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[Joint work with Martin Mačaj.]
Let G be an abelian group, S ⊆ G be a finite set, and T denote the mul-

tiplicative group of complex units with the invariant arc metric | arg(a/b)|.
We will show that for a mapping f S → T to be ε-close on S to a character

ϕG → T it is enough that f be extendable to a mapping f̄
(
S∪{1}∪S−1

)n →
T, where n is big enough and f̄ violates the homomorphy condition at most
up to an arbitrary δ < min

(
ε, π

2

)
. Moreover, n can be chosen uniformly,

independently of G and both f and f̄ , depending just on δ, ε and the
number of elements of S.

The proof is non-constructive, using a special case of Gordon’s nonstan-
dard version of Pontryagin-vanKampen duality [1], [2] or, alternatively, the
ultraproduct construction and the classical Pontryagin-vanKampen duality,
hence yielding no estimate on the actual size of n.

As one of the applications we show that, for a vector u ∈ Rq to be ε-
close to some vector from the dual (polar, reciprocal) lattice H? of a full
rank integral point lattice H ≤ Zq, it is enough for the scalar product ux
to be δ-close (with δ < 1/3) to an integer for all vectors x ∈ H satisfying∑

i |xi| ≤ n, where n depends on δ, ε and q only.
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