
CONVERGENCE TO EQUILIBRIUM OF GRADIENT FLOWS

DEFINED ON PLANAR CURVES

MATTEO NOVAGA AND SHINYA OKABE

Abstract. We consider the evolution of open planar curves by the steepest descent flow of a
geometric functional, with different boundary conditions. We prove that, if any set of stationary
solutions with fixed energy is finite, then a solution of the flow converges to a stationary solution
as time goes to infinity. We also present a few applications of this result.
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1. Introduction

The steepest descent flow of curves for the total squared curvature, also called elastic flow,
coupled with different boundary conditions, has been widely studied in the mathematical lit-
erature (see [15, 17, 18, 8, 7, 13, 14, 9, 19, 12] and references therein). Long time existence
of the evolutions is generally obtained by the smoothing effect of the energy. Concerning the
asymptotic behavior as t → +∞, there are general results implying that the solution subcon-
verges to a (possibly nonunique) stationary solution. However, there are few results proving the
full convergence of solutions (that is, without passing to a subsequence), and they are mostly
obtained in the case of closed curve [15, 8, 18, 13, 14, 7, 19, 5]. In [8, 13, 14] convergence is
proved with the aid of an additional constraint, the so-called inextensible condition, while in
[15, 18, 7] it follows from the uniqueness of the equilibrium state.

The purpose of this paper is to prove the full convergence under a weaker condition, namely
that there are only finitely many equilibrium states at each prescribed energy level, and then
apply the result to the elastic flow under some natural boundary conditions.

The plan of the paper is the following: in Section 2 we present our method for a general
gradient flow in a Hilbert space. In Section 3 we discuss the case of the gradient flow of a
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geometric functional defined on planar curves. In Section 4 we apply the result to the equation

∂tγ = (−2∂2
sκ− κ3 + λ2κ)ν, (1)

where λ ∈ R \ {0} and κ, ν are respectively the scalar curvature and the unit normal, under
typical boundary conditions. More precisely, we discuss in detail the boundary conditions:

(i) γ(0, t) = (0, 0), γ(1, t) = (R, 0), γs(0, t) = τ0, γs(1, t) = τ1
(ii) γ(0, t) = (0, 0), γ(1, t) = (R, 0), κ(0, t) = κ(1, t) = α

where τ0, τ1 ∈ R2 are given constant unit vectors and α ∈ R is a prescribed constant. Condition
(i) is usually called clamped boundary condition (see [9]), and (ii) is referred to as symmetric
Navier boundary condition (see [2, 6]).

Eventually, Appendix 5 is concerned with the analyticity of certain functions which play an
important rôle in the proof of the convergence result, while in Appendix 6 we prove the long
time existence of smooth solutions to (1) under the boundary condition (ii).

2. Gradient flows in Hilbert spaces

We first present our strategy to obtain asymptotic convergence in the case of gradient flows
in a Hilbert space. The purpose of this section is to illustrate the main idea without some
complications arising in the geometric setting.

Let H be a Hilbert space and F : H → R ∪ {+∞} be a functional satisfying the following
assumptions:

{u ∈ H | F (u) ≤ C} is compact for any C ∈ R, (2)

F = F1 + F2, where F1 : H → R ∪ {+∞} is l.s.c. and convex, and F2 ∈ C1(H). (3)

Notice that

(i) condition (2) implies that F is l.s.c. and bounded from below, so that in particular it
admits a global minimizer in H;

(ii) if F satisfies (2) and (3) it is possible to define the sub-differential ∂F of F in the sense
of convex geometry, and

∥∂0F (u)∥2H is l.s.c. in H , (4)

where ∂0F denotes the canonical element of ∂F , defined as the unique element of ∂F of
minimal norm in H (see [4]).

Let u(t) ∈ H1((0,+∞);H) be a function satisfying the evolution equation

ut = −∂0F (u) for all t > 0. (5)

In [4, Lemma 3.3] is shown the the function t 7→ F (u(t)) is absolutely continuous, and its
derivative satisfies

d

dt
F (u(t)) = −∥ut∥2H = −∥∂0F (u)∥2H. (6)

Lemma 2.1. Let F : H → R ∪ {+∞} satisfy (2)-(3), and Let {tj}j be a monotone increasing
sequence with infj∈N (tj+1 − tj) > 0. Assume that u ∈ H1((0,+∞);H) satisfies (5)-(6). Then,
for any 0 < ε ≤ infj∈N (tj+1 − tj), there exists a sequence {tεj}j with tεj ∈ (tj , tj + ε) such that

∥∂0F (u(tεj))∥H → 0 as j → +∞.
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Proof. From (6) it follows that∫ ∞

0
∥∂0F (u(t))∥2H dt = −

∫ ∞

0

d

dt
F (u(t)) dt =

[
F (u(t))

]t=0

t=∞
< +∞, (7)

whence
∞∑
j=1

∫ tj+ε

tj

∥∂0F (u(t))∥2H dt < +∞. (8)

In particular, there holds

lim
j→∞

∫ tj+ε

tj

∥∂0F (u(t))∥2H dt = 0, (9)

which implies the thesis. �
Let S = {u ∈ H | ∂0F (u) = 0} the set of all stationary solutions to (5)-(6). We shall assume

that

ΣA := {u ∈ S | F (u) = A} is discrete in H, for all A ∈ R. (10)

Theorem 2.1. Suppose that the functional F : H → R ∪ {+∞} satisfies (2),(3) and (10). Let
u(t) ∈ H1((0,+∞);H) be a solution to (5)-(6). Then there exists a unique function ũ ∈ S such
that

∥u(t)− ũ∥H → 0 as t → ∞. (11)

Proof. (4) and Lemma 2.1 imply that u(t) subconverges to a element of S, i.e., there exist a
sequence {tj} with tj → ∞, and ũ ∈ S such that u(tj) → ũ in H as j → ∞. We prove Theorem
2.1 by contradiction. Suppose not, there exist sequences {t1j}, {t2j} and functions ũ1, ũ2 ∈ S
such that

u(t1j ) → ũ1, u(t2j ) → ũ2 in H as j → ∞. (12)

Set

A := F (ũ1) = F (ũ2) = lim
t→∞

F (u(t)).

By (10), the set ΣA is discrete in H, i.e., there exists a constant δA > 0 such that

∥ũl − ũm∥H > δA

for any ũl, ũm ∈ ΣA. Let δ = δA/2. Then, for any ũl, ũm ∈ ΣA, it holds that

Bδ(ũl) ∩Bδ(ũm) = ∅, (13)

where

Bδ(ũ) = {v ∈ H | ∥v − ũ∥H < δ}.

It follows from (12) that there exists J ∈ N such that

u(t1j ) ∈ Bδ(ũ1), u(t2j ) ∈ Bδ(ũ2) (14)

for any j ≥ J . Up to a subsequence, we may assume that it holds that

t1j < t2j < t1j+1
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for any j ≥ J . Then, by (13), (14), and the continuity of u(t) in H, we see that there exists a
monotone increasing sequence {t3j}j such that

∥u(t3j )− ũ∥H ≥ δ

for any j ∈ N and ũ ∈ ΣA. Up to a subsequence we can assume infj∈N (t3j+1 − t3j ) > 0. Since

u ∈ H1((0,∞);H) yields that u(t) is uniformly continuous in H, for sufficiently small ε > 0, it
holds that

∥u(t)− ũ∥H ≥ δ

2
(15)

for any t ∈ [t3j , t
3
j + ε] and ũ ∈ ΣA.

Suppose that there exists a sequence {tεj}j with tεj ∈ [t3j , t
3
j+ε] such that ∥∂0F (u(tεj))∥H → 0.

Then by (2) there exist û ∈ H and {tεjk} ⊂ {tεj} such that u(tεjk) → û in H. However (3) implies

that û ∈ ΣA, and this contradicts (15). Hence we observe that, for any {tεj}j with tεj ∈ [t3j , t
3
j+ε],

∥∂0F (u(tεj))∥H ̸→ 0

as j → ∞. This contradicts Lemma 2.1, and completes the proof. �
Remark 2.1. If F2 = 0 in (3), that is, if F is a convex l.s.c. function, the convergence result
in Theorem 2.1 follows from [4, Theorem 3.11] (see also [16] for a more general result), without
the need of assumption (10). However, if F2 ̸= 0 , the result is generally false without assuming
(10), even if H is finite dimensional.

3. Geometric gradient flows

In this section we consider the gradient flow of a general geometric functional E(γ) defined on
planar curves γ : I → R2, which we assume to be bounded from below, that is, infγ E(γ) > −∞.

A L2-gradient flow of E is a one parameter family of curves γ : I × [0,∞) → R2 such that

∂tγ = −∇E(γ) (16)

and
d

dt
E(γ(t)) = −

∫
γ
|∇E(γ(t))|2 ds, (17)

where ∇E(γ) denotes the Euler-Lagrange operator of E(γ), i.e., ∇E(γ) satisfies
d

dε
E(γ(·) + φ(·, ε))

∣∣∣∣
ε=0

=

∫
γ
∇E(γ) · φε ds

for any φ ∈ C∞((−ε0, ε0) : (C
∞
c (I))2), where φε = φε(·, 0).

Since the curves are open, in order to have uniqueness of the evolution we need to impose a
boundary condition B(γ) = 0 on ∂I. Notice that (17) does not follow from (16) if the boundary
condition given by B is not natural for E , i.e., the flow (16) with a boundary condition is not
always the L2-gradient flow for E(γ). Indeed, if γ satisfies (16) under an unnatural boundary

condition B̃(γ) = 0, then it can happen that (17) does not hold. Therefore we shall assume the
following:

Assumption 3.1 (Compatibility). The flow (16) with boundary condition B(γ) = 0 is a
L2-gradient flow for E(γ).
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Given a smooth curve γ we let s ∈ [0,L(γ)] be the arclength parameter defined as

s(x) :=

∫ x

0
|γx| dx x ∈ I,

where L(γ) is the length of γ

L(γ) := s(1) =

∫ 1

0
|γx| dx.

Notice that in the arclength variable s there holds |γs(s)| = 1 for all s ∈ [0,L(γ)]. Given a
function f(s) defined on γ, we let

∥f∥L∞
γ

:= sup
s∈L(γ)

|f(s)| ∥f∥L2
γ
:=

(∫
γ
f(s)2 ds

) 1
2

.

We shall consider the initial boundary value problem:
∂tγ = −∇E(γ) in I × (0,∞),

B(γ(x, t)) = 0 on ∂I × [0,∞),

γ(x, 0) = γ0(x) in I,

(18)

where γ0(x) : I → R2 is a smooth planar open curve satisfying the boundary condition
B(γ0(x)) = 0 on ∂I. Regarding the solvability of (18), we assume the following:

Assumption 3.2 (Regularity). There exists a smooth solution γ : I × [0,+∞) → R2 of (18),
satisfying

∥∂tγ(·, t)∥L∞
γ(t)

< C and

∫
γ
|∂m

s γ(t)|2 ds < C (19)

for any m ∈ N and for any t > 0, where the constant C is independent of t. Moreover, ∥∇E(γ)∥L2
γ

is continuous in γ with respect to the C∞-topology.

Notice that, as the functional E is bounded from below, then (17) implies the estimate∫ +∞

0
∥∂tγ(·, t)∥2L2

γ(t)
≤ E(γ0)− inf E (20)

for any solution γ of (18).
Under an additional assumption on (E ,B), we shall prove that a solution of (18) converges

to a stationary solution as t → +∞. Let S be a set of all stationary solutions of (18), i.e., the
smooth curves γ̃ satisfying {

∇E(γ̃(x)) = 0 in I,

B(γ̃(x)) = 0 on ∂I.
(21)

For each A ∈ R, we define the subset of S
ΣA := {γ̃ ∈ S | E(γ̃) = A}.

We shall assume the following:

Assumption 3.3. ΣA is finite for any A ∈ R.

We can now state our main result.
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Theorem 3.1. Let γ(x, t) : I×[0,∞) → R2 be a solution of (18), and suppose that Assumptions
3.1, 3.2 and 3.3 hold. Then, there exists a smooth curve γ̃ : I → R2 satisfying (21) and such
that

γ(·, t) → γ̃(·) as t → ∞

in the C∞-topology.

We start with a preliminary result.

Lemma 3.1. Let {tj}∞j=1 be a monotone increasing sequence with infj∈N (tj+1 − tj) ≥ 0. Then,

for any 0 < ε ≤ infj∈N (tj+1 − tj), there exists a sequence {tεj}j with tεj ∈ (tj , tj + ε) such that∥∥∇E(γ(tεj))
∥∥
L2
γ
→ 0 as j → ∞.

Proof. Let fix 0 < ε < infj∈N (tj+1 − tj) arbitrarily. Recall that∫ ∞

0
∥∇E(γ(t))∥2L2

γ
dt = −

∫ ∞

0

d

dt
E(γ(t)) dt =

[
E(γ(t))

]t=0

t=∞
< +∞,

so that we have
∞∑
j=1

∫ tj+ε

tj

∥∇E(γ(t))∥2L2
γ
dt < ∞, (22)

which implies

lim
j→∞

∫ tj+ε

tj

∥∇E(γ(t))∥2L2
γ
dt = 0. (23)

The thesis follows directly from (23). �

We now prove Theorem 3.1.

Proof. To begin with, remark that Assumption 3.2 and Lemma 3.1 imply that the solution γ
subconverges to a stationary solution γ̃ as t → ∞. Indeed, by Lemma 3.1, one can find a
sequence {tj} with tj → ∞ such that

∥∇E(γ(tj))∥L2
γ
→ 0 as tj → ∞. (24)

Since Assumption 3.2 allows us to apply Arzelà-Ascoli’s theorem to the family of planar open
curves γ(tj), we see that there exists a subsequence {tjk} ⊂ {tj} such that

γ(tjk) → γ̃ as tjk → ∞ (25)

in the C∞-topology. Combining (24) with the definition of the L2-gradient flow (16)-(17), we
observe that the limit γ̃ is independent of t and satisfies

∇E(γ̃) = 0 on I. (26)

We shall prove Theorem 3.1 by contradiction. Suppose not, there exist sequences {t1j}j ,
{t2j}j and stationary solutions γ̃1, γ̃2 ∈ S such that

γ(t1j ) → γ̃1, γ(t2j ) → γ̃2 (27)
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as j → ∞. We may assume that {t1j}j and {t2j}j are monotone increasing sequences. Let

A = E(γ̃1) = E(γ̃2).

Thanks to Assumption 3.3, the set ΣA is finite. On the other hand, for each curves γ̃n, γ̃m ∈ ΣA,
there exists a constant δnm > 0 such that

distH (γ̃n, γ̃m) > δnm,

where distH (·, ·) denotes the Hausdorff distance defined as follows:

distH (γ,Γ) = max

{
sup

u∈Im(γ)
inf

v∈Im(Γ)
|u− v|, sup

v∈Im(Γ)
inf

u∈Im(γ)
|u− v|

}
.

Since ΣA is finite, there exists a constant δ∗ > 0 such that

min
γ̃n,γ̃m∈ΣA

distH (γ̃n, γ̃m) = δ∗. (28)

Let δ = δ∗/2. Then, for any γ̃n, γ̃m ∈ ΣA, it holds that

OH(γ̃n, δ) ∩ OH(γ̃m, δ) = ∅, (29)

where

OH(γ̃, δ) = {γ | distH (γ̃, γ) < δ}.

It follows from (27) that there exists J ∈ N such that

γ(t1j ) ∈ OH(γ̃1, δ), γ(t2j ) ∈ OH(γ̃2, δ) (30)

for any j ≥ J . Up to a subsequence, we may assume that it holds that

t1j < t2j < t1j+1

for any j ≥ J . Then, by (28), (29), (30), and the continuity of distH , we see that there exists a
monotone increasing sequence {t3j}j such that

d(t3j ) > δ (31)

for any j ∈ N, where d(t) := minγ̃∈ΣA
distH (γ(t), γ̃). Up to a subsequence, we may also assume

that infj∈N (t3j+1 − t3j ) > 0.

Here we claim that the function d(t) is Lipschitz continuous on (0,+∞). Remark that (19)
gives us that there exists a constant C > 0 such that

sup
x∈I

|∂tγ(x, t)| < C (32)

for any t > 0. Let x, y ∈ I fix arbitrarily. Then the fact (32) yields that

||γ(x, t1)− γ̃(y)| − |γ(x, t2)− γ̃(y)|| ≤ |γ(x, t1)− γ(x, t2)|

≤
∫ t1

t2

|∂tγ(x, t)| dt < C |t1 − t2| .

Combining the estimate with the definition of the Hausdorff distance, we obtain

|d(t1)− d(t2)| < C |t1 − t2| .
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Thus the function d(t) is C-Lipschitz, in particular uniform continuous, on (0,+∞). Then it
follows from (31) that there exists 0 < ε < infj∈N (t3j+1 − t3j ) such that

distH (γ(t),ΣA) ≥
δ

2
(33)

for any j ∈ N and any t ∈ [t3j , t
3
j + ε]. The inequality (33) implies that, for any {tεj}j with

tεj ∈ [t3j , t
3
j + ε], γ(tεj) does not converges to any stationary solution as j → ∞. However, by

Assumption 3.2 and Lemma 3.1, we can find a sequence {t̃j} with t̃j ∈ (t3j , t
3
j +ε] such that γ(t̃j)

converges to a stationary solution, which gives a contradiction. �

4. Applications

In this section, we apply Theorem 3.1 to the geometric equation

∂tγ = (−2∂2
sκ− κ3 + λ2κ)ν, (34)

where κ and ν denote respectively the scalar curvature and the unit normal vector with the
direction of the curvature, and λ is a non-zero constant. Throughout the section we assume that
γ(x, t) : I × [0,∞) → R2 are fixed at the boundary, i.e.,

γ(0, t) = (0, 0), γ(1, t) = (R, 0) on [0,∞), (35)

where R > 0 is a given constant.
Here we prepare several notations. In what follows let us set

f(κ) = κ3 − λ2κ.

From the Euler-Lagrange equation

2∂2
sκ+ κ3 − λ2κ = 0,

we obtain the relation (
dκ

ds

)2

+ F (κ) = E, (36)

where E is an arbitral constant and F ′ = f , i.e., F is given by

F (κ) =
1

4
κ4 − λ2

2
κ2.

Let κM (E) and κm(E) be solutions of F (κ) = E as follows:

κM (E) =

√
λ2 +

√
λ4 + 4E for E ∈ (−λ4

4 ,∞),

κm(E) =

{
−κM (E) for E ∈ (0,∞),√

λ2 −
√
λ4 + 4E for E ∈ (−λ4

4 , 0].

If there is no fear of confusion, we write κM and κm instead of κM (E) and κm(E). Let us set

L(E) = 2

∫ κM (E)

κm(E)

dκ√
E − F (κ)

.
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Lemma 4.1. Let (κ,E) be a pair satisfying
(
dκ

ds

)2

+ F (κ) = E,

κ(0) = 0.

Then it holds that ∫ L(E)

0
κ(s)2 ds → ∞ as E → ∞. (37)

Proof. Since it holds that

L(E) = 4

∫ κM (E)

0

dκ√
E − F (κ)

for E > 0, (38)

it is sufficient to prove that ∫ L(E)
4

0
κ(s)2 ds → ∞ as E → ∞. (39)

Since κM (E) → ∞ as E → ∞, it holds that
√
2 |λ| < κM (E)

for sufficiently large E, where
√
2 |λ| is a solution of F (κ) = 0. Then we have∫ κM

2

0

dκ√
E − F (κ)

=

∫ √
2|λ|

0

dκ√
E − F (κ)

+

∫ κM
2

√
2|λ|

dκ√
E − F (κ)

(40)

<

√
2 |λ|√
E

+
κM/2−

√
2 |λ|√

E − F (κ∗)
,

where κ∗ ∈ (
√
2 |λ| , κM/2). On the other hand, it holds that∫ κM

κM
2

dκ√
E − F (κ)

>
κM/2√

E − F (κ∗)
. (41)

If E > 1, then we find

κM/2√
E − F (κ∗)

−

{√
2 |λ|√
E

+
κM/2−

√
2 |λ|√

E − F (κ∗)

}
> 0. (42)

Combining (40)-(41) with (42), we observe that∫ κM

κM
2

dκ√
E − F (κ)

>

∫ κM
2

0

dκ√
E − F (κ)

for sufficiently large E. Set

L1 =

∫ κM
2

0

dκ√
E − F (κ)

, L2 =

∫ κM

κM
2

dκ√
E − F (κ)

.
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By virtue of (38), we see that∫ L(E)
4

0
κ(s)2 ds >

∫ L(E)
4

L1

κ(s)2 ds >
L2κM

2

4
>

κM
3

8
√
E
. (43)

Here we used (41). Since it holds that

lim
E→∞

κM (E)2

2
√
E

= lim
E→∞

λ2 +
√
λ4 + 4E

2
√
E

→ 1,

the estimate (43) implies (39). �

4.1. Clamped boundary condition. Recently C.-C. Lin considered a motion of open curves
in Rn with boundary points fixed. Although he considered the problem for any n ≥ 2 ([9]), we
restrict the dimension n = 2. The motion is governed by the geometric evolution equation (34)
with the boundary condition (35) and

γs(0, t) = τ0, γs(1, t) = τ1, (44)

where τ0, τ1 ∈ R2 are prescribed unit vectors. The boundary condition (35)-(44) is called the
clamped boundary condition. One can verify that Assumption 3.1 holds, i.e., the flow (34) with
the clamped boundary condition is a L2-gradient flow for the functional

Eλ(γ) =
∫
γ
(κ2 + λ2) ds. (45)

The functional is well known as the modified total squared curvature.
Let γ0 : I → R2 be a smooth planar open curve satisfying the following:

γ0(0) = (0, 0), γ0(1) = (R, 0), γ0s(0) = τ0, γ0s(1) = τ1.

For such curve γ0, we consider the following initial boundary value problem:
∂tγ = (−2∂2

sκ− κ3 + λ2κ)ν in I × [0,∞),

γ(0, t) = (0, 0), γ(1, t) = (R, 0),

γs(0, t) = τ0, γs(1, t) = τ1 in [0,∞),

γ(x, 0) = γ0(x) in I.

(46)

The purpose of this subsection is to prove a convergence of a solution of (46) to an equilibrium
as t → ∞. Regarding the problem (46), C.-C. Lin obtained the following result:

Proposition 4.1. ([9]) For any prescribed constant λ ̸= 0 and smooth initial curve γ0 with finite
length, there exists a global smooth solution γ of (46). Moreover, after reparametrization by arc
length, the family of curves {γ(t)} subconverges to γ∞, which is an equilibrium of the energy
functional (45).

It follows from the proof of Proposition 4.1 that Assumption 3.2 holds.
Let S be a set of all stationary solutions of (46), i.e., all open curves satisfying{

2∂2
sκ+ κ3 − λ2κ = 0 in I,

γ(0) = (0, 0), γ(1) = (R, 0), γs(0) = τ0, γs(1) = τ1.
(47)
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We denote ΣA a subset of S defined by

ΣA = {γ̃ ∈ S | Eλ(γ̃) = A}.
In order to apply Theorem 3.1 to the problem (46), we prove that Assumption 3.3 holds, i.e.,
the set ΣA is finite for any A ∈ R.

Lemma 4.2. The set ΣA is finite for each A ∈ R.

Proof. Suppose not, there exist a constantA and a sequence of planar open curves {γn}∞n=1 ⊂ ΣA.
Let fix a family of planar curves γ(s,E) such that(

dκ

ds

)2

+ F (κ) = E, γ(0, E) = (0, 0), γs(0, E) = τ0,

and

γ(s,En) = γn on [0,L(γn)],
where L(γn) denotes the length of γn. Remark that γ(s,E) is analytic in s and E on R ×
(−λ4/4,∞). In particular, letting sn = L(γn), we have

γ(sn, En) = (R, 0), γs(sn, En) = τ1. (48)

If En → ∞ as n → ∞, then Lemma 4.4 implies

L(En) → 0 as n → ∞ (49)

and Lemma 3.1 yields that ∫ L(En)

0
κ2n ds → ∞ as n → ∞, (50)

where κn = κ(s,En). Although (49)-(50) yields that Eλ(γ(·, En)) → ∞ as n → ∞, this
contradicts Eλ(γ(·, En)) = A. Thus there exists a constant E∗ such that En < E∗, i.e.,
{En}∞n=1 is bounded sequence. Moreover the fact {γn}∞n=1 ⊂ ΣA implies R ≤ sn ≤ A/λ2,
i.e., {sn}∞n=1 is also bounded sequence. Hence there exist subsequences {Enj}∞j=1 ⊂ {En}∞n=1

and {snj}∞j=1 ⊂ {sn}∞n=1 and constants E∞ and s∞ such that Enj → E∞ and snj → s∞ as

j → ∞. In the following we write {En}∞n=1 and {sn}∞n=1 instead of {Enj}∞j=1 and {snj}∞j=1 for
short.

We prove that there exist a neighborhood U of E∞ and a function s : U → R such that, for
any E ∈ U ,

γ(s(E), E) = (R, 0), γs(s(E), E) = τ1. (51)

If τ1 · e1 ̸= 0, then we define a function Φ : R × (−λ4/4,∞) → R as Φ(s,E) = γ1(s, E), where
e1 = (1, 0) and γ = (γ1, γ2). Since Φ(s∞, E∞) = R and Φs(s∞, E∞) = τ1 · e1 ̸= 0, the implicit
function theorem yields that there exist a neighborhood U of E∞ and a function s : U → R such
that, for any E ∈ U ,

γ1(s(E), E) = R. (52)

It follows from (48) and (52) that s(En) = sn holds for any n ∈ N. Moreover the analyticity of
γ implies that s(E) is analytic on U . Combining the analyticity of s(E) with

γ(s(En), En) = (R, 0), γs(s(En), En) = τ1,
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we observe that s(E) satisfies (51) on U . If τ1 · e1 = 0, then it is sufficient to define a function
Φ(s,E) as Φ(s,E) = γ2(s,E).

Let us define a function d : (−λ4/4,∞) → R as

d(E) = min
s∈R

|γ(s,E)− (R, 0)|2.

Remark that the function d(E) is analytic and d(E) = 0 on U . We claim that d(E) is analytic
on (−λ4/4,∞). Suppose that there exists a maximal open set V ⊃ U such that d(E) is analytic
on V . Then we see that d(E) > 0 in ∂V . For, if d(E) = 0 in ∂V , then the similar argument as
above yields that d(E) is analytic on a neighborhood of ∂V . This contradicts that V is maximal.
On the other hand, since d(E) is analytic and d(E) = 0 on U ⊂ V , we observe that d(E) = 0
on V . Therefore d(E) is analytic on (−λ4/4,∞).

Since d(E) = 0 on U , the analyticity yields that d(E) = 0 for any E ∈ (−λ4/4,∞). Thus
there exists an extension s(E) such that

γ(s(E), E) = (R, 0) for all E ∈ (−λ4/4,∞),

where we still denote the extension as s(E), for short.

We claim that s(E) is analytic on U ∪ (E∞,∞). Suppose not, there exists a constant Ẽ

such that s(E) is not extended analytically for E ≥ Ẽ. Then it holds that

s(E) → ∞ as E ↗ Ẽ. (53)

Since

Eλ(γ(·, E)) =

∫ s(E)

0
κ(s,E) ds+ λ2s(E) for any E ∈ U ∪ (E∞, Ẽ),

(53) is equivalent to

Eλ(γ(·, E)) → ∞ as E ↗ Ẽ.

This contradicts that Eλ(γ(·, E)) = A for any E ∈ U ∪ (E∞, Ẽ). Therefore we see that s(E) is
extended analytically on U ∪ (E∞,∞).

We now obtain a contradiction. Since the analyticity of s(E) implies that (51) holds for all
E ∈ U ∪ (E∞,∞), it follows that γ(s,E) ∈ ΣA for all E ∈ U ∪ (E∞,∞), i.e.,

Eλ(γ(·, E)) = A for any E ∈ U ∪ (E∞,∞). (54)

However (54) contradicts that

Eλ(γ(·, E)) → ∞ as E → ∞.

We complete the proof. �

Lemma 4.2 implies that one can apply Theorem 3.1 to (46). Then the following result is
proved.

Theorem 4.1. Let λ ̸= 0. Let γ be a smooth solution of (46) obtained by Proposition 4.1.
Then, as t → ∞, the solution γ converges to a solution of (47) in the C∞-topology.
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4.2. Zero curvature boundary condition. In this subsection, we impose that the curvature
of γ(x, t) is zero at the boundary of I, i.e.

κ(0, t) = κ(1, t) = 0 in (0,∞). (55)

We shall consider the initial value problem for (34) with the boundary conditions (35)-(55)
∂tγ = (−2∂2

sκ− κ3 + λ2κ)ν in I × [0,∞),

γ(0, t) = (0, 0), γ(1, t) = (R, 0),

κ(0, t) = κ(1, t) = 0 in [0,∞),

γ(x, 0) = γ0(x) in I.

(56)

Remark that γ0 is a smooth planar curve satisfying∣∣γ0′(x)∣∣ ≡ 1, γ0(0) = (0, 0), γ0(1) = (R, 0), κ0(0) = κ0(1) = 0. (57)

The purpose of this subsection is applying Theorem 3.1 to the problem (56) and proveing
that the solution γ(x, t) converges to a stationary solution as t → ∞.

Regarding Assumption 3.1, it is easy to check that the flow (34) with the boundary condition
(35)-(55) is the L2-gradient flow for the functional Eλ (see Section 6).

By the proof of the following Proposition, we see that Assumption 3.2 holds.

Proposition 4.2. ([12]) Let γ0(x) be a planar curve satisfying (57). Then there exist a family
of smooth planar curves γ(x, t) : I× [0,∞) → R2 satisfying (56). Moreover, there exist sequence
{tj}∞j=1 and a smooth curve γ̃ : I → R2 such that γ(·, tj) converges to γ̃(·) as tj → ∞ up to a
reparametrization. Moreover the curve γ̃ satisfies{

2∂2
s κ̃+ κ̃3 − λ2κ̃ = 0 in I,

γ̃(0) = (0, 0), γ̃(1) = (R, 0), κ̃(0) = κ̃(1) = 0.
(58)

Let S be a set of all stationary solutions, i.e., a set of all planar open curves satisfying (58).

And for each A ∈ R, let us define the set Σ̃A of S as follows:

Σ̃A = {γ̃ ∈ S | Eλ(γ̃) ≤ A}.

By making use of Lemma 4.1, we prove that the set Σ̃A is finite for any A ∈ R:

Lemma 4.3. The set Σ̃A is finite for any A ∈ R.

Proof. To begin with, we identify γ̃ ∈ S with Rγ̃ ∈ S, where R =
(
1 0
0 −1

)
. If Σ̃A is not finite,

there exists a sequence {γ̃n}∞n=1 ⊂ Σ̃A. Then there exists a constant En ≥ 0 such that (κ̃n, En)
satisfies (36) for each n ∈ N. If En → ∞ as n → ∞, then Lemma 4.1 implies that∫

γ̃n

κ̃2n ds → ∞.

This contradicts {γ̃n}∞n=1 ⊂ Σ̃A. Thus there exists a constant E∗ such that En < E∗ holds for
any n ∈ N. Moreover, if En → 0 as n → ∞, then Lemma 5.1 implies that L(En) → ∞ as n → ∞.

Then we observe that Eλ(γ̃n) → ∞ as n → ∞. This also contradicts {γ̃n}∞n=1 ⊂ Σ̃A. Hence there
exists a positive constant E∗ > 0 such that E∗ < En for all n ∈ N. Since {En}∞n=1 is a bounded
sequence, there exist a constant E∗ ≤ E∞ ≤ E∗ and a subsequence {Enk

}∞k=1 ⊂ {En}∞n=1 such
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that Enk
→ E∞ as k → ∞. By the definition of {γ̃n}∞n=1 and {En}∞n=1, there exists γ̃∞ ∈ Σ̃A

such that (κ∞, E∞) satisfies (36). Here we define a function d = d(E) for a planar open curves
with the pair (κ,E) satisfying (36) as

d(E) = |γ(L(E))− γ(0)| .

In Lemma 5.1, we shall prove that L(E) is analytic on (0,∞). Since γ(s) depends on s analyti-
cally, the analyticity of L(E) implies that d(E) is analytic. Since γ̃n ∈ S, there exists a number
Nn ∈ N such that

d(En) =
R

Nn
.

In particular, there exists a number N∞ ∈ N such that

d(E∞) =
R

N∞
.

Since d(Enk
) → d(E∞) as k → ∞, it must be holds that Nnk

= N∞ for sufficiently large k ∈ N.
This means that d(Enk

) = d(E∞) holds for sufficiently large k ∈ N. The analyticity of d(·)
implies that Enk

= E∞ for sufficiently large k ∈ N. The relation Enk
= E∞ yields γ̃nk

= γ̃∞.

Since γ̃n ∈ Σ̃A is uniquely determined with respect to En by identifying γ̃n with Rγ̃n, this
contradicts the uniqueness. �

Since Lemma 4.3 implies that Assumption 3.3 holds, we see that Theorem 3.1 yields the
following:

Theorem 4.2. Let γ(x, t) : I × [0,∞) → R2 be a solution of (56). Then there exists a solution
γ̃ of (58) such that

γ(·, t) → γ̃(·) as t → ∞
in the C∞-topology.

4.3. Symmetric Navier boundary condition. We now consider the following more general
boundary condition for the curvature:

κ(0) = κ(1) = α, (59)

where α ∈ R is a given constant. The boundary conditions (35)-(59) is sometimes called the
symmetric Navier boundary condition (e.g., see [2, 6]). In Section 6, we will show that the flow
(34) with the symmetric Navier boundary condition is the L2-gradient flow of the functional

Eλ,α(γ) := Eλ(γ)− 2α

∫
γ
κ ds. (60)

We now show that the functional Eλ,α is bounded from below whenever |α| < |λ|.

Lemma 4.4. Let α, λ ∈ R be such that λ ̸= 0 and

|α| < |λ| . (61)

Then there exists a positive constant C = C(α, λ) such that

Eλ,α(γ) ≥ Cmax {∥κ∥2L2
γ
,L(γ)} for all γ. (62)
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Proof. Using Hölder’s and Young’s inequalities, for all ε ∈ (0, 1] we have

Eλ,α(γ) =
∫
γ
κ2 ds− 2α

∫
γ
κ ds+ λ2L(γ) (63)

≥
∫
γ
κ2 ds− 2 |α|

{∫
γ
κ2 ds

} 1
2
{∫

γ
ds

} 1
2

+ λ2L(γ)

≥ (1− ε)

∫
γ
κ2 ds+

(
λ2 − α2

ε

)
L(γ).

Taking α2/λ2 < ε < 1, we obtain (62). �
The purpose of this subsection is to prove a convergence of a solution of the following initial

boundary value problem
∂tγ = −2∂2

sκ− κ3 + λ2κ in I × [0,∞),

γ(0, t) = (0, 0), γ(1, t) = (R, 0),

κ(0, t) = κ(1, t) = α in [0,∞),

γ(x, 0) = γ0(x) in I,

(64)

to a solution of {
2∂2

sκ+ κ3 − λ2κ = 0 in I,

γ(0) = (0, 0), γ(1) = (R, 0), κ(0) = κ(1) = α,
(65)

as t → ∞.
In Section 6, we shall prove that there exists a unique smooth solution for all times, satisfying

Assumption 3.2.
We turn to Assumption 3.3. Let γ be a planar open curve satisfying the stationary equation{

2∂2
sκ+ κ3 − λ2κ = 0 in I,

κ(0) = κ(1) = α.
(66)

Then there exists a constant E ∈ (−λ4/4,∞) such that the pair (κ,E) satisfies
(
dκ

ds

)2

+ F (κ) = E in I,

κ(0) = κ(1) = α.

(67)

Let

L0(E) = 0 (68)

L1(E) = 2

∫ α

κm

dκ√
E − F (κ)

, (69)

L2(E) = 2

∫ κM

α

dκ√
E − F (κ)

, (70)

so that

L(E) = L1(E) + L2(E). (71)



16 MATTEO NOVAGA AND SHINYA OKABE

It is easy to see that the length of γ can be written as

L(γ) = L̃(E) +NL(E)

for some N ∈ N, with

L̃(E) ∈ {L0(E), L1(E), L2(E)} for any E ∈ (F (α),+∞).

Let S be a set of all solutions of (65). For each A ∈ R, we define

Σ̃A = {γ ∈ S | Eλ,α(γ) ≤ A}. (72)

Lemma 4.5. Let α, λ ∈ R be such that λ ̸= 0 and (61). Then the set Σ̃A is finite for each
A ∈ R.

Proof. Assume by contradiction that there exists a sequence {γn}∞n=1 ⊂ Σ̃A with γl ̸= γm if
l ̸= m. Then there exists a constant En for each n ∈ N such that the pair (κn, En) satisfies

(
dκn
ds

)2

+ F (κn) = En,

κn(0) = κn(L(γn)) = α,

(73)

where κn denotes the curvature of γn. By the discussion above, for each En ∈ (−λ4/4,∞) there
exists a unique solution κn of (73) such that L(γn) = Li(En) +NnL(En), where i ∈ {0, 1, 2}.

We claim that there exists a positive number E∗ such that En ≤ E∗ for any n ∈ N. Suppose
that En → ∞ as n → ∞. Then Lemma 4.1 yields∫

γn

κ2n ds → ∞ as n → ∞.

By virtue of Lemma 4.4, this implies that Eλ,α(γn) → ∞ as n → ∞, which contradicts γn ⊂ Σ̃A.
Thus we see that {En} is a bounded sequence, and then, there exists a constant E∞ ≤ E∗

such that En → E∞ up to extracting a suitable subsequence. Moreover, possibly passing to a

further subsequence, there exists a curve γ∞ ∈ Σ̃A such that the curves γn smoothly converge
to γ∞ as n → ∞. As L(γ∞) = Li(E∞) + N∞L(E∞) for some i ∈ {0, 1, 2}, it follows that
L(γn) = Li(En) +N∞L(En) for sufficiently large n. We define

d(E) = γ(L(E))− γ(0),

d̃(E) = γ(Li(E))− γ(0),

where γ is a solution of (κs)
2 + F (κ) = E. Since γn ∈ Σ̃A and Nn = N∞ for n big enough, we

have

|d̃(En) +Nnd(En)| = |d̃(En) +N∞d(En)| = R (74)

for n sufficiently large.
In the following we show that (74) leads to a contradiction. We may assume that α > 0

without loss of generality. First we consider the case where F (α) ≥ 0. Since F (α) ≥ 0 implies

En > 0 for any n ∈ N, Lemmas 5.2-5.3 imply that the function |d̃(E) +N∞d(E)| is analytic on
(F (α),∞). Then (74) yields

|d̃(E) +N∞d(E)| = R for any E ∈ (F (α),∞). (75)
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It follows from Lemma 5.3 that L(E) → 0 as E → ∞. Then (71) yields that Li(E) → 0 as
E → ∞ for any i ∈ {1, 2}. Thus we observe that

|d̃(E) +N∞d(E)| ≤ |d̃(E)|+N∞ |d(E)| → 0 as E → ∞.

This contradicts (75).
Next we consider the case where F (α) < 0 and E∞ ≥ 0. Since we may assume that En ≥ 0

for sufficiently large n ∈ N, we can obtain a contradiction along the same argument of the case
where F (α) ≥ 0.

Finally we consider the case where F (α) < 0 and E∞ < 0. Since it holds that En < 0 for
sufficiently large n, Lemmas 5.1–5.3 and (74) yield that

|d̃(E) +N∞d(E)| = R for any E ∈ (−λ4/4, 0). (76)

Suppose that N∞ ̸= 0. Since N∞ ≥ 1, we have

|d̃(E) +N∞d(E)| ≥ N∞ |d(E)| − |d̃(E)| ≥ N∞

(
|d(E)| − |d̃(E)|

)
.

Remark that Lemmas 5.1–5.3 and (71) imply that L(E) → ∞, L1(E) → ∞, and L(E)−L2(E) →
∞ as E ↑ 0. If L̃(E) ∈ {L0(E), L1(E)}, then it holds that

|d(E)| − |d̃(E)| → ∞ as E ↑ 0,

and then

|d̃(E) +N∞d(E)| → ∞ as E ↑ 0.

This contradicts (75). If L̃(E) = L2(E), since (71) gives us that

L(E)

L1(E)
= 1− L2

L1
→ 1 as E ↑ 0,

we observe that

|d(E)− d̃(E)| → 0 as E ↑ 0. (77)

Then it follows from (77) that

|d̃(E) +N∞d(E)| ≥ (N∞ + 1)|d(E)| − |d̃(E)− d(E)| → ∞ as E ↑ 0.

This also contradicts (75). Thus it must hold that N∞ = 0. Then (76) is reduced to

|d̃(E)| = R for any E ∈ (−λ4/4, 0). (78)

Lemma 5.2 implies that L̃(E) = L2(E). With the aid of Lemma 5.3, we can replace (78) with

|d̃(E)| = R for any E ∈ (F (α),∞). (79)

Moreover, by virtue of Lemma 5.3, we see that L2(E) → 0 as E → ∞, i.e., |d̃(E)| → 0 as
E → ∞. This contradicts (79). The proof of Lemma 4.5 is complete. �

Applying Theorem 3.1 to the problem (64), we obtain the following:

Theorem 4.3. Let α, λ ∈ R satisfy λ ̸= 0 and (61). Let γ(x, t) : I × [0,∞) → R2 be a solution
of (64). Then there exists a solution γ̃ of (65)

γ(·, t) → γ̃(·) as t → ∞
in the C∞-topology.
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5. Appendix A

Lemma 5.1. Let γ(s) : [0,∞) → R2 be a planar open curve with the curvature satisfying(
dκ

ds

)2

+ F (κ) = E.

Then the function

L(E) = 2

∫ κM (E)

κm(E)

dκ√
E − F (κ)

.

is analytic on (−λ4/4, 0) ∪ (0,∞). Furthermore it holds that

L(E) → ∞ as E → 0. (80)

Proof. To begin with, we show that L(E) is analytic on (0,∞) and L(E) → ∞ as E ↓ 0. Recall
that L(E) is written as

L(E) = 4

∫ κM (E)

0

dκ√
E − F (κ)

for E ∈ (0,∞). Since F is analytic, it is clear that κM (E) is analytic. Moreover the definition
of κM (E) implies that F ′(κ(E)) ̸= 0. The Taylor expansion of F at κ = κM (E) is expressed as

F (κ) = F (κM ) + F ′(κM )(κ− κM ) +
F ′′(κM )

2!
(κ− κM )2

+
F (3)(κM )

3!
(κ− κM )3 +

F (4)(κM )

4!
(κ− κM )4.

It follows from F ′(κM ) ̸= 0 that

√
E − F (κ) =

√
F ′(κM )(κM − κ)

√√√√1 +

3∑
n=1

an(E)(κM − κ)n

for any κ ∈ [0, κM ], where an(E) is given by

an(E) =
(−1)nF (n+1)(κM (E))

(n+ 1)!F ′(κM (E))

Since it holds that

|an(E)| ≤ C |λ|−n

for any E > 0, we see that

1√
E − F (κ)

=
∞∑
k=0

bk(κM (E)− κ)k−1/2

for any κ ∈ (κM (E)− ε, κM (E)), where ε is a positive constant satisfying

max
1≤n≤3

|an|ε(1 + ε+ ε2) < 1.
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Remark that bk = bk(E) is analytic on (0,∞). In the following let us set L(E)/4 = L1(E) +
L2(E), which are written as

L1(E) =

∫ κ0(E)

0

dκ√
E − F (κ)

, L2(E) =

∫ κM (E)

κ0(E)

dκ√
E − F (κ)

,

where κ0(E) = κM (E)− ε/2. First we check that L1(E) is analytic. Let us write L1(E) as

L1(E) =
1√
E

∫ κ0

0

(
1− F (κ)

E

)− 1
2

dκ.

Notice that the function (1− y)−1/2 is analytic on (−∞, 1), and for any y0 < 1 one can write

(1− y)−
1
2 =

∞∑
k=0

ck(y − y0) for all y ∈ (y0, 1),

where the coefficients ck depend on y0. Letting κ̄ = |λ| which is a minimum point of F and
setting y = F (κ)/E, y0 = F (κ̄)/E, we have

L1(E) =
1√
E

∞∑
k=0

ck

∫ κ0

0

(
F (κ)

E
− F (κ̄)

E

)k

dκ (81)

=
∞∑
k=0

ck
gk(κ0(E))

Ek+ 1
2

,

where

gk(x) =

∫ x

0
(F (κ)− F (κ̄))kdκ.

Since it holds that(∫ κ0

0

(
F (κ)

E
− F (κ̄)

E

)k

dκ

) 1
k

→ sup
κ∈(0,κ0)

F (κ)− F (κ̄)

E
< 1− y0

as k → ∞, we see that the series in (81) converges for each E > 0. Recalling κM (E) is analytic,
all the functions gk(κ0(E)) is also analytic. This implies that L1(E) is analytic for E > 0.

Regarding L2(E), we have

L2(E) =

∫ κM (E)

κ0

dκ√
E − F (κ)

= −
∞∑
k=0

bk(E)

(k + 1/2)

(ε
2

)k+1/2
.

Since bk(E) is analytic, this implies that L2(E) is also analytic for E > 0. Therefore we observe
that L(E) is analytic on (0,∞). On the other hand, it follows from (81) that

L(E) → ∞ as E ↓ 0. (82)

Next we prove that the function L(E) is analytic on (−λ4/4, 0). Along the same line as
above, we see that

1√
E − F (κ)

=
∞∑
k=0

bk(κM (E)− κ)k−1/2
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for any κ ∈ (κM − ε, κM ), and

1√
E − F (κ)

=

∞∑
k=0

b̃k(κm(E)− κ)k−1/2

for any κ ∈ (κm, κm + ε), where ε is an appropriate small number. Setting L(E) = L̃1(E) +

L̃2(E) + L̃3(E) + L̃4(E), where

L̃1(E) =

∫ κm+ε/2

κm

dκ√
E − F (κ)

, L̃2(E) =

∫ κ̄

κm+ε/2

dκ√
E − F (κ)

,

L̃3(E) =

∫ κM−ε/2

κ̄

dκ√
E − F (κ)

, L̃4(E) =

∫ κM

κM−ε/2

dκ√
E − F (κ)

.

Regarding L̃1(E) and L̃4(E), we can verify that L̃1(E) and L̃4(E) are analytic on (−λ4/4, 0)

along the same argument for L2(E). Next we turn to L̃2(E). Along the same line as the
argument for L1(E), we have

L̃2(E) =

∫ κ̄

κm+ε/2

1√
−F (κ)

dκ√
1− E/F (κ)

(83)

=
∞∑
k=0

c̃k

∫ κ̄

κm+ε/2

1√
−F (κ)

(
E

F (κ)
− E

F (κ̄)

)k

dκ

=

∞∑
k=0

c̃kg̃k(κm(E) + ε/2)Ek,

where

g̃k(x) =

∫ κ̄

x

(
F (κ)−1 − F (κ̄)−1

)
(−F (κ))−1/2 dκ.

Since it holds that

L̃2(E) ≤ 1√
−E

∞∑
k=0

c̃k

∫ κ̄

κm+ε/2

(
E

F (κ)
− E

F (κ̄)

)k

dκ

and (∫ κ̄

κm+ε/2

(
E

F (κ)
− E

F (κ̄)

)k

dκ

) 1
k

→ sup
κ∈(κm+ε/2,κ̄)

E

F (κ)
− E

F (κ̄)
< 1− y0

as k → ∞, we observe that the series in (83) converges for each E ∈ (−λ4/4, 0). Recalling

κm(E) is analytic, all the functions g̃k(κm(E) + ε/2) is also analytic. This implies that L̃2(E)

is analytic for E ∈ (−λ4/4, 0). Since similar argument gives us that L̃3(E) is also analytic for
E ∈ (−λ4/4, 0).
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Finally we prove that L(E) → ∞ as E ↑ 0. Regarding L̃1(E), it holds that

L̃1(E) >

∫ κm+ε/2

κm

dκ√
−F ′(κm)(κ− κm)− F ′′(κm)(κ− κm)2

(84)

=
1

2
√

−F ′′(κm)
log

1 +
√

ε
ε+2a

1−
√

ε
ε+2a

,

where a = F ′(κm)/F ′′(κm). Since F ′(κm(E)) → 0 and F ′′(κm(E)) → −λ2 as E ↑ 0, it follows
from (84) that

L̃1(E) → ∞ as E ↑ 0.

This clearly implies that L(E) → ∞ as E ↑ 0. �

The arguments in the proof of Lemma 5.1 also implies an analyticity of Li(E) which are
defined by (69)–(70).

Lemma 5.2. Let α > 0. If F (α) ≥ 0, then the function L1(E) is analytic on (F (α),∞). If
F (α) < 0, then the function L1(E) is analytic on (F (α), 0) ∪ (0,∞). Moreover, as E → 0, it
holds that

L1(E) → ∞ as E → 0. (85)

Proof. The proof of Lemma 5.1 gives us the conclusion. �

Lemma 5.3. For each α > 0, the function L2(E) is analytic on (F (α),∞). Moreover, for each

α ∈ (0, 2
√

|λ|), it holds that

L2(E) → 0 as E → ∞. (86)

Proof. An analyticity of L2(E) is followed from the same argument of the proof of Lemma 5.1.
We shall prove (86). Since 0 < α <

√
2 |λ|, we divide L2(E) into two part as follows:∫ κM

α

dκ√
E − F (κ)

=

∫ √
2|λ|

α

dκ√
E − F (κ)

+

∫ κM

√
2|λ|

dκ√
E − F (κ)

. (87)

Recalling F (
√
2 |λ|) = 0, we have∫ √

2|λ|

α

dκ√
E − F (κ)

≤ 1√
E

∫ √
2|λ|

α
dκ → 0 as E → ∞.

Thus it is sufficient to estimate the second term of the right-hand side of (87). By changing the

variable κ/(4E)1/4 = x, we have∫ κM

√
2|λ|

dκ√
E − F (κ)

≤ 1√
E

∫ κM

√
2|λ|

dκ√
1− κ4

4E

=

√
2

E1/4

∫ κM/(4E)1/4

√
2|λ|/(4E)1/4

dx√
1− x4

.



22 MATTEO NOVAGA AND SHINYA OKABE

And then, the conclusion is obtained from the following calculation:
√
2

E1/4

∫ κM/(4E)1/4

√
2|λ|/(4E)1/4

dx√
1− x4

≤
√
2

E1/4

∫ κM/(4E)1/4

√
2|λ|/(4E)1/4

dx√
1− x2

=

√
2

E1/4

{
sin−1 κM

(4E)1/4
− sin−1

√
2 |λ|

(4E)1/4

}
→ 0 as E → ∞.

�

6. Appendix B

The scope of this appendix is to prove that (64) has a unique smooth solution defined for
all times.

Let us first show that the L2-gradient flow for the functional Eλ,α under (35)-(59) can be
written as (34). Indeed, let γ : [0, 1] → R2 be a smooth planar curve satisfying the symmetric
Navier boundary condition

γ(0) = (0, 0), γ(1) = (R, 0), κ(0) = κ(1) = α, (88)

We consider a variation of γ defined as follows:

γ(x, ε) = γ(x) + ϕ(x, ε)ν(x),

where ν is the unit normal vector, pointing in the direction of the curvature, given by

ν =

(
0 −1
1 0

)
γx
|γx|

:= R γx
|γx|

,

and ϕ(x, ε) ∈ C∞((−ε0, ε0);C
∞(0, 1)) is an arbitral smooth function with

ϕ(x, 0) ≡ ϕ(0, ε) ≡ ϕ(1, ε) ≡ 0.

In the following we shall derive a first variational formula for the functional Eλ,α(γ). Put

τ =
γx
|γx|

.

Since the curvature of γ is expressed as

κ =
γxx · Rγx

|γx|3
, (89)

we have

κ = γxx · ν |γx|−2 ,

and then Frenet-Serret’s formula ∂sν · τ = −κ yields that

νx · τ = −κ |γx| .
To begin with, we derive useful variational formulae. First we find the first variational formula
of the local length.

d

dε
|γx(x, ε)|

∣∣∣∣
ε=0

=
γx · (ϕεν)x

|γx|
= τ · ϕενx = −κ |γx|ϕε, (90)
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where ϕε(·) = (∂ϕ/∂ε)(·, 0). Next we find the first variation formula of the curvature. From
(89) and

ν · νxx = − |νx|2 = −κ2 |γx|2 ,

γxx · Rνx = γxx · R(−κγx) = −κ2 |γx|3 ,(
|γx|−1

)
x
=

γxx · Rν

|γx|2
,

it follows that

d

dε
κ(x, ε)

∣∣∣∣
ε=0

=
ϕεxx

|γx|2
+ κ2ϕε + (|γx|−1)x

ϕεx

|γx|
. (91)

Using (90), we obtain

d

dε
Eλ,α(γ(·, ε))

∣∣∣∣
ε=0

=

∫ 1

0

{
2(κ− α)

d

dε
κ

∣∣∣∣
ε=0

−
(
κ3 − 2ακ2 + λ2κ

)
ϕε

}
|γx| dx

Using (91) and integrating by parts, we get∫ 1

0
(κ− α)

d

dε
κ

∣∣∣∣
ε=0

|γx| dx

=

∫ 1

0
(κ− α)

{
ϕεxx

|γx|2
+ κ2ϕε + (|γx|−1)x

ϕεx

|γx|

}
|γx| dx

=

∫ 1

0
−
(
κ− α

|γx|

)
x

ϕεx + (κ3 − ακ2)ϕε |γx|+ (|γx|−1)x(κ− α)ϕεx dx

+

[
κ− α

|γx|
ϕεx

]1
0

=

∫ 1

0
− κx
|γx|

ϕεx + (κ3 − ακ2)ϕε |γx| dx

=

∫ 1

0

(
κx
|γx|

)
x

ϕε + (κ3 − ακ2)ϕε |γx| dx

=

∫ 1

0

{(
∂x
|γx|

)2

κ+ (κ3 − ακ2)

}
ϕε |γx| dx.

Here we use κ(0) = κ(1) = α. Thus we find

d

dε
Eλ,α(γ(·, ε))

∣∣∣∣
ε=0

=

∫ b

a

{
2

(
∂x
|γx|

)2

κ+ κ3 − λ2κ

}
ϕε |γx| dx. (92)

Parameterizing by the arc length, the formula (92) is written as

d

dε
Eλ,α(γ(·, ε))

∣∣∣∣
ε=0

=

∫ 1

0

{
2κss + κ3 − λ2κ

}
ϕε ds.



24 MATTEO NOVAGA AND SHINYA OKABE

Therefore we see that the flow (34) is the L2-gradient flow for the functional Eλ,α under the
symmetric Navier boundary condition (88).

Since (64) is a nonlinear boundary value problem for a quasi-linear parabolic equation, a
short time existence is a standard matter. In what follows we shall prove a long time existence
of solutions to (64). Throughout the section, put

V λ = 2∂2
sκ+ κ3 − λ2κ.

Then the equation in (64) is written as

∂tγ = −V λν. (93)

Since s depends on t, remark that the following holds.

Lemma 6.1. Under (93), the following commutation rule holds:

∂t∂s = ∂s∂t − κV λ∂s.

Lemma 6.1 gives us the following:

Lemma 6.2. Let γ(x, t) satisfy (93). Then it holds that

∂tκ = −∂2
sV

λ − κ2V λ. (94)

Furthermore, the line element ds of γ(x, t) satisfies

∂tds = κV λds. (95)

The boundary conditions in (64) imply that several terms vanish on the boundary.

Lemma 6.3. Suppose that γ satisfies (64). Then it holds that

∂tγ = 0 on ∂I × [0,∞), (96)

∂tκ = 0 on ∂I × [0,∞), (97)

V λ = 0 on ∂I × [0,∞), (98)

∂2
sV

λ = 0 on ∂I × [0,∞), (99)

∂tV
λ = 0 on ∂I × [0,∞), (100)

∂t∂
2
sV

λ = 0 on ∂I × [0,∞), (101)

∂t∂s = ∂s∂t on ∂I × [0,∞). (102)

Proof. Since both γ(t) and κ(t) are fixed on ∂I, we observe (96)-(97). It follows from (93) and
(96) that (98) holds. By virtue of (6.2), (97), and (98), we obtain (99). Then (98) and (99)
implies (100) and (101), respectively. (102) is followed from Lemma 6.1 and (98) �

Here we introduce interpolation inequalities for open curves, which has been inspired by
[7] for closed curves and given in [9]. The interpolation inequalities are written in terms of the
following the scale invariant Sobolev norms:

∥κ∥k,p :=
k∑

i=0

∥∥∂i
sκ
∥∥
p
,
∥∥∂i

sκ
∥∥
p
:= L(γ)i+1−1/p

(∫
I

∣∣∂i
sκ
∣∣p)1/p

.
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Lemma 6.4. ([9]) Let γ : I → R2 be a smooth curve. Then for any k ∈ N ∪ {0}, p ≥ 2, and
0 ≤ i < k, we have ∥∥∂i

sκ
∥∥
p
≤ c ∥κ∥1−α

2 ∥κ∥αk,2 ,

where α = (i+ 1
2 − 1

p)/k and c = c(n, k, p).

In order to prove a long time existence of solutions to (64), we make use of the following
Lemma, which is a modification of Lemma 2.2 in [7].

Lemma 6.5. Let γ : I× [0, T ) → R2 satisfy the equation (93) and ϕ : I× [0, T ) → R be a scalar
function defined on γ satisfying{

∂tϕ = −2∂4
sϕ+ Y in I × [0, T ),

ϕ = 0, ∂2
sϕ = 0 on ∂I × [0, T ).

(103)

Then it holds that

d

dt

1

4

∫
γ
ϕ2 ds+

∫
γ
(∂2

sϕ)
2 ds =

1

2

∫
γ
ϕY ds+

1

4

∫
γ
ϕ2κV λ ds. (104)

Proof. It follows from the equation in (103) and Lemma 6.2 that

d

dt

1

4

∫
γ
ϕ2 ds =

1

2

∫
γ
ϕ∂tϕds+

1

4

∫
γ
ϕ2∂t(ds)

=
1

2

∫
γ
ϕ(−2∂4

sϕ+ Y ) ds+
1

4

∫
γ
ϕ2κV λds.

With the aid of the boundary conditions in (103), we obtain∫
γ
ϕ∂4

sϕds = −
∫
γ
∂sϕ∂

3
sϕds =

∫
γ
(∂2

sϕ)
2 ds.

Then we observe (104). �

By virtue of Lemma 6.3, we observe that ∂m
t V λ = 0 and ∂2

s∂
m
t V λ = 0 hold on ∂I for any

m ∈ N ∪ {0}. The fact implies that we can apply Lemma 6.5 to ϕ = ∂m
t V λ. To do so, first we

introduce the following notation for a convenience.

Definition 6.1. ([3]) We use the symbol qr(∂l
sκ) for a polynomial with constant coefficients such

that each of its monomials is of the form

N∏
i=1

∂ji
s κ with 0 ≤ ji ≤ l and N ≥ 1

with

r =

N∑
i=1

(ji + 1).

Making use of the notation, we obtain the following:
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Lemma 6.6. Suppose that γ : I × [0,∞) → R2 satisfies (64). Let ϕ be a scalar function defined
on γ. Then the following formulae hold for any m, l ∈ N:

∂m
s V λ = q3+m(∂2+m

s κ)− λ2∂m
s κ, (105)

∂t∂
m
s ϕ = ∂m

s ∂tϕ+

m−1∑
i=0

(q4+i(∂2+i
s κ) + q2+i(∂i

sκ))∂
m−i
s ϕ, (106)

∂t∂
m
s κ = −2∂m+4

s κ+ qm+5(∂m+2
s κ) + qm+3(∂m+2

s κ), (107)

∂tq
l(∂m

s κ) = ql+4(∂m+4
s κ) + ql+2(∂m+2

s κ). (108)

Proof. Since V λ = q3(∂2
sκ) − λ2κ, the assertion (105) is followed from a simple calculation.

Regarding (106), we proceed by induction on m. For m = 1, we have

∂t∂sϕ = ∂s∂tϕ− κV λ∂sϕ = ∂s∂tϕ− (q4(∂2
sκ) + q2(κ))∂sϕ.

Assuming that (106) is true for some m ≥ 1, we obtain

∂t∂
m+1
s ϕ = ∂s∂t∂

m
s ϕ+ (q4(∂2

sκ) + q2(κ))∂m+1
s ϕ

= ∂s

{
∂m
s ∂tϕ+

m−1∑
i=0

(q4+i(∂2+i
s κ) + q2+i(∂i

sκ))∂
m−i
s ϕ

}
+ (q4(∂2

sκ) + q2(κ))∂m+1
s ϕ

= ∂m+1
s ∂tϕ+

m∑
i=0

(q4+i(∂2+i
s κ) + q2+i(∂i

sκ))∂
m+1−i
s ϕ.

(107) is followed from (6.2) and (106) directly. Finally we obtain (108) for m, l ∈ N fixed
arbitrarily as follows:

∂tq
l(∂m

s κ) =

m∑
j=0

ql−j−1(∂m
s κ) · ∂t∂j

sκ

=
m∑
j=0

ql−j−1(∂m
s κ) · {−2∂j+4

s κ+ qj+5(∂j+2
s κ) + qj+3(∂j+2

s κ)}

=
m∑
j=0

ql+4(∂max {m,j+4}
s κ) +

m∑
j=0

ql+2(∂max {m,j+2}
s κ)

=

4∑
j=0

ql+4(∂m+j
s κ) +

2∑
j=0

ql+2(∂m+j
s κ)

= ql+4(∂m+4
s κ) + ql+2(∂m+2

s κ).

�

With the aid of Lemma 6.6, we obtain a representation of ∂m
t V λ.
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Lemma 6.7. For each m ∈ N, it holds that

∂m
t V λ = (−1)m2m+1∂4m+2

s κ+ q4m+3(∂4m
s κ) (109)

+

m∑
j=1

q4m+3−2j(∂4m+2−2j
s κ).

Proof. We proceed by induction on m. For m = 1, we have

∂tV
λ = ∂t(2∂

2
sκ+ κ3 − λ2κ)

= 2(−2∂6
sκ+ q7(∂4

sκ) + q5(∂4
sκ)) + 3κ2∂tκ− λ2∂tκ

= −22∂6
sκ+ q7(∂4

sκ) + q5(∂4
sκ).

Suppose that (109) holds for m = k. Then we have

∂k+1
t V λ = ∂t{(−1)k2k+1∂4k+2

s κ+ q4k+3(∂4k
s κ) (110)

+
k∑

j=1

q4k+3−2j(∂4k+2−2j
s κ)}

= (−1)k2k+1{−2∂4k+6
s κ+ q4k+7(∂4k+6

s κ) + q4k+5(∂4k+6
s κ)}

+ ∂t{q4k+3(∂4k
s κ) +

k∑
j=1

q4k+3−2j(∂4k+2−2j
s κ)}.

By virtue of (108), the last term in (110) is reduced to

∂t{q4k+3(∂4k
s κ) +

k∑
j=1

q4k+3−2j(∂4k+2−2j
s κ)}

= q4k+7(∂4k+4
s κ) + q4k+5(∂4k+2

s κ)

+

k∑
j=1

{q4k+7−2j(∂4k+6−2j
s κ) + q4k+5−2j(∂4k+4−2j

s κ)}

= q4(k+1)+3(∂4(k+1)
s κ) +

k+1∑
j=1

q4(k+1)+3−2j(∂4(k+1)+2−2j
s κ).

This implies that (109) holds for any m ∈ N. �

We are in the position to prove the main result of this section.

Theorem 6.1. Let λ ∈ R be non-zero constant. Let γ0 : I → R2 be a smooth open curve
satisfying

γ0(0) = (0, 0), γ0(1) = (R, 0), κ0(0) = κ0(1) = α,

where α ∈ R is a given constant with |α| < |λ|. Then there exists a unique family of smooth
open planar curves γ(x, t) satisfying (64) for any finite time t > 0.
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Proof. Suppose not, there exists a time t1 > 0 such that the smooth solution γ(x, t) of (64)
remains up to t = t1. Setting ϕ = ∂m

t V λ, Lemma 6.5 implies that

d

dt

1

4

∫
γ
(∂m

t V λ)2 ds+

∫
γ
(∂2

s∂
m
t V λ)2 ds (111)

=
1

2

∫
γ
∂m
t V λY ds+

1

4

∫
γ
(∂m

t V λ)2κV λ ds.

Regarding the integral of (∂2
s∂

m
t V λ)2, we have

(∂2
s∂

m
t V λ)2 ≥ (22(m+1) − ε)(∂4m+4

s κ)2

+ {q4m+5(∂4m+2
s κ) +

m∑
j=1

q4m+5−2j(∂4m+4−2j
s κ)}2

= cm(∂4m+4
s κ)2 +

m∑
j=0

q8m+10−2j(∂4m+2
s κ)

+

m∑
j,l=1

q8m+10−2(j+l)(∂4m+4−2min {j,l}
s κ).

Regarding the integral of ∂m
t V λY , setting

∂m
t V λY = ∂m

t V λq4m+7(∂4m+4
s κ) + ∂m

t V λq4m+5(∂4m+4
s κ)

+ ∂m
t V λ

m+1∑
j=2

q4m+7−2j(∂4m+6−2j
s κ) := I1 + I2 + I3,

and integrating by part once the highest order term, we find∫
γ
I1 ds = −

∫
γ
∂s∂

m
t V λ{q4m+7(∂4m+3

s κ) + q4m+6(∂4m+3
s κ)} ds

= −
m∑
j=0

∫
γ
{q8m+11−2j(∂4m+3

s κ) + q8m+10−2j(∂4m+3
s κ)} ds,

and ∫
γ
I2 ds = −

∫
γ
∂s∂

m
t V λ{q4m+5(∂4m+3

s κ) + q4m+4(∂4m+3
s κ)} ds

= −
m∑
j=0

∫
γ
{q8m+9−2j(∂4m+3

s κ) + q8m+8−2j(∂4m+3
s κ)} ds.
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Hence we see that∫
γ
∂m
t V λY ds =

∫
γ

m+1∑
j=0

{q8m+11−2j(∂4m+3
s κ) + q8m+10−2j(∂4m+3

s κ)

+ q8m+8−2j(∂4m+2
s κ) + q8m+6−2j(∂4m

s κ)}

+

m∑
l=1,j=1

q8m+8−2(j+l)(∂4m+2−2min {j,l}
s κ) ds.

Since it holds that∫
γ
(∂m

t V λ)2κV λ ds =

∫
γ

m+1∑
j=0

{q8m+10−2j(∂4m+2
s κ) + q8m+10−2j(∂4m

s κ)}

+
m∑

l=1,j=1

q8m+10−2(j+l)(∂4m+2−2min {j,l}
s κ) ds,

the equality (111) is reduced to

d

dt

1

4

∫
γ
(∂m

t V λ)2 ds+ cm(ε)

∫
γ
(∂4m+4

s κ)2 ds (112)

=

∫
γ

[ m+1∑
j=0

{
q8m+11−2j(∂4m+3

s κ) + q8m+10−2j(∂4m+3
s κ)

+ q8m+10−2j(∂4m+2
s κ) + q8m+10−2j(∂4m

s κ)
}

+

m∑
l=1,j=1

q8m+10−2(j+l)(∂4m+2−2min {j,l}
s κ)

]
ds.

We estimate the integral of q8m+11(∂4m+3
s κ) which is the highest order term in the right-hand

side of (112). By Definition 6.1, this term can be written as

q8m+11(∂4m+3
s κ) =

∑
j

Nj∏
i=1

∂
cji
s κ

with all the cji less that or equal to 4m+ 3, and

Nj∑
i=1

(cji + 1) = 8m+ 11

for every j. Hence we have

∣∣q8m+11(∂4m+3
s κ)

∣∣ ≤∑
j

Nj∏
i=1

∣∣∣∂cji
s κ

∣∣∣ .
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Putting

Qj =

Nj∏
i=1

∣∣∣∂cji
s κ

∣∣∣ ,
it holds that ∫

γ

∣∣q8m+11(∂4m+3
s κ)

∣∣ ds ≤∑
j

∫
γ
Qj ds.

After collecting the derivatives of the same order in Qj , we can write

Qj =

4m+3∏
l=0

∣∣∣∂l
sκ
∣∣∣αjl

with

4m+3∑
l=0

αjl(l + 1) = 8m+ 11.

Using Hölder’s inequality we get∫
γ
Qj ds ≤

4m+3∏
l=0

(∫
γ

∣∣∣∂l
sκ
∣∣∣αjl

λl
)1/λl

=

4m+3∏
l=0

∥∥∥∂l
sκ
∥∥∥αjl

αjl
λl

,

where the value λl are chosen as follows: λl = 0 if αjl = 0 (in this case the corresponding term
is not present in the product) and λl = (8m+11)/αjl(l+1) if αjl ̸= 0. Clearly αjlλl =

8m+11
l+1 ≥

8m+11
4m+4 > 2 and

4m+3∑
l=0,λl ̸=0

1

λl
=

4m+3∑
l=0,λl ̸=0

αjl(l + 1)

8m+ 11
= 1.

Let kl = αjlλl − 2. The fact αjlλl > 2 implies that kl > 0. Then we obtain∥∥∥∂l
sκ
∥∥∥
αjl

λl

≤ c ∥κ∥1−σjl
2 ∥κ∥σjl

4m+4,2 ,

where σjl = (l + 1
2 − 1

αjl
λl
)/(4m+ 4) and c = c(j, l,m). Since

∥κ∥24m+4,2 ≤ C(m)
(∥∥∂4m+4

s κ
∥∥2
2
+ ∥κ∥22

)
,

we observe that ∥∥∥∂l
sκ
∥∥∥
αjl

λl

≤ C ∥κ∥1−σjl
2

(∥∥∂4m+4
s κ

∥∥2
2
+ ∥κ∥22

)σjl
.

Multiplying together all the estimates, we obtain∫
γ
Qj ds ≤ C

4m+3∏
l=0

∥κ∥(1−σjl
)αjl

2

(∥∥∂4m+4
s κ

∥∥
2
+ ∥κ∥2

)σjl
αjl (113)

= C ∥κ∥
∑4m+3

l=0 (1−σjl
)αjl

2

(∥∥∂4m+4
s κ

∥∥
2
+ ∥κ∥2

)∑4m+3
l=0 σjl

αjl .

Then the exponent in the last term of (113) is written as

4m+3∑
l=0

σjlαjl =
4m+3∑
l=0

αjl(l +
1
2 − 1

αjl
λl
)

4m+ 4
=

∑4m+3
l=0 αjl(l +

1
2)− 1

4m+ 4
,
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and hence by using the rescaling condition we have

4m+3∑
l=0

σjlαjl =

∑4m+3
l=0 αjl(l + 1)− 1

2

∑4m+3
l=0 αjl − 1

4m+ 4

=
8m+ 11− 1

2

∑4m+3
l=0 αjl − 1

4m+ 4
=

16m+ 20−
∑4m+3

l=0 αjl

2(4m+ 4)
.

Noting that

4m+3∑
l=0

αjl ≥
4m+3∑
l=0

αjl

l + 1

4m+ 4
=

8m+ 11

4m+ 4
,

we see that

4m+3∑
l=0

σjlαjl ≤
16m+ 20− 8m+10

4m+4

2(4m+ 4)
= 2− 1

(4m+ 4)2
< 2.

Hence we can apply the Young inequality to the product in the last term of (113), in order to
get the exponent 2 on the first quantity, that is,∫

γ
Qj ds ≤

δj
2

(∥∥∂4m+4
s κ

∥∥
2
+ ∥κ∥2

)2
+ Cj ∥κ∥β2

≤ δj
∥∥∂4m+4

s κ
∥∥2
2
+ ∥κ∥22 ++Cj ∥κ∥

βj

2

for arbitrarily small δj > 0 and some constant Cj > 0 and exponent βj > 0. Hence we get

d

dt

1

4

∫
γ
(∂m

t V λ)2 ds+
1

2

∫
γ
(∂2

s∂
m
t V λ)2 ds+

cm(ε)

2

∫
γ
(∂4m+4

s κ)2 ds

≤
m+1∑
j=0

δj
∥∥∂4m+4

s κ
∥∥2
2
+ C

m+1∑
j=0

∥κ∥βj

2 .

Letting δj > 0 be sufficiently small, we obtain

d

dt

1

4

∫
γ
(∂m

t V λ)2 ds ≤ C

m+1∑
j=0

∥κ∥βj

2 . (114)

Since Lemma 4.4 gives us

∥κ∥22 ≤ C(α, λ)Eλ,α(γ0),

(114) implies that ∥∥∥∂m
t V λ(t)

∥∥∥2
L2

≤ C1t+
∥∥∥∂m

t V λ(0)
∥∥∥2
L2

(115)

for any time t ∈ [0, t1). Using (109) and the interpolation inequality, we reduce (115) to∥∥∂4m+2
s κ

∥∥2
L2 ≤ C1t+

∥∥∥∂m
t V λ

∥∥∥2
L2

(0) + C2, (116)
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where C2 depends on Eλ,α(γ0). Combining (63) and (116) with the interpolation inequality, we
observe that there exists a positive constant depending only on Eλ,α(γ0) such that∥∥∥∂l

sκ
∥∥∥
L2

≤ C1t+
∥∥∥∂m

t V λ
∥∥∥2
L2

(0) + C3 (117)

for any 0 ≤ l < 4m+ 2. For each l ∈ N, it is easy to obtain that∥∥∥∂l−1
s κ

∥∥∥
L∞

≤ C
∥∥∥∂l

sκ
∥∥∥
L1

+ L(γ)−1
∥∥∥∂l−1

s κ
∥∥∥
L1

. (118)

Applying Hölder’s inequality to (118), we obtain∥∥∥∂l−1
s κ

∥∥∥
L∞

≤ L(γ)1/2
∥∥∥∂l

sκ
∥∥∥
L2

+ L(γ)−1/2
∥∥∥∂l−1

s κ
∥∥∥
L2

. (119)

Then it follows from (117) and (119) that there exists a constant C = C(γ0, t1, α, λ) such that∥∥∥∂l−1
s κ(t)

∥∥∥
L∞

≤ C (120)

for each l ∈ N and any t ∈ [0, t1). This contradicts that the solution of (64) remains smooth to
t = t1. We thus complete the proof. �
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