. We set x << y if for all n ∈ N,

n|x| < |y|. We denote by [x] is the archimedean equiva-

lence class of x. We totally order the set of archimedean

classes as follows: [y] < [x] if x << y.

• Let (K, +, ·, 0, 1, <) be an ordered field. Using the

archimedean equivalence relation on the ordered abelian

group (K, +, 0, <), we can endow K with the natural

valuation v:

for x, y ∈ K, x, y 6= 0 define v(x) := [x] and [x]+[y] := [xy].

Notation:

Value group: v(K) := {v(x) | x ∈ K, x 6= 0}.
Valuation ring:, Rv := {x | x ∈ K and v(x) ≥ 0}.
Valuation ideal: Iv := {x | x ∈ K and v(x) > 0}.
Group of positive units:

U>0
v := {x | x ∈ Rv, x > 0, v(x) = 0}.
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Ordered Exponential Fields.

An ordered field K is an exponential field if there exists

a map

exp : (K, +, 0, <) −→ (K>0, ·, 1, <)

such that exp is an isomorphism of ordered groups. A map

exp with these properties will be called an exponential

on K. A logarithm on K is the compositional inverse

log = exp−1 of an exponential. WLOG, we require the

exponentials (logarithms) to be v-compatible:

exp(Rv) = U>0
v or log(U>0

v ) = Rv > .

We are interested in exponentials (logarithms) satisfying

the growth axiom scheme: (GA):

∀n ∈ N : x > log(xn) = nlog(x) for all x ∈ K>0 \Rv .

Via the natural valuation v, this is equivalent to

v(x) < v(log(x)) for all x ∈ K>0 \Rv . (1)

A logarithm log is a (GA)-logarithm if it satisfies (1).
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Hahn Groups and Fields.

• Let Γ be any totally ordered set and R any ordered

abelian group. Then RΓ is the set of all maps g from Γ

to R such that the support {γ ∈ Γ | g(γ) 6= 0} of g is

well-ordered in Γ. Endowed with the lexicographic order

and pointwise addition, RΓ is an ordered abelian group,

called the Hahn group.

•Representation for the elements of Hahn groups:

Fix a strictly positive element 1 ∈ R (if R is a field, we

take 1 to be the neutral element for multiplication). For

every γ ∈ Γ, we will denote by 1γ the map which sends γ

to 1 and every other element to 0 (1γ is the characteristic

function of the singleton {γ}.) For g ∈ RΓ write

g =
∑

γ∈Γ
gγ1γ

(where gγ := g(γ) ∈ R).

• For G 6= 0 an ordered abelian group, k an archimedean

ordered field, k((G)) is the (generalized) power series

field with coefficients in k and exponents in G. As an

ordered abelian group, this is just the Hahn group kG. A

series s ∈ k((G)) is written

s =
∑

g∈G
sgt

g

with sg ∈ k and well-ordered support {g ∈ G | sg 6= 0}.
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• The natural valuation on k((G)) is v(s) = min support s

for any series s ∈ k((G)). The value group is G and the

residue field is k. The valuation ring k((G≥0)) consists of

the series with non-negative exponents, and the valuation

ideal k((G>0)) of the series with positive exponents. The

constant term of a series s is the coefficient s0. The

units of k((G≥0)) are the series in k((G≥0)) with a non-

zero constant term.

•Additive Decomposition Given s ∈ k((G)), we can

truncate it at its constant term and write it as the sum of

two series, one with strictly negative exponents, and the

other with non-negative exponents. Thus a complement

in (k((G)), +) to the valuation ring is the Hahn group

kG<0
. We call it the canonical complement to the

valuation ring and denote it by k((G<0)).

•Multiplicative Decomposition Given s ∈ k((G))>0,

we can factor out the monomial of smallest exponent g ∈
G and write s = tgu with u a unit with a positive constant

term. Thus a complement in (k((G))>0, ·) to the subgroup

U>0
v of positive units is the group consisting of the (monic)

monomials tg. We call it the canonical complement

to the positive units and denote it by Mon k((G)).
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κ–bounded Hahn Groups and Fields.

Fix a regular uncountable cardinal κ.

• The κ-bounded Hahn group (RΓ)κ ⊆ RΓ consists

of all maps of which support has cardinality < κ.

•The κ-bounded power series field k((G))κ ⊆ k((G))

consists of all series of which support has cardinality < κ.

It is a valued subfield of k((G)). We denote by k((G≥0))κ
its valuation ring. Note that k((G))κ contains the monic

monomials. We denote by k((G<0))κ the complement to

k((G≥0))κ.

• Our first goal is to define an exponential (logarithm)

on k((G))κ (for appropriate choice of G). From the above

discussion, we get:

Proposition 0.1 Set K = k((G))κ. Then (K, +, 0, <)

decomposes lexicographically as the sum:

(K, +, 0, <) = k((G<0))κ ⊕ k((G≥0))κ . (2)

(K>0, ·, 1, <) decomposes lexicographically as the prod-

uct:

(K>0, ·, 1, <) = Mon (K)× U>0
v (3)

Moreover, Mon (K) is order isomorphic to G through

the isomorphism tg 7→ −g.

Proposition 0.1 allows us to achieve our goal in two main

steps; by defining the logarithm on Mon (K) and on U>0
v .
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The Main Theorem

Theorem 0.2 Let Γ be a chain, G = (RΓ)κ and K =

R((G))κ. Assume that

l : Γ → G<0

is an embedding of chains. Then l induces an embed-

ding of ordered groups (a prelogarithm)

log : (K>0, ·, 1, <) −→ (K, +, 0, <)

as follows: given a ∈ K>0, write a = tgr(1 + ε) (with

g =
∑

γ∈Γ gγ1γ, r ∈ R>0, ε infinitesimal), and set

log(a) := − ∑

γ∈Γ
gγt

l(γ) + log r +
∞∑
i=1

(−1)(i−1)ε
i

i
(4)

This prelogarithm satisfies

v(log tg) = l(min support g) (5)

Moreover, log is surjective (a logarithm) if and only if

l is surjective, and log satisfies GA if and only if

l(min support g) > g for all g ∈ G<0 . (6)

*******

9



Prelogarithmic fields of power series.

Example 0.3 Power Series fields endowed with a ba-

sic prelogaritm: Let Γ be any chain, G = (RΓ)κ and

K = R((G))κ. Then

ι : Γ → G<0 defined by γ 7→ −1γ

is an embedding of chains, and gives rise to prelogaritm

on K. However, this prelogarithm is neither surjective nor

does it satisfy GA.

• To get a prelogarithm satisfying GA, we choose σ ∈
Aut (Γ) with the property that

σ(γ) > γ for all γ ∈ Γ (7)

(We say that σ is an increasing automorphism). We set

l = ι ◦ σ. Now

l : Γ → G<0 defined by γ 7→ −1σ(γ)

is an embedding of chains satisfying (6), so gives rise to a

prelogaritm on K satisfying GA.

We call (K, log) the prelogarithmic field of κ-bounded

power series over (Γ, σ).

• To get a surjective prelogarithm, we have to modify Γ

as in the next section.
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The κ-th iterated lexicographic power
of a chain.

Proposition 0.4 Let Γ 6= ∅ be a given chain. There is

a canonically constructed chain Γκ ⊇ Γ together with

an isomorphism of ordered chains

ικ : Γκ → G<0
κ

where Gκ := (RΓκ)κ. Moreover, every increasing σ ∈
Aut (Γ) extends canonically to an increasing σκ ∈ Aut (Γκ)

We call the pair (Γκ, ικ) the κ-th iterated lexicographic

power of Γ.

We are now ready to summarize the procedure of con-

structing the Exponential-Logarithmic field of κ-

bounded series over (Γ, σ). Let Γ be given and σ an

increasing automorphism.

• Construct Γκ, Gκ, ικ, and σκ.

• Set K := R((Gκ))κ and l := ικ ◦ σκ. Note that l is

surjective and satisfies (6).

• Denote by log the surjective GA logarithm induced on

K>0 by l and set exp = log−1.

• (K, exp) is a model of Tan,exp.
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Growth Rates.

• Let Γ be a chain and σ ∈ Aut (Γ) an increasing auto-

morphism. By induction, we define the n-th iterate of

σ: σ1(γ) := σ(γ) and σn+1(γ) := σ(σn(γ)). Define an

equivalence relation on Γ as follows: For γ, γ′ ∈ Γ, set

γ ∼σ γ′ iff ∃n ∈ N s.t. σn(γ) ≥ γ′ and σn(γ′) ≥ γ .

The equivalence classes [γ]σ of ∼σ are convex and closed

under application of σ (they are the convex hulls of the

orbits of σ). The order of Γ induces an order on Γ/∼σ.

The order type of Γ/∼σ is the rank of (Γ, σ).

Example 0.5 Let Γ = Z ~qZ (i.e. the lexicographically

ordered Cartesian product Z × Z) endowed with the au-

tomorphism σ((x, y)) := (x, y + 1). The rank of σ is Z.

Now consider the increasing automorphism

τ ((x, y)) := (x + 1, y). The rank of τ is 1.

• Let K be a real closed field and log a (GA)- logarithm

on K>0. Define an equivalence relation on K>0 \Rv:

a ∼log a′ iff ∃n ∈ N s.t. logn(a) ≤ (a′) and logn(a′) ≤ a

(where logn is the n-th iterate of the log). The order type of

the chain of equivalence classes is the logarithmic rank

of (K>0, log).

12



We can compute the logarithmic rank of the Exponential-

Logarithmic field of κ-bounded series over (Γ, σ):

Theorem 0.6 The logarithmic rank of (R((Gκ))
>0
κ , log)

is equal to the rank of (Γ, σ).

This proof (as many other proofs) is based on the observa-

tion that every series is log-equivalent to a fundamental

monomial, that is a monomial of the form

t−1γ with γ ∈ Γ .

Next one observes that

for all γ, γ′ ∈ Γ : t−1γ ∼log t−1γ′ if and only if γ ∼σ γ′ .

This in turn is based on the following useful formula for

logn(t−1γ): by induction,

log n(t−1γ) = t−1σn(γ) .

Remark 0.7 If Γ admits automorphisms of distinct rank,

then (R((Gκ)) admits logarithms of distinct logarithmic

rank. We can also use this observation to introduce tran-

sexponentials, as illustrated in the next example.
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Example 0.8 Let Γ = Z ~qZ, σ((x, y)) := (x, y + 1),

(K, log) the corresponding κ-bounded model. For the au-

tomorphism τ ((x, y)) := (x + 1, y) , let L, respectively

T := L−1 be the corresponding induced logarithm and

exponential on K.

Effect of σ, τ on the fundamental monomials:

let γ = (x, y) ∈ Γ, then

log(t−1γ) = t−1σ(γ) ,

Whereas

L(t−1γ) = t−1τ(γ) ,

We see that, for any fundamental monomial X := t−1γ

and any n ∈ N we have:

L(X) < logn(X) .

Also, a simple computation (using the fact that σ and τ

commute) shows that also, for all n ∈ N:

T (X) > expn(X) .

*******

In the next section, we see how the logarithm determines

the derivation. We expect to obtain fields equipped with

several distinct derivations.

*******
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Introducing Operators.

Main Motivation: We want a “Kaplansky embedding

Theorem” for ordered differential fields. The κ-bounded

fields of power series are good candidates as “universal

domains”. But for this to make sense, we need first to

endow them with a good differential structure.

Main project: Given (Γ, σ), introduce, if possible, deriva-

tion and composition operators on Exponential-Logarithmic

field of κ-bounded series over (Γ, σ).

It seems to be enough to focus on the following

Main subproject: Given (Γ, σ), introduce, if possible,

derivation and composition operators on the prelogarith-

mic field of κ-bounded series over (Γ, σ).
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Indeed, in [6] a method is developed showing the follow-

ing: given derivation and composition operators (satisfying

some good properties) on a “field of transseries” T, one can

extend these operators to the “exponential closure”Texp.

It seems that this method may be adapted to our con-

text: given derivation and composition operators (satisfy-

ing some good properties) on the prelogarithmic field of

κ-bounded series over (Γ, σ), one can extend these oper-

ators to the Exponential-Logarithmic field of κ-bounded

series over (Γ, σ).

Final Goal Find necessary and sufficient conditions on

(Γ, σ) so that the corresponding prelogarithmic field of κ-

bounded series (and the corresponding Exponential-Logarithmic

field of κ-bounded series) admit a surjective derivation.
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Derivations: We want to endow the prelogarithmic field

of κ-bounded series over (Γ, σ) with a derivation D satis-

fying the following properties:

• D is strongly linear, that is

D
∑

g
rgt

g =
∑

g
rgDtg . (8)

• D satisfies Leibniz rule:

D(ab) = aD(b) + D(a)b (9)

• D satisfies the rule for the logarithmic derivative for

a > 0:

D log a = Da/a (10)
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Reductions: The above rules direct us to perform a

number of steps in trying to define derivatives:

(i) From (8) and (9), it is clear that we only need to

determine Dtg, for g ∈ G<0.

(ii) From (10) determining Dtg reduces to determining

D log tg.

(iii) By definition of log, this in turn reduces to deter-

mining D log t−1γ , for a fundamental monomial t−1γ with

γ ∈ Γ.

(iv) Applying (10) again we see that for any γ ∈ Γ0 we

have:

Dt−1σ(γ) = t1γDt−1γ .

(v) Finally from (iv), we see that we only need to define

Dt−1γ0 for a fixed representative γ0 ∈ Γ of an orbit of σ

in Γ.
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Example 0.9 Let Γ = Z endowed with the automor-

phism σ(z) := z + 1. For simplicity, let us choose γ0 = 0

and set

T := t−10 and DT = 1 .

Then t−1n = logn T if n > 0, and t−1n = exp−n T if n < 0.

Therefore, for n > 0

Dt−1n =
n−1∏

k=0
t1k and Dt−1−n =

n∏

k=1
t−1−k .

It is non-trivial to verify that these definitions induce a

well-defined derivative!

Example 0.10 Let Γ = Z ~qZ endowed with the auto-

morphism σ((x, y)) := (x, y + 1). The rank of σ is Z.

For each orbit of σ0 we fix a representative z ∈ Z. We

set Tz := t−1z . Then {Tz ; z ∈ Z} will represent in-

finitely many algebraically independent variables, which

will determine an infinite family {δz} of commuting par-

tial derivatives.

What about a derivation induced by the automorphism

τ ((x, y)) := (x + 1, y) of rank one? This is more challeng-

ing. We have countably many distinct orbits but with a

single common convex hull. This suggests defining “ arbi-

trary iterates” logγ T of the log, to capture the derivative

of every fundamental monomial.

*******
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