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O-minimal spectrum
M is an o-minimal structure expanding an ordered field (in some
language L).
Definable := “definable with parameters”,
(-definable := “definable without parameters”.
Let A C M™ be definable. The o-minimal spectrum of A is 12[7 the set of
complete types of A. Basis of the spectral topology: the sets of the form
ﬁ:z{qEﬁ:UGq},
where U is a definable subset of M™ which is open in the topology of M™".
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The o-minimal spectrum generalises the real spectrum for real closed fields
to the o-minimal situation.
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O-minimal spectrum
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The spectral topology is coarser than the Stone topology, therefore Ais

quasi-compact. However, it is not 7T7: not all points are closed.

The subspace A of closed points of A is Hausdorff and compact and dense
in A. The map

T A— A
sending q € A to the unique closed point in the closure of ¢ is a continuous

and closed surjection.

Example: M =R, ¢(z) =0T :={0<z <r:r€R}. ¢is not a closed
point. w(gq) = 0.
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Cech cohomology

X is a topological space, & is a collection of nonempty subsets of X. The
nerve of &/, denoted by N(&), is the simplicial complex whose simplices
are the finite nonempty subsets of & with nonempty intersection. The
vertices of N(&) are the elements of 7.

H* (/) is the simplicial cohomology of N(.&Z). If £ is refinement of 7, the
simplicial map % — & induces a map in cohomology H* (&) — H*(A).

The Cech cohomology of X is given by
T (X) = lim H* (),
taking finer and finer coverings & of X.

For every covering &/ of X there is a canonical map

() — FH(X)
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Cech cohomology Sites
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Sites

A site § on X is given by a collection Obj(§F) of open subsets of X (the
admissible open sets) and, for every A € Obj(§), a collection of coverings
of A by admissible open sets (the admissible open coverings of A),

satisfying certain axioms.

The Cech cohomology of X with respect to § is

(X)) = lm 9 (),
&/ admissible

taking finer and finer admissible open coverings .« of X.
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O-minimal site
A C M™ definable.
O-minimal site §4 on A : admissible open sets := definable open sets
admissible coverings := finite coverings.

Every admissible covering & of A induces open coverings o of A and
a of A.
o ={U:Uco} o:={UNA:Ucd).

The nerves N(«), N(«/) and N(&) are isomorphic.
Conversely, every open covering % of A can be refined to a covering of the
form o/, with &/ admissible covering of A, and similarly for A.
Cech Cohomology
5\:(%(14) := Cech cohomology of A w.r.t. Fa.

~

H%(A) is canonically isomorphic to fﬁ(*(;lv) and to j%*(é)

page 6
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Real model
Hypothesis. M has an Archimedean prime submodel My.

Remark 1. It is possible to extend uniquely the structure on My to the
real line R, in such a way that M is an elementary submodel of R.

Let A C M™ be (-definable. A(R) is the subset of R™ defined by the same
formula defining A. Define

We will prove that
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The extension from My to R is built trough Cauchy sequences.
If x € R\ My, and f: My — My is definable, define

flx):= lim  f(y)

y—x,y€Mo

The fact that f]v{%(A) = f]v{ﬁ(A) is non-trivial even for M = R, because A
is compact, while A = A(R) might not be compact.
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Leray’s theorem
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Leray’s theorem

Let X be a topological space. U C X is acyclic iff
Vn >0 H*(U) = 0.

&/ is an acyclic covering of X iff every finite intersection of elements in &7/
is acyclic.

Theorem 1 (Leray). Let X be a compact Hausdor(f space, and </ an
open covering of X. If & is acyclic, then the canonical map

H* (o) — JV-C*(X) is an isomorphism.

In
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Cohomology of a simplex
Lemma 1. Let A be a standard (n — 1)-simplex in M™. Then,
~ G ifm=0,
Fgpa=1 "
0 ifm>0,
where G is the coefficient group for the cohomology.
Let D be a simplicial complex. D is linearly contractible iff some (and
hence all) realisation |D| of D which is (-definable is contractible via a
()-definable map in the semi-linear language.
Give a vertex v of D, the star of v, denoted by v*, is the set of simplices in
D having v as a vertex.
Remark 2. If vy, ..., v, are vertices of D, then , v7 N--- N} is linearly
contractible (if it is non-empty).
Remark 3. The set { |v*|: v € D } is an admissible open covering of |D].
l1 -rl
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D is an abstract complex, while |D| is the “concrete” realisation of D in
some M™".

We will apply Leray’s theorem to coverings of the form { |v*| v e D }
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Let o/ be an admissible covering of the definable set A. (C, g) is a
triangulation of A compatible with .7, and C’ is the barycentric
subdivision of A.

B :={ g(|v*]) : v vertex of C" }
is the good refinement of & given by (C’, g).

More in general, a good covering of A is of the form

{g(\v*\) NS C'},

for some (C, g) triangulation of A.
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Proof of Lemma 1
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Proof of Lemma 1

&/ is an admissible covering of A. It suffices to prove that & has a
refinement % such that H# (%) = 0. Choose % a good refinement of &7
given by (C, g), and

€ :=g(B)={|v*:veC}.
N(%) = N(2B): it suffice to prove that H# (%) = 0.

The map g is a definable homeomorphism between |C| and A. By transfer,
we can assume that g is ()-definable. Thus,

Tt (9) - FE(A) — FE(|CO))

is an isomorphism. Since ﬁ?g(A) = 0, we have icg(\(}\) = 0.
Fact 1. ¥(R) is an acyclic covering of |C|(R).

In
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Lemma 1 says that if A is a simplex, then
F5(A) = (D).

Use of transfer: if ¢ = g, is definable with parameters a, then it is true
in M that 3x such that g, is an homeomorphism between |C| and A. Then,
such an x must exist also in My, and g¢,, is the (-definable homeomorphism
we were looking for.

Since ¢ is a (-definable homeomorphism, also g(R) is a homeomorphism.

f\}/CI*R (g) is the morphism in cohomology induced by g(R).
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Proof of Lemma 1
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By Leray’s theorem,
H*((R)) = HE (|C]) = 0.
Finally, N(¢(R)) = N(¥). O
We used only that f]v-fﬁgé (A) = 0. We proved that if A is (-definable and
FCE (A) = 0, then F{Z (A4) = 0.

Corollary 2. If B is definable and contractible, then there exists A which

is (-definable, contractible via a O-definable map, and that is definably
homeomorphic to B. Therefore, J'C? (B) = J‘C?(A) = 0.
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The A in the corollary exists by transfer. In fact, if B = B, is defined
using parameters ¢, there exists a ()-definable cell U containing ¢ such that By
is definably homeomorphic to B, for every d € U. Since U is ()-definable and
nonempty, there exists co € U N M§. Define A := B,,.
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Functors Covariant functors
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Functors

Given N = M, let Def  be the category of sets and continuous maps
definable in N. Call Def( := Def ), .

0, O, Jifg and 5:(1*@ are functors, with domain Defj; (or Def)).

Covariant functors

Let A C M™ and B C M™ be definable sets, and f : A — B be a definable

continuous map.

Given ¢(z) € A, define

F@) @) = {¥y) v € L & ¢(f(z)) € q(z) } € B.

If g € A, define
flq) :==7(f(q)) € B.
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If A is definably compact and ¢ is closed, then f(q) is already closed.

However, if A is not definably compact, f(g) might not be closed.
Eg let A := M27 B := M> f(ylayQ) = Y1,

Q(y17y2> = (y1 }= 0+,y1 S Yo = 1).
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Functors Contra-variant functors
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Contra-variant functors

Given an admissible covering % of B,
FUB) = {fU):UcB)

is an admissible covering of A. There is a map 04 : H* (%) — H* ().
Define H% (f) : Hz(B) — J—Ci*g(A) as the 1vimitN0f the maps 0.

Under the identification of H%(A) with 3*(A), we have that

jq(%(f) = j:(*(f% and similarly for A.

If moreover A, B and f are (-definable, then f(R): A(R) — B(R) is

continuous, and therefore it induces a map

T (f) : F(B) — Tta(A).

In
-
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Natural isomorphism

We will prove that f]v{%() and Jv-fﬁ are naturally isomorphic, where §q is the

site on M.

Namely, if A C M§ and B C M{" are definable sets, and f: A — B is a

definable continuous map, then there exists a pair of isomorphisms such

that the following diagram commutes:

Hz(A) —— Hi(A)
G| |70
Hz(B) ——— Hyi(B)
l1 -rl
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Functors Natural isomorphism
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Given N = M, let §(NN) be the o-minimal site on N, and 5V-C§(N) be the

corresponding functor.

Let L% be the immersion of Def); in Defy. Then, 5%% and J\:CE(N) o L%I

are naturally isomorphic. Namely, if f : A — B is definable with

parameters in M, then there exists a pair of isomorphisms such that the

following diagram commutes:

Hz(A) —— %E(N)(A)
%wﬁ Tﬁgmm
Hz(B) =—— J'C%(N)(B)

I1- -rl
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First theorem
Theorem 2. Let N = M. Then, J\:Cg and j:f%(jv) o LI\N4 are naturally
1somorphic.

Proof. Let A be a definable subset of M™, and % be a good covering of A.
By Corollary 2, % is acyclic, hence (by Leray’s theorem) the canonical map
H*(E) — JV-C*(A) is an isomorphism. Remember that N(%) and N(%) are
canonically isomorphic. Similarly, €(N) is acyclic, therefore the map
H*(E(N)) — Jv-fg(N)(A) is also acyclic. Therefore,

F5(A) 2 H(€) = H(E(N)) 2 Ty (A).

The isomorphism is natural, because everything is canonical. 0

More precisely, we have proved that the natural transformation
AA }C%(N)(A) — H3(A) is an isomorphism, where A4 is the map induced

—_—

by the surjection A(N) — A, given by the restriction of N-types to
M-types.
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% is acyclic, because it is good, and therefore for every Uy,...U, € ¥,
Ui N---NU, is (homeomorphic to a linearly) contractible.
Complete formula:

T3 (A) = FO(A) = 90(6) = 30 (€) =

~FH*H(F(N)) = H*(F(N)) = F*(A(N)) = 5oy (A)-
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Second theorem
Theorem 3. f]v'fgo and UTCIE are naturally isomorphic.
Proof. We will assume that M = M. Let A be a definable subset of M™
and % be a good covering of A. By Corollary 2, ¥ is acyclic, hence the
canonical map H*(€) — H*(A) is an isomorphism. For the same reason,
H*(Z(R)) — j%ﬁ(A) is an isomorphism. Therefore,
HZ(A) =2 H(E) = H*(F(R)) = Hi(A).
The isomorphism is natural, because everything is canonical. 0
l1 -rl
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Proof details
Let € and €’ be good coverings of A, with € a refinement of €.
We have the following diagram:
TG(4) —— (%) —— (%)
Hi(A) —— H(ZR)) —— Hi(¢'(R))
The horizontal arrows are canonical maps, and are isomorphisms by
Leray’s theorem and Corollary 2. The rightmost vertical arrow is the map
induced by the the canonical isomorphism between the nerve of ¢’ and of
%' (R), and similarly for the central arrow.
I1- -rl
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The rightmost square commutes, because the corresponding maps on the
nerves of the coverings commutes, and hence there is a well defined
leftmost isomorphism between JV-%(A) and JV-CI*R(A) that makes the whole
diagram commute. Namely, the isomorphism in cohomology induced by %
and the one induced by %’ are the same.

If €' and €" are any good coverings of A, there exists a common
refinement % which is also good. Therefore, can apply the above
observation to the pairs (¢,%") and (¢,%").
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Consider now a definable map g: A — B. Let #Z be a good covering of B,
and &7 a good refinement of g=(%). Hence, we have the following

diagram:
H5(B) —— H*(B) H*(BR)) —— Hi(B)
ﬁ%(g)l gﬁzl lgéfg(R) lﬁu’é(g)
H5(A) —— () == H*(#(R)) —— F5(4A)

The horizontal arrows are the canonical maps. They are isomorphisms: the
leftmost ones and the rightmost ones by Leray’s theorem and Corollary 2,
the central ones because the corresponding maps on the nerves are

isomorphisms.
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We deduce that the isomorphisms in cohomology induced by ¢’ and €
are the same.
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Second theorem Proof details
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The vertical arrows are the maps induced by g. The leftmost square
commutes by definition of f]v-fg (g9), and similarly for the rightmost. The
central square also commutes, because the corresponding maps on the
nerves commute. Therefore, the whole diagram commutes, and hence the
following one does:

=«
=X
Z

Hz(B)
‘ﬁyg)l J%ﬂug)

Fi5(A)

panlt
=
=
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