1 Proof of theorem 1

Lemme 1 Let ν be a non limited integer. Let $(u_n)_{0 < n \le \nu}$ be an increasing sequence of limited real numbers, bounded by a limited number. Then there exists a non limited integer λ such that $u_n \simeq u_{\lambda}$ for all unlimited integer $n \le \lambda$.

Preuve Soit k limité. Il existe p_k limité tel que $u_n - u_{p_k} < 1/k$ tant que $n > p_k$ est limité. En effet, si ce n'était pas vrai, on pourrait construire une suite extraite vérifiant $u_{p_{k+1}} - u_{p_k} > 1/k$, et la suite u_n ne serait pas bornée par un limité.

Soit
$$A_k = \{n > p_k, u_n - u_{p_k} < 1/k\}$$

Soit n_k la borne supérieure de A_k . Elle est infiniment grande pour tout k limité. Soit λ un infiniment grand plus petit que tous les n_k (k limité) (λ existe par le lemme de Robinson). On a alors $u_{\lambda} - u_{p_k} < 1/k$ pour tout k limité, et le nombre λ convient.

On note $f^{(n)}$ la fonction $f\chi_{|f| \leq n}$. Soit λ donné par le lemme ci-dessus appliqué à la suite $\int |f^{(n)}| dm$ qui est bornée par le limité $\int |f| dm$. Posons $g = f^{(\lambda)}$ et h = f - g.

Si $m(A) \simeq 0$, alors pour tout n limité, $\int_A |f^{(n)}| dm \leq n m(A) \simeq 0$. Par permanence, cela reste vrai pour un n non limité. Mais alors $\int (|f^{(n)}| - |g|) dm \simeq 0$, donc $\int_A (|f^{(n)}| - |g|) dm \simeq 0$, d'où $\int_A |g| dm \simeq 0$.

Soit A l'ensemble des points où $h \neq 0$. On a

$$\pounds = \int |h| = \int_A |h| \ge \int_A \lambda = m(A)\lambda$$

Donc $m(A) \simeq 0$, et h est nulle presque partout.

2 Proof of proposition 2

Le seul point délicat est le dernier à savoir

$$\sum_{k=1}^{N-1} \left| e^{-st_k} - e^{-st_{k+1}} \right| = \mathcal{L}$$

Lemme 2 Pour x et y dans \mathbb{C} ,

$$|x-y| \le ||x|-|y||+2\sqrt{|x||y|}\left|\sin\frac{\theta}{2}\right|$$
 avec $\theta = \arg y - \arg x$

Preuve

$$|x - y|^2 = |x|^2 + |y|^2 - 2|x||y|\cos\theta$$

$$|x - y|^2 = (|x| - |y|)^2 + 2|x||y|(1 - \cos\theta)$$

$$|x - y|^2 = (|x| - |y|)^2 + \left(2\sqrt{|x||y}\sin\frac{\theta}{2}\right)^2$$

On termine la preuve avec l'inégalité $\sqrt{u^2 + v^2} \le (|u| + |v|)$.

On applique ce lemme à la somme S qu'on cherche à majorer :

$$S \leq \sum_{k=1}^{N-1} \left| |e^{-st_k}| - |e^{-st_{k+1}}| \right| + 2 \left| e^{-s\frac{t_k + t_{k+1}}{2}} \right| \left| \sin \frac{\omega(t_{k+1} - t_k)}{2} \right|$$

où on a posé $s=a+i\omega.$ Une simplification facile donne

$$S \leq \sum_{k=1}^{N-1} \left(e^{-at_k} - e^{-at_{k+1}} \right) + 2e^{-a\frac{t_k + t_{k+1}}{2}} \left| \sin \frac{\omega(t_{k+1} - t_k)}{2} \right|$$

ou, mieux encore (utiliser a > 0 et $|\sin u| \ge |u|$):

$$S \leq 1 + |\omega| \sum_{k=1}^{N-1} e^{-a\frac{t_k + t_{k+1}}{2}} (t_{k+1} - t_k)$$

On montre facilement (exercice DEUG) que

$$e^{-\frac{u+v}{2}}(v-u) \le \int_u^v e^{-t} dt$$

On en déduit que

$$S \leq 1 + \frac{|\omega|}{a} \int_{at_1}^{at_N} e^{-t} dt \leq 1 + \frac{|\omega|}{a}$$

3 Autres propositions?

• Proposition 3 Il existe des fonctions f telles que $f \in S(T)$, ainsi que $F(s) \simeq 0$ sur le secteur considéré, et f non rapidement oscillante.

Un exemple est (on suppose $t_{k_0+1} \simeq t_{k_0}$)

$$f(t_k) = 0$$
 sauf $f(t_{k_0}) = \frac{1}{m(t_{k_0})}$ et $f(t_{k_0+1}) = \frac{-1}{m(t_{k_0})}$

Alors on a

$$g(t_k) = 0 \quad \text{sauf} \quad g(t_{k_0}) = 1$$

 et

$$F(s) = e^{-st_{k_0}} - e^{-st_{k_0+1}}$$

En reprenant les majorations ci-dessus, on a

$$|F(s)| \le \left(e^{-at_{k_0}} - e^{-at_{k_0+1}}\right) \left(1 + \frac{|\omega|}{a}\right)$$

Le premier facteur est infinitésimal aussi bien quand a est limité que quand il est infiniment grand, le deuxième est limité par hypothèse.

• Conjecture 4 Si f appartient à $SL^1(T)$ et si $F(s) \simeq 0$ sur le secteur considéré, alors f est rapidement oscillante.