Mathematics in the Hyperfinite World

Evgeny Gordon

Mathematics and Computer Science Department Eastern Illinois University

May, 2006

Harmonic analysis on finite abelian groups

- ▶ G a finite abelian group
- ▶ Dual group $\widehat{G} = \mathsf{Hom}(G, \mathbb{S}^1)$
- $\triangleright \mathbb{S}^1 = \{ z \in \mathbb{C} \mid |z| = 1 \}$
- ▶ Pontrjagin Duality:
- $G \simeq \widehat{\widehat{G}}$
- $ightharpoonup g \longmapsto \kappa_{\mathsf{g}}: \widehat{\mathsf{G}}
 ightarrow \mathbb{S}^1 ext{ where } \kappa_{\mathsf{g}}(\chi) = \chi(\mathsf{g})$
- ▶ The Haar integral $I(f) = \Delta \sum_{g \in G} f(g)$.
- ► The Fourier transform: $F_{\Delta} : \mathbb{C}^{G} \to \mathbb{C}^{\widehat{G}}$
- $\blacktriangleright F_{\Delta}(f)(\chi) = \Delta \sum_{g \in G} f(g) \overline{\chi(g)},$
- $F_{\Delta}^{-1}(\varphi)(g) = \frac{1}{|G|\Delta} \sum \varphi(\chi)\chi(g).$

Harmonic analysis on the nonstandard hulls of hyperfinite abelian groups

- ▶ *G* a hyperfinite abelian group;
- ▶ $G_b \subseteq G$ a σ -subgroup;
- ▶ $G_0 \subseteq G_b$ a π -subgroup.
- ▶ Topology on $G^\# = G_b/G_0$
- ▶ For $A \subseteq G_0$ put $i(A) = \{a \in A \mid a + G_0 \subseteq A\}$.
- ▶ $T = \{i(F)^{\#} \mid G_0 \subseteq F \subseteq G_b \text{ and } F \text{ is internal}\}$. a base of neighborhoods of zero.

► Proposition

The topology T is locally compact iff for any internal set $F \supset G_0$ and for any internal set $B \subseteq G_b$ there exists standardly finite set $K \subseteq B$ such that $B \subseteq K + F$.

► Corollary

- 1). For every internal set $F \subseteq G_b$ the set $F^{\#}$ is compact.
- 2). Every compact set $K \subseteq G^{\#}$ is contained in some such $F^{\#}$.

Corollary

 $K \subseteq G^{\#}$ is a compact open subgroup iff $K = H^{\#}$, where $H \supset G_0$ is an internal subgroup of G_b .

- ▶ If a locally compact group H is topologically isomorphic to $G^{\#}$, then we say that the triple (G, G_b, G_0) represents the H
- ▶ $C_0(G^\#)$ the set of all continuous functions with compact support on $G^\#$
- ▶ $C_0(G)$ the set of all internal *S*-continuous functions, whose support is contained in G_b .

► Proposition

A function $f \in C_0(G^\#)$ iff there exists an internal function $\varphi \in C_0(G)$ such that $\operatorname{supp} \varphi \subseteq G_b$ and and for every $g \in G_b$ holds

$$f(g^{\#}) = {}^{\circ}\varphi(g).$$

In this case we denote f by $\varphi^{\#}$.

Haar integral on $G^{\#}$

- ▶ A positive hyperreal number Δ is a normalizing multiplier (n.m.) if for every internal set F, $G_0 \subseteq F \subseteq G_b$, holds $(\Delta \cdot |F|) < +\infty$.
- ▶ If Δ is an n.m., then a hyperreal number Δ_1 is an n.m. iff $0<{^\circ}\Big(\frac{\Delta_1}{\Delta}\Big)<+\infty.$

► Theorem

If Δ is an n.m., then the functional $\mathcal I$ on $C_0(G^\#)$ defined for every $\varphi \in C_0(G)$ by the formula

$$\mathcal{I}(\varphi^{\#}) = {}^{\circ}I_{\Delta}(f),$$

is the Haar integral on $G^{\#}$.

Dual group $G^{\#}$

- $ightharpoonup \widehat{G}$ (internal) group dual to G;
- $\widehat{\mathsf{G}}_b = \{ \chi \in \widehat{\mathsf{G}} \mid \chi \upharpoonright \mathsf{G}_0 \approx 1 \};$
- $\widehat{\mathsf{G}}_0 = \{ \chi \in \widehat{\mathsf{G}} \mid \chi \upharpoonright \mathsf{G}_b \approx 1 \};$
- $\triangleright \widehat{G}^{\#} = \widehat{G}_b/\widehat{G}_0.$

- ► Proposition

The mapping $\psi:\widehat{G}^\# \to \psi(\widehat{G}^\#) \subseteq \widehat{G^\#}$ is a topological isomorphism.

Theorem

- 1). Suppose that there exits an internal subgroup $K \subseteq G_b$, $G_0 \subseteq K$. Then the following statements hold.
- a). $\psi(\widehat{G}^{\#}) = \widehat{G}^{\#}$, thus $\widehat{G}^{\#}$ is canonically isomorphic to $\widehat{G}^{\#}$.
- b). The hyperreal number $\widehat{D}=(|G|\Delta)^{-1}$ is a normalizing multiplier for \widehat{G}
- c). Let $f \in L_1(G^\#)$ and φ be an S-integrable lifting of f. Then the Fourier transform on G $F_{\Delta}(\varphi)$ is an S-continuous function on \widehat{G} and the linear operator $\mathcal{F}: L_1(G^\#) \to C(\widehat{G^\#})$ defined by the formula

$$\mathcal{F}(f) = F_{\Delta}(\varphi)^{\#}$$

is the Fourier transform on $G^{\#}$. The operator defined in the similar way by F_{Λ}^{-1} is the inverse Fourier transform on $\widehat{G^{\#}}$.

▶ Theorem

For every locally compact group H there exists a triple (G, G_b, G_0) representing H that satisfies the statements a) – c) of the first part of the theorem.

▶ Definition

We say that a hyperfinite group G approximates a locally compact group H if there exist an internal injective map $j: G \to {}^*H$ that satisfies the following conditions:

- 1. $\forall h \in H \exists g \in G (j(g) \approx h);$
- 2. $\forall g_1, g_2 \in j^{-1}(ns(*H)) \ (j(g_1 \pm g_2) \approx j(g_1) \pm j(g_2)).$

In this case we say that the pair (G, j) is a hyperfinite approximation of H.

- $\blacktriangleright (G,j) \longmapsto (G,G_b,G_0);$
- ▶ $G_b = \{g \in G \mid j(g) \in \mathsf{ns}(H)\}, \qquad G_0 = \{g \in G \mid j(g) \approx 0\}.$

Hyperfinite representations of locally compact non-commutative groups

- \triangleright G a non-commutative hyperfinite group.
- ▶ G_b a σ -subgroup, $G_0 \subseteq G_b$ a π -subgroup, which is normal in G_b .
- $G^{\#} = G_b/G_0$.
- ▶ For $A \subseteq G$ put $i(A) = \{a \in G \ aG_0 \subseteq A\}$.
- ▶ $T = \{i(F)^{\#} \mid G_0 \subseteq F \subseteq G_b \text{ and } F \text{ is internal}\}$ form a base of a topology on $G^{\#}$.

► Proposition

The topology T is locally compact iff for any internal set $F \supset G_0$ and for any internal set $B \subseteq G_b$ there exists standardly finite set $K \subseteq B$ such that $B \subseteq K \cdot F$.

▶ Corollary

- 1). For every internal set $F \subseteq G_b$ the set $F^{\#}$ is compact.
- 2). Every compact set $K \subseteq G^{\#}$ is contained in some such $F^{\#}$.

▶ Theorem

If Δ is a normalizing multiplier, then the positive functional $\mathcal I$ on $C_0(G^\#)$ defined by the formula $\mathcal I(f^\#) = {}^\circ\!(\Delta\sum_{g\in G} f(g))$ is left and right Haar integral.

► Corollary

The group $G^{\#}$ is unimodular.

▶ Definition

A locally compact group H is weakly approximable by finite groups if there exists a triple (G, G_b, G_0) representing H. The group H is strongly approximable by finite groups if has a hyperfinite approximation

► Theorem

A compact Lie group H is strongly approximable by finite groups iff it has arbitrary dense finite subgroups.

Definition

We say that a groupoid (Q, \circ) is a quasigroup if for an arbitrary $a, b \in Q$ each of the equations $a \circ x = b$ and $x \circ a = b$ has a unique solution. If it holds only for the first (second) equation, then we say that (Q, \circ) is a left (right) quasigroup.

- \triangleright (Q, \circ) a hyperfinite groupoid,
- $Q_b \subseteq Q$ a σ -subgroupoid,
- ho a π -equivalence relation on Q, that is a congruence relation on Q_h .
- ▶ For $A \subseteq Q_b$ put $i(A) = \{q \in Q_b \mid \rho(q) \subseteq A\}$.

Theorem

If Q is a left quasigroup and Δ is a normalizing multiplier, then the positive functional $\mathcal I$ on $C_0(Q^\#)$ defined by the formula

$$\mathcal{I}(f^\#) = {}^{\circ} \left(\Delta \sum_{q \in \mathcal{Q}} f(q) \right)$$

is left invariant. If Q is a quasigroup, then $\mathcal{I}(f)$ is right invariant

Theorem

- 1) Every locally compact group is strongly approximable by finite left quasigroups.
- 2) A locally compact group is unimodular iff it is strongly approximable by finite quasigroups

Discrete groups

- ▶ The topology on $Q^{\#}$ is discrete iff ρ is the equality relation.
- ▶ A discrete group G is weakly approximable by a hyperfinite groupoid Q if it is isomorphic to a σ -subgroupoid of Q.
- ▶ The group G is strongly approximable by the hyperfinite groupoid Q iff there exists an internal injective map $j: Q \to {}^*G$ such that $j \upharpoonright j^{-1}(G)$ is a homomorphism.

Theorem

A discrete group G is amenable iff there exists a hyperfinite set H, $G \subseteq H \subseteq {}^*G$, and a binary operation $\circ : H \times H \to H$ that satisfy the following conditions:

- 1. (H, \circ) is a left quasigroup;
- 2. *G* is a subgroup of the left quasigroup (H, \circ) , i.e. $\forall a, b \in G \ a \cdot b = a \circ b$.
- 3. \forall *a* ∈ *G*

$$\frac{|\{h \in H \mid a \cdot h = a \circ h\}|}{|H|} \approx 1$$

Definition

A discrete group G is sofic iff there exists a hyperfinite set H, $G \subseteq H$, and a binary operation $\circ : H \times H \to H$ that satisfy the following conditions:

- 1. (H, \circ) is a left quasigroup;
- 2. *G* is a subgroup of the left quasigroup (H, \circ) , i.e.
 - $\forall a,b \in G \ a \cdot b = a \circ b.$
- 3. \forall a, b ∈ G

$$\frac{|\{h \in H \mid (a \cdot b) \circ h = a \circ (b \cdot h\}|}{|H|} \approx 1$$

•

Theorem

(Elek, Szabo) Let N be an infinite hyperreal number and S_N an internal group of permutations of the set $\{1, \ldots, N\}$. Consider its π normal subgroup

$$S_N^{(0)} = \{ \alpha \in S_N \mid \frac{\{n \leq N \mid \alpha(n) = n\}|}{N} \approx 1 \}.$$

Then $S(N) = S_N/S_N^{(0)}$ is a simple sofic group. Moreover, a group G is sofic iff it is isomorphic to a subgroup of the group S(N) for some infinite N.

Hyperfinite representations of topological universal algebras

- \blacktriangleright θ a finite signature that contains only functional symbols,
- $A = \langle A, \theta \rangle$ a hyperfinite algebra of the signature θ .
- $\blacktriangleright A_b = \langle A_b, \theta \rangle$ σ -subalgebra of A
- ho a π -equivalence relation on A, that is a congruence relation on A_b .
- ▶ $a, b \in A$: $\alpha \approx \beta \rightleftharpoons \langle a, b \rangle \in \rho$.
- $\varphi(x_1,\ldots,x_n)$ a first order formula of the signature θ .
- ▶ φ_{\approx} the formula obtained from φ by replacing of every subformula $t_1 = t_2$ by the formula $t_1 \approx t_2$, t_1 , t_2 are θ -terms.

Proposition

For every $a_1, \ldots a_n \in A_b$

$$\mathcal{A}^{\#} \models \varphi(a_1^{\#}, \ldots, a_n^{\#}) \Longleftrightarrow \mathcal{A}_b \models \varphi_{\approx}(a_1, \ldots a_n).$$

Hyperfinite representations of reals

▶ The floating point representation of reals:

$$\alpha = \pm 10^p \times 0.a_1 a_2 \dots, \tag{1}$$

$$p \in \mathbb{Z}, \ 0 \le a_n \le 9, \ a_1 \ne 0.$$

- P, Q hypernatural numbers;
- A_{PQ} the hyperfinite set of all reals of the form (1), where |p| ≤ P and the mantissa contains no more than Q decimal digits.
- ▶ \oplus , \otimes binary operations on A_{PQ} , * stands for either + or \times
- \bullet $\alpha, \beta \in A_{PQ}$: $\alpha * \beta = \pm 10^r \times 0.c_1c_2...$

$$\alpha \circledast \beta = \begin{cases} \pm 10^r \times 0.c_1c_2 \dots c_Q & \text{if } |r| \le P, \\ \pm 10^P \times 0.\underbrace{99 \dots 9}_{Q \text{ digits}} & \text{if } r > P, \end{cases}$$

- $(A_{PQ})_b$ consists of all finite hyperreal numbers from A_{PQ}
- ▶ ρ a restriction of the relation \approx on \mathbb{R} to A_{PQ} .
- ▶ Then $\mathcal{A}_{PO}^{\#} \simeq \mathbb{R}$.

 \blacktriangleright \mathcal{A}_{PO} the algebra $\langle A_{PO}, \oplus, \otimes \rangle$

example

$$5x - 7y + 8z = b$$

 $3x - ay + 4z = 5$
 $ax + 4y - bz = 2$ (2)

Infinitely many solutions iff

$$f(b) = b^4 - 25b^3 + 260b^2 - 2856b + 4288 = 0$$
 (3)

and a is found by the formula p(a, b):

$$a = -\frac{21}{29} + \frac{3}{464}b^3 + \frac{5}{464}b^2 - \frac{19}{232}b\tag{4}$$

General solution of the system (2):

$$x = 10 - b + t \left(\frac{245}{29} - \frac{19}{116}b + \frac{5}{232}b^2 + \frac{3}{232}b^3 \right)$$

$$y = t$$

$$z = -\frac{25}{4} + \frac{3}{4}b + t \left(\frac{357}{5}8 + \frac{95}{928}b - \frac{25}{1856}b^2 - \frac{15}{1856}b^3 \right)$$
(5)

 $\Phi(x,y,z,a,b)$ the conjunction of equations of the system (2), $\Psi(x,y,z,b,t)$ the conjunction of formulas in (5). Formula Γ :

$$\forall a, b \ (p(a, b) \land f(b) = 0 \to (\exists x_1, y_1, z_1, x_2, y_2, z_2((x_1 \neq x_2 \lor y_1 \neq y_2 \lor z_2))) \land \Phi(x_1, y_1, z_1, a, b) \land \Phi(x_2, y_2, z_2, a, b)) \land \forall x, y, z \ (\Phi(x, y, z, a, b) \to \exists t \Psi(x, y, z, b, t)))$$

Formula $\Gamma^{(1)}$:

$$\forall a, b, a_1, b_1 \ (a_1 = a_2 \land b_1 = b_2 \land p(a_1, b_1) \land f(b_1) = 0 \\ \land p(a_2, b_2) \land f(b_2) = 0 \rightarrow (\exists x_1, y_1, z_1, x_2, y_2, z_2 \\ ((x_1 \neq x_2 \lor y_1 \neq y_2 \lor z_1 \neq z_2) \land \Phi(x_1, y_1, z_1, a, b) \land \Phi(x_2, y_2, z_2, a, b)),$$

Formula $\Gamma^{(2)}$:

$$\forall, a, b, x, y, z (p(a, b) \land f(b) = 0 \land \Phi(x, y, z, a, b) \rightarrow \exists t \Psi(x, y, z, b, t)).$$

- ▶ a, b with 10 digits:
- x = 2.885016341, y = 0.6249221609, z = -1.038737628,
- a, b with 12 digits: x = 1.83282895579, y =0.747271181171, z = -0.274065119805,
- a, b with 15 digits: x = 1.61877806403204, y =

0.772161155406311, z = -0.118504584584998824.

Theorem

There does not exist a topological hyperfinite triple (A, A_b, ρ) such that A and A_b are hyperfinite associative rings and $A^{\#}$ is a locally compact field.

$$H = \left\{ \left(egin{array}{cc} a & b \ 0 & 1 \end{array}
ight) \mid a,b \in K, \ a
eq 0
ight\}$$

References

- Gordon E.I. (1991) Nonstandard analysis and locally compact abelian groups. *Acta Applicandae Mathematicae* 25, 221–239.
- Alekseev M.A., Glebskii L.Yu., Gordon E.I. (1999) On approximations of groups, group actions and Hopf algebras. Representation Theory, Dynamical Systems, Combinatorial and Algebraic Methods. III, A.M.Vershik v editor, Russian Academy of Science. St.Petersburg Branch of V.A.Steklov's Mathematical Institute. Zapiski nauchnih seminarov POMI 256, 224–262. (in Russian; Engl. Transl. in Journal of Mathematical Sciences 107 (2001), 4305–4332).
- Andreev P.V. and Gordon E.I. A theory of hyperfinite sets. Accepted by *Annals of Pure and Applied Logic*. arXiv:math.LO/0502393
- Glebsky L.Yu., Gordon E.I. (2005) On approximation of topological groups by finite quasigroups and finite smigroups. *Illinois Journal of Mathematics* **49**, no. 1: 1 16.

- Glebsky L.Yu., Gordon E.I., Rubio C.J. (2005) On approximation of unimodular groups by finite quasigroups. *Illinois Journal of Mathematics* **49**, no. 1: 17 31.
- Glebsky L.Yu., Gordon E.I., Henson C.W. Approximatiom of topological algebraic systems by finite once. arXiv:math.LO/0311387 v3, 9 March 2006.
- Gromov M. Endomorphisms of Symbolic Algebraic Varieties. *J. Eur. Math. Soc.* **1** (1997). 109-197.
- Weiss B. (2000) Sofic groups and dynamical systems. Ergodic theory and dynamical systems, Mumbai, 1999 Sankhya Ser. A.
 62, no. 3: 350 359.
 Elek G. Szabo F. Hyperlinearity, essentially free actions and
- Elek G., Szabo E. Hyperlinearity, essentially free actions and L^2 -invariants. The sofic property. *Mathematische Annalen*. Published online 2 April 2005.