MOUNTAIN PASS THEOREMS WITHOUT PALAIS-SMALE CONDITIONS

NATÁLIA MARTINS

We will prove the following lemma:

Lemma. Let H be a real Hilbert space with norm $\|\cdot\|$. Suppose that $f \in C^1(H,\mathbb{R})$ satisfies the mountain pass geometry with respect to x_1 and x_2 , that is, there exist $r \in \mathbb{R}^+$ such that $\|x_1 - x_2\| > r$ and

$$\max\{f(x_1), f(x_2)\} < \inf_{\|y-x_1\|=r} f(y).$$

Let

$$\Gamma := \{ \gamma \in C([0,1], H) : \gamma(0) = x_1 \land \gamma(1) = x_2 \}$$

and

$$k_1 := \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} f(\gamma(t)).$$

Then

$$\forall \gamma \in {}^{\star}\Gamma \left[\left[\gamma({}^{\star}[0,1]) \subseteq ns({}^{\star}H) \land \max_{t \in {}^{\star}[0,1]} f(\gamma(t)) \approx k_1 \right] \right]$$

$$\Rightarrow \exists t_0 \in {}^{\star}[0,1] \left[f(\gamma(t_0)) \approx k_1 \land \parallel f'(\gamma(t_0)) \parallel \approx 0 \right] \right].$$

From this lemma we deduce two new mountain pass theorems which cannot be obtained from the well known classical Mountain Pass Theorem of Ambrosetti-Rabinowitz.

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DE AVEIRO, PORTUGAL E-mail address: nataliam@mat.ua.pt