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Abstract. We study a variational problem modeling the behavior at equilibrium of
charged liquid drops under convexity constraint. After proving well-posedness of the
model, we show C1,1-regularity of minimizers for the Coulombic interaction in dimension
two. As a by-product we obtain that balls are the unique minimizers for small charge.
Eventually, we study the asymptotic behavior of minimizers, as the charge goes to infinity.

1. Introduction

In this paper we are interested in the existence and regularity of minimizers of the
following problem:

min
{
FQ,α(E) : E ⊂ RN convex body, |E| = V

}
. (1.1)

where, for E ⊂ RN , V,Q > 0 and α ∈ [0, N), we have set

FQ,α(E) := P (E) +Q2Iα(E). (1.2)

Here P (E) := HN−1(∂E) stands for the perimeter of E and, letting P(E) be the set of
probability measures supported on the closure of E, we set for α ∈ (0, N),

Iα(E) := inf
µ∈P(E)

∫
E×E

dµ(x) dµ(y)

|x− y|α
, (1.3)

and for α = 0,

I0(E) := inf
µ∈P(E)

∫
E×E

log

(
1

|x− y|

)
dµ(x) dµ(y). (1.4)

Notice that, up to rescaling, we can assume, as we shall do for the rest of the paper, that
V = 1.

Starting from the seminal work of Lord Rayleigh [25] (in the Coulombic case N = 3,
α = 1), the functional (1.2) has been extensively studied in the physical literature to model
the shape of charged liquid drops (see [11] and the references therein). In particular, it is
known that the ball is a linearly stable critical point for (1.1) if the charge Q is not too
large (see for instance [7]). However, quite surprisingly, the authors showed in [11] that,
without the convexity constraint, (1.2) never admits minimizers under volume constraint
for any Q > 0 and α < N−1. In particular, this implies that in this model a charged drop
is always nonlinearly unstable. This result is in sharp contrast with experiments (see for
instance [29, 27]), where there is evidence of stability of the ball for small charges. This
suggests that the energy FQ,α(E) does not include all the physically relevant contributions.

As shown in [11], a possible way to gain well-posedness of the problem is requiring
some extra regularity of the admissible sets. In this paper, we consider an alternative type
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of constraint, namely the convexity of admissible sets. This assumption seems reasonable
as long as the minimizers remain strictly convex, that is for small enough charges. Let
us point out that in [23], still another regularizing mechanism is proposed. There, well-
posedness is obtained by adding an entropic term which prevents charges to concentrate
too much on the boundary of E.

Using the good compactness properties of convex sets, our first result is the existence
of minimizers for every charge Q > 0.

Theorem 1.1. For every α ∈ [0, N) and every Q, (1.1) admits a minimizer.

We then study the regularity of minimizers. As often in variational problems with
convexity constraints, regularity (or singularity) of minimizers is hard to deal with in
dimension larger than two (see [18, 19]). We thus restrict ourselves to N = 2. Since our
analysis strongly uses the regularity of equilibrium measures (i.e. the minimizer of (1.3)),
we are further reduced to study the case α = N − 2 (that is α = 0 in this case). The
second main result of the paper is then

Theorem 1.2. Let N = 2 and α = 0, then for every Q > 0, the minimizers of (1.1) are
of class C1,1.

Since we are able to prove uniform C1,1 estimates as Q goes to zero, building upon
our previous stability results established in [11], we get

Corollary 1.3. If N = 2 and α = 0, for Q small enough, the only minimizers of (1.1)
are balls.

The proof of Theorem 1.2 is based on the natural idea of comparing the minimizers
with a competitor made by “cutting out the angles”. However, the non-local nature of
the problem makes the estimates non-trivial. As already mentioned, a crucial point is an
estimate on the integrability of the equilibrium measures. This is obtained by drawing a
connection with harmonic measures (see Section 3). Let us point out1 that, up to proving
the regularity of the shape functional I0 and computing its shape derivative, one could
have obtained a proof of Theorem 1.2 by applying the abstract regularity result of [18].
Nevertheless, since our proof has a nice geometrical flavor and since regularity of I0 is not
known in dimension two (in higher dimension, one can exploit the connection with the
capacity to prove it [13, 4]), we decided to keep it as it is.
We remark that, differently from the two-dimensional case, when N = 3 we expect the
onset of singularities at a critical value Qc > 0, with the shape of a spherical cone with
a prescribed angle. Such singularities are also observed in experiments and are usually
called Taylor cones (see [27, 29]). At the moment we are not able to show the presence of
such singularities in our model, and this will be the subject of future research.

Eventually, in Section 6, we study the behavior of the optimal sets when the charge
goes to infinity. Even though this regime is less significant from the point of view
of the applications, we believe that it is still mathematically interesting. Building on
Γ−convergence results, we prove

1this was suggested to us by J. Lamboley
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Theorem 1.4. Let α ∈ [0, 1) and N ≥ 2. Then, every minimizers EQ of (1.1) satisfies
(up to a rigid motion)

Q
− 2N(N−1)

1+(N−1)αEQ → [0, LN,α]× {0}N−1,

where the convergence is in the Hausdorff topology and where

LN,α :=

(
α(N − 1)Iα([0, 1])

N (N−2)/(N−1)ω
1/(N−1)
N−1

) (N−1)
1+α(N−1)

for α ∈ (0, 1) and LN,0 :=
(N − 1)N−1

ωN−1NN−2
,

ωN being the volume of the unit ball in RN . For α = 1 and N = 2, 3, we have

Q−
2(N−1)
N (logQ)−1+1/NEQ → [0, LN,1]× {0}N−1,

where

LN,1 :=

(
4(N − 1)

N (N−2)/(N−1)ω
1/(N−1)
N−1

)(N−1)/N

.
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and Antoine Lemenant for useful discussions on the subject of this paper. They also
thank Cyrill Muratov for suggesting the proof of (6.4). M. Novaga and B. Ruffini were
partially supported by the Italian CNR-GNAMPA and by the University of Pisa via grant
PRA-2015-0017.

2. Existence of minimizers

In this section we show that the minimum in (1.1) is achieved. We begin with a simple
lemma linking estimates on the energy with estimates on the size of the convex body.

Lemma 2.1. Let N ≥ 2, and λ1, .., λN > 0. Letting E :=
∏N
i=1[0, λi], V := |E| and

Φ := V −
N−2
N−1P (E), it holds2

max
i
λi . ΦN−1 and min

i
λi ∼ V

1
N−1 Φ−1, (2.1)

where the involved constants depend only on the dimension. Moreover, letting imax be such
that λimax = maxi λi, it holds for α > 0,

λimax & Iα(E)−1/α and λi . Iα(E)1/αΦN−2V
1

N−1 for i 6= imax, (2.2)

and for α = 0,

λimax & exp (−I0(E)) and λi . exp (I0(E)) ΦN−2V
1

N−1 for i 6= imax, (2.3)

where the constants implicitly appearing in (2.2) and (2.3) depend only on N and α.

2here and in the rest of the paper, we write f . g if there exists C > 0 such that f ≤ Cg. If f . g and
g . f , we will simply write f ∼ g
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Proof. Without loss of generality, we can assume that λ1 ≥ λ2 ≥ · · · ≥ λN . Then, since
V =

∏N
i=1 λi and P (E) .

∏N−1
i=1 λi, taking the ratio of these two quantities, we obtain

λN & V P (E)−1 = V
1

N−1 Φ−1. Now, since the λi are decreasing (in particular λi ≥ λN for
all i), this implies

Φ & V −
N−2
N−1

N−1∏
i=1

λi = V −
N−2
N−1λ1

N−1∏
i=2

λi & V
−N−2
N−1λ1V

N−2
N−1 Φ−(N−2),

yielding (2.1).
Assume now that α > 0. Then, from diam(E) ∼ λ1, we get Iα(E) & λ−α1 . If N = 2,
together with λ1λ2 = V , this implies (2.2). If N ≥ 3, we infer as above that

Φ & V −
N−2
N−1λ1λ2

N−1∏
i=3

λi & V
−N−2
N−1Iα(E)−

1
αλ2V

N−3
N−1 Φ−(N−3) & V −

1
N−1 Φ−(N−3)Iα(E)−

1
αλ2.

This gives (2.2). The case α = 0 follows analogously, using the fact that I0(E) ≥ C −
log λ1. �

The next result follows directly from John’s lemma [15].

Lemma 2.2. There exists a dimensional constant CN > 0 such that for every convex body
E ⊂ RN , up to a rotation and a translation, there exists R :=

∏N
i=1[0, λi], such that

R ⊆ E ⊆ CNR.
As a consequence diam(E) ∼ diam(R), |E| ∼ |R|, P (E) ∼ P (R) and Iα(E) ∼ Iα(R) for
α > 0 (and exp(−I0(E)) ∼ exp(−I0(R))).

With these two preliminary results at hand, we can prove existence of minimizers for
(1.1).

Theorem 2.3. For every Q > 0 and α ∈ [0, N), (1.1) has a minimizer.

Proof. Let En be a minimizing sequence and let us prove that diam(En) is uniformly
bounded. LetRn be the parallelepipeds given by Lemma 2.2. Since diam(En) ∼ diam(Rn),
it is enough estimating diam(Rn) from above. Let us begin with the case α > 0. In this
case, since Iα(Rn) ≥ 0, by (2.1), applied with V = 1, we get

diam(Rn) . P (Rn)N−1 . FQ,α(En)N−1.

In the case α = 0, from (2.1) and (2.3) applied to V = 1, we get

P (Rn) & exp

(
−I0(Rn)

N − 1

)
so that

FQ,0(Rn) & exp

(
−I0(Rn)

N − 1

)
+ I0(Rn),

from which we obtain that |I0(Rn)| is bounded and thus also P (Rn) is bounded, whence,
arguing as above, we obtain a uniform bound on diam(Rn).
Since the En’s are convex sets, up to a translation, we can extract a subsequence which
converges in the Hausdorff (and L1) topology to some convex body E of volume one. Since
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the perimeter functional is lower semicontinuous with respect to the L1 convergence, and
the Riesz potential Iα is lower semicontinuous with respect to the Hausdorff convergence
(see [20, 26] and [11, Prop. 2.2]), we get that E is a minimizer of (1.1). �

3. Regularity of the planar charge distribution for the logarithmic
potential

In this section we focus on the case N = 2 and α = 0. Relying on classical results
on harmonic measures, we show that for every convex set E, the corresponding optimal
measure µ for I0(E) is absolutely continuous with respect to H1 ∂E with Lp estimates.
Upon making that connection between µ and harmonic measures, this fact is fairly clas-
sical. However, since we could not find a proper reference, we recall (and slightly adapt)
few useful results. Let us point out that most definitions and results of this section extend
to the case N ≥ 3 and α = N − 2, and to more general classes of sets. In particular, for
bounded Lipschitz sets, the fact that harmonic measures are absolutely continuous with
respect to the surface measure with Lp densities for p > 2 was established in [5], and
extended later to more general domains (see for instance [17, 16, 14]). The interest for
harmonic measures stems from the fact that they bear a lot of geometric information (see
in particular [1, 17]). The main result of this section is the following.

Theorem 3.1. Let En be a sequence of compact convex bodies converging to a convex body
E and let µn be the associated equilibrium measures. Then, µn = fnH1 ∂En and there
exists p > 2 and M > 0 (depending only on E) such that fn ∈ Lp(∂En) with

‖fn‖Lp(∂En) ≤M.

Moreover, if E is smooth, then p can be taken arbitrarily large.

Remark 3.2. By applying the previous result with En = E, we get that that the equi-
librium measure of a convex set is always in some Lp(∂E) with p > 2. We stress also that
the exponent p and the bound on the Lp norm of its equilibrium measure depend indeed
on the set: for instance, a sequence of convex sets with smooth boundaries converging to
a square cannot have equilibrium measures with densities uniformly bounded in Lp for
p > 4.

We will denote here Ω := Ec. Let us recall the definition of harmonic measures (see
[9, 17]).

Definition 3.3. Let Ω be a Lipschitz open set (bounded or unbounded) such that R2\∂Ω
has two connected components, and let X ∈ Ω, we denote by GXΩ the Green function of Ω
with pole at X i.e. the unique distributional solution of

−∆GXΩ = δX in Ω and GXΩ = 0 on ∂Ω,

and by ωXΩ the harmonic measure of Ω with pole at X, that is the unique (positive) measure
such that for every f ∈ C0(∂Ω), the solution u of

−∆u = 0 in Ω and u = f on ∂Ω,

satisfies

u(X) =

∫
∂Ω
f(y)dωXΩ (y).
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If Ω is unbounded with ∂Ω bounded and 0 ∈ Ω
c
, we call ω∞Ω the harmonic measure of Ω

with pole at infinity, that is the unique probability measure on ∂Ω satisfying∫
∂Ω
φdω∞ =

∫
Ω
u∆φ ∀φ ∈ C∞c (R2)

where u is the solution of
−∆u = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω

lim|z|→+∞
{
u(z)− 1

2π log |z|
}

exists and is finite.

(3.1)

When it is clear from the context, we omit the dependence of GX , ωX or ω∞ on the domain
Ω.

Remark 3.4. For smooth domains, it is not hard to check that ωX = ∂νG
XH1 ∂Ω,

and that ω∞ = ∂νuH1 ∂Ω where ν is the inward unit normal to Ω. Moreover, for Ω
unbounded, if h∞ is the harmonic function in Ω with h∞(z) = − 1

2π log |z| on ∂Ω, then the

function u from (3.1) can also be defined by u(z) = 1
2π log |z|+ h∞(z).

We can now make the connection between harmonic measures and equilibrium mea-
sures. For E a Lipschitz bounded open set containing 0, let µ be the optimal measure for
I0(E) and let

v(x) :=

∫
∂E
− log(|x− y|)dµ(y).

Since

−∆v = 2πµ in R2, v < I0(E) in Ec and v = I0(E) on ∂E,

if we let u := (2π)−1(I0(E) − v), we see that it satisfies (3.1) for Ω = Ec. Therefore,
µ = ω∞Ec (recall that µ(∂E) = 1). For Lipschitz sets Ω, it is well-known that ω∞ is
absolutely continuous with respect to H1 ∂Ω with density in Lp(∂Ω) for some p > 1 (see
[9, Th. 4.2]). However, we will need a stronger result, namely that it is in Lp(∂Ω) for
some p > 2, with estimates on the Lp norm depending only on the geometry of Ω.

Given a convex body E and a point x ∈ ∂E, we call angle of ∂E at x the angle
spanned by the tangent cone ∪λ>0λ(E − x).

We now state a crucial lemma which relates in a quantitative way the regularity of E
with the integrability properties of the corresponding harmonic measure. This result is a
slight adaptation of [28, Thm. 2].

Lemma 3.5. Let E be a convex body containing the origin in its interior, let ζ ∈ (0, π]
be the minimal angle of ∂E, and let pc := π

π−ζ + 1 if ζ < π and pc := +∞ if ζ = π. Let

also En be a sequence of convex bodies converging to E in the Hausdorff topology. Then,
for every 1 ≤ p < pc, there exists C(p, ∂E) such that for n large enough (depending on p),
every conformal map ψn : Ecn → B1 with ψn(∞) = 0 satisfies∫

∂En

|ψ′n|p ≤ C(p, ∂E), (3.2)
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where we indicate by |ψ′n| the absolute value of the derivative of ψn (seen as a complex
function). In particular, for n large enough, ψ′n ∈ Lp(∂En) for some p > 2.

Proof. The scheme of the proof follows that of [28, Thm. 2, Eq. (9)], thus we limit
ourselves to point out the main differences. We begin by noticing that although [28, Thm.
2] is written for bounded sets, up to composing with the map z → z−1 this does not create
any difficulty.

We first introduce some notation from [28]. Given a convex body E we let ∂E =
{γ(s) : s ∈ [0, L]} be an arclength parametrization of ∂E. Notice that, for every s, the
left and right derivatives γ′±(s) exist and the angle v(s) between γ′(s) and a fixed direction,
say e1, is a function of bounded variation. Up to changing the orientation of ∂E, we can
assume that v is increasing. We then let

η̄ := max
s

[v(s+)− v(s−)] ≥ 0.

Notice that ζ = π − η is the minimal angle of ∂E.
Letting ϕn := ψ−1

n , we want to prove that there exists C(p, ∂E) such that∫
∂B1

|ϕ′n|−p ≤ C(p, ∂E),

for n large enough and for p < π/η By a change of variables, this yields (3.2). Let
p < p′ < π/η, and let as in [28],

h :=
1

2π
(pη + π) and h′ :=

1

2π
(p′η + π),

so that

πh

p
>
πh′

p′
> η.

Let now vn (resp. v)be the angle functions corresponding to the sets En (resp. E). As in
[28], there exists δ > 0 such that for s− s′ ≤ δ,

v(s)− v(s′) ≤ πh′

p′
.

By the convexity of En and by the convergence of En to E, for n large enough and for
s− s′ ≤ δ we get that

vn(s)− vn(s′) ≤ πh

p
.

Let Ln := H1(∂En) and let us extend vn to R by letting for s ≥ 0, vn(s) := vn(Lnbs/Lnc)+
vn(s− Lnbs/Lnc), and similarly for s ≤ 0, so that vn is an increasing function with (vn)′

periodic of period Ln. Let now kn := dLn/δe ∈ N and δn := L/kn. By the convergence
of En to E, kn and δn are uniformly bounded from above and below. For t ∈ [0, δn], and



8 MICHAEL GOLDMAN, MATTEO NOVAGA, AND BERARDO RUFFINI

0 ≤ j ≤ kn, let stj := t+ jδn. Since∫ δn

0

kn−1∑
j=0

∫ stj+1

stj

vn(s)− vn(stj)

s− stj
dsdt =

kn−1∑
j=0

∫ δn

0

∫ δn

0

vn(s+ t+ jδn)− vn(t+ jδn)

s
dtds

=

∫ δn

0

1

s

kn−1∑
j=0

∫ δn

0
vn(s+ t+ jδn)− vn(t+ jδn)dtds

=

∫ δn

0

1

s

(∫ Ln+s

Ln

vn(t)dt−
∫ s

0
vn(t)dt

)
ds

≤ 2δn sup
[0,2Ln]

|vn| . δn‖v‖∞,

we can find t ∈ (0, δn) such that

kn−1∑
j=0

∫ stj+1

stj

vn(s)− vn(stj)

s− stj
ds . ‖v‖∞.

For notational simplicity, let us simply denote sj := stj . Arguing as above, we can further
assume that

kn−1∑
j=0

∫ sj+1

sj

vn(sj+1)− vn(s)

sj+1 − s
ds . ‖v‖∞.

The proof then follows almost exactly as in [28, Thm. 2], by replacing the pointwise
quantity

Gnj := sup
sj<s<sj+1

vn(s)− vn(sj)

s− sj
,

by the integral ones. There is just one additional change in the proof: letting 0 ≤
λnj := vn(sj+1) − vn(sj) ≤ πh

p , we see that in the estimates of [28, Thm. 2], the quan-

tity maxλnj 6=0 1/λnj appears and could be unbounded in n. Let γn(s) be the arclength

parametrization of ∂En and let θn(s) be such that γn(s) = ϕn(eiθn(s)). For 0 < r < 1 and
j ∈ [0, kn − 1], if λnj 6= 0, we have

1

λnj

∫ sj+1

sj

dvn(s)

∫ θn(sj+1)

θn(sj)

dt

|eiθn(s) − reit|h
.

1

1− h
.

Using this estimate, the proof can be concluded exactly as in [28, Thm. 2]. �

We can now prove Theorem 3.1.

Proof of Theorem 3.1. Without loss of generality we can assume that the sets En and E
contain the origin in their interior. As observed above, we then have µn = ω∞Ecn . Let ψn
be a conformal mapping from Ecn to B1 with ψn(∞) = 0. We have

µn = ω∞Ecn = (ψ−1
n )] ω

0
B1

= (ψ−1
n )]

H1 ∂B1

2π
=
|ψ′n|
2π
H1 ∂En.

Then, Lemma 3.5 gives the desired estimate. �
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We will also need a similar estimate for C1,β sets.

Lemma 3.6. Let E be a convex set with boundary of class C1,β. Then, the optimal charge
distribution µ is of class C0,β and in particular it is in L∞(∂E). Moreover, ‖µ‖C0,β depends
only on the C1,β norm of ∂E.

Proof. Up to translation we can assume that 0 ∈ E with dist(0, ∂E) ≥ c (with c depending
only on the C1,β character of ∂E). By [24, Thm. 3.6], there exists a conformal mapping
ψ of class C1,β which maps Ec into B1 with ψ(∞) = 0 and ‖ψ‖C1,β(Ec) controlled by the

C1,β character of ∂E. Since, as before, µ = (ψ−1)]ω
0
B1

, and the claim follows by Lemma
3.5. �

4. C1,1-regularity of minimizers for N = 2 and α = 0

In this section we show that any minimizer of (1.1) has boundary of class C1,1. We
begin by showing that we can drop the volume constraint, by adding a volume penalization
to the functional. This penalization is commonly used in isoperimetric type problems (see
for instance [6, 10] and references therein). Let Λ be a positive number and define the
functional

GΛ(E) := P (E) +Q2I0(E) + Λ ||E| − 1| .

Lemma 4.1. For every Q0 > 0, there exists Λ > 0 such that, if Λ > Λ and Q ≤ Q0, the
minimizers of

min
E⊆R2, E convex

GΛ(E) (4.1)

are also minimizers of (1.1) and vice-versa.

Proof. By repeating the proof of Theorem 2.3 it is easy to show that for any Λ > 0, GΛ

admits a minimizer. Notice that the minimum in (4.1) is always less or equal than the
minimum in (1.1). We are thus left to prove the opposite inequality. Let Λ > 0 be given
and let E be a minimizer of GΛ. Assume that E is not a minimizer for FQ,0. In this case
we get that

σ := ||E| − 1| > 0.

Let B be a ball with |B| = 1. Then

diam(E)−Q2 log(diam(E)) ≤ GΛ(E) ≤ GΛ(B) = FQ,0(B) . 1,

where the constant involved depends only on Q0. Therefore diam(E) is bounded by a
constant depending only on Q0. From this, we deduce that Λσ is itself also bounded
by a constant (again depending only on Q0). From now on we assume that |E| < 1, or
equivalently, |E| = 1− σ, since the other case is analogous. Let us define

F :=
1

(1− σ)
1
2

E,

so that |F | = 1. Then, by the minimality of E, the homogeneity of the perimeter and
recalling that

I0(λE) = I0(E)− log(λ),
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a Taylor expansion gives

Λσ = GΛ(E)−FQ,0(E)

≤ GΛ(F )−FQ,0(E)

= P (E) (1− σ)−
1
2 +Q2I0(E) +

1

2
log(1− σ)−FQ,0(E)

≤ P (E)((1− σ)−
1
2 − 1)

≤ P (E)

2
σ,

so that Λ ≤ P (E)
2 . 1. Therefore, if Λ is large enough, we must have σ = 0 or equivalently

that E is also a minimizer of FQ,0.
�

Let now E be a minimizer of (4.1). In order to prove the regularity of E, we shall
construct a competitor in the following way: since E is a convex body, there exists ε0

such that for ε ≤ ε0, and every x0 ∈ ∂E, we have ∂E ∩ ∂Bε(x0) = {xε1, xε2} (in particular
|x0 − xεi | = ε). Let us fix x0. For ε ≤ ε0, let xε1, xε2 be given as above and let Lε be the
line joining xε1 to xε2. Denote by H+

ε the half space with boundary Lε containing x0 (and
H−ε be its complementary). We then define our competitor as

Eε := E ∩H−ε .

Let us fix some further notation (see Figure 1):

- We denote by Π : ∂E ∩H+
ε → Lε the projection of the cap of ∂E inside H+

ε , on
Lε. We shall extend Π to the whole ∂E as the identity, outside ∂E ∩H+

ε .
- If fH1 ∂E is the optimal measure for I0(E), we let fε := Π]f (which is defined

on ∂Eε) so that µε := fεH
1 ∂Eε is a competitor for I0(Eε).

- For x, y ∈ ∂E, we denote by γε(x, y) the acute angle between the line Lx,y joining
x to y and Lε (if Lx,y is parallel to Lε, we set γε(x, y) = 0).

- If y = x0, then we denote γε(x) := γε(x, x0).
- We let γε := γε(x

ε
1) = γε(x

ε
2).

- Let ∂B3ε(x0)∩∂E = {x3ε
1 , x

3ε
2 }. As before, we define H+

3ε as the half space bounded
by Lx3ε1 ,x3ε2 containing x0 and H−3ε its complementary. We then let Σε := ∂E∩H+

ε ,

Σ3ε := ∂E ∩H+
3ε and Γε := ∂E ∩H−3ε.

- We let ∆V := |E| − |Eε|, ∆P := P (E)− P (Eε) and ∆I0 := I0(Eε)− I0(E).

We point out some simple remarks:

- Thanks to Theorem 3.1 we have that the optimal measure f satisfies f ∈ Lp(∂E)
for some p = p(E) > 2.

- If E is a convex body then γε is bounded away from π
2 and |x3ε

1 −xε1| ∼ |x3ε
2 −xε2| ∼ ε.

- The quantities ∆V , ∆P and ∆I0 are nonnegative by definition.
- All the constants involved up to now depend only on the Lipschitz character of
∂E. In particular, if En is a sequence of convex bodies converging to a convex
body E, then these constants depend only on the geometry of E.

Before stating the main result of this section, we prove two simple regularity lemmata.
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Figure 1.

Lemma 4.2. Let 0 < β ≤ 1 and C, ε0 > 0 be given. Then, every convex body E such that
for every x0 ∈ ∂E and every ε ≤ ε0,

∆V ≤ Cε2+β (4.2)

is C1,β with C1,β norm depending only on the Lipschitz character of ∂E, ε0 and C.

Proof. Let x0 ∈ ∂E be fixed. Since E is convex, there exist R > 0 and a convex function
u : I → R such that ∂E ∩ BR(x0) = {(t, u(t)) : t ∈ I} for some interval I ⊂ R.
Furthermore, ‖u′‖L∞ . 1. Let x̄ ∈ ∂E ∩ BR(x0). Without loss of generality, we can
assume that x̄ = 0 = (0, u(0)). By convexity of u, up to adding a linear function, we can
further assume that u ≥ 0 in I. Thanks to the Lipschitz bound on u, for x = (t, u(t)) ∈
∂E ∩BR(x0), we have

|x| = (t2 + |u(t)|2)1/2 ∼ t. (4.3)

Let now ε > 0. For δ > 0, let −1� tδ1 < 0 < tδ2 � 1 such that xiδ = (tδi , u(tδi )) for i = 1, 2
(see the notation above). By (4.3), there exists λ > 0 depending only on the Lipschitz
character of u, such that |tλεi | ≥ ε. Without loss of generality, we can now assume that
u(−ε) ≤ u(ε). In particular, considering the ∆V associated to λε, we have that (see
Figure 2)

∆V ≥ 2εu(ε)− 2ε(u(ε)− u(−ε))
2

−
∫ ε

−ε
u(t) dt

= ε(u(ε) + u(−ε))−
∫ ε

−ε
u(t) dt .

Calling ψ(z) :=
∫ z
−z u(t)dt, from (4.2) we obtain

εψ′(ε)− ψ(ε) . ε2+β. (4.4)
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Figure 2.

This proves that there exists ε1 > 0 such that for 0 ≤ ε ≤ ε1,

ψ(ε) . ε2+β.

Putting this back into (4.4) and dividing by ε, we get

u(−ε) + u(ε) . ε1+β + ε−1ψ(ε) . ε1+β.

In other words, we have proven that u is differentiable in zero with u′(0) = 0 and that for
|ε| small enough,

|u(ε)− u(0)− u′(0)ε| . ε1+β.

Since the point zero was arbitrarily chosen, this yields that u is differentiable everywhere
and that for t, s ∈ I with |t− s| ≤ ε1,

|u(t)− u(s)− u′(s)(t− s)| . |t− s|β+1,

which is equivalent to the C1,β regularity of ∂E3.
�

Lemma 4.3. Suppose that the minimizer E for (4.1) has boundary of class C1,β, for some
0 < β < 1. Then, for every x0 ∈ ∂E, x ∈ Σε and y ∈ BR(x0),

γε(x, y) . εβ + |x− y|β. (4.5)

Proof. Without loss of generality, we can assume that x0 = 0. As in the proof of
Lemma 4.2, since E is convex and of class C1,β, in the ball BR(0), for a small enough
R, ∂E is a graph over its tangent of a C1,β function u. Up to a rotation, we can fur-
ther assume that this tangent is horizontal so that for some interval I ⊂ R, we have
∂E∩BR(0) = {(t, u(t)) : t ∈ I}. In particular, if x = (t, u(t)) ∈ ∂E∩BR(0), |u(t)| . |t|1+β

and |u′(t)| . |t|β.

3indeed, for |s−t| ≤ ε1, |u′(t)−u′(s)| ≤ |t−s|−1(|u(t)−u(s)−u′(s)(t−s)|+ |u(s)−u(t)−u′(t)(s−t)|) .
|t− s|β
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Figure 3.

For x = (t, u(t)) ∈ Σε and y = (s, u(s)) ∈ BR(0), let γ̃ε(x, y) be the angle between

Lx,y and the horizontal line, i.e., tan(γ̃ε(x, y)) = |u(t)−u(s)|
|t−s| . Let us begin by estimating γ̃ε.

First, if |x− y| . ε (which thanks to (4.3) amounts to |t− s| . ε and thus since x ∈ Σε,
|t|+ |s| . ε),

γ̃ε(x, y) ∼ |u(t)− u(s)|
|t− s|

≤ sup
r∈[s,t]

|u′(r)| . εβ.

Otherwise, if |x− y| � ε, since |x| . ε, we have |x− y| ∼ |y| ∼ |s| and thus

γ̃ε(x, y) .
|u(t)|+ |u(s)|
|t− s|

.
ε1+β + |s|1+β

|s|
. |s|β . |x− y|β.

Putting these estimates together, we find

γ̃ε(x, y) . εβ + |x− y|β. (4.6)

Let ξε be the angle between Lε and the horizontal line (see Figure 3). Since γε(x, y) =
γ̃ε ± ξε, (4.5) holds provided that we can show

ξε . ε
β. (4.7)

Let tε1, t
ε
2 ∼ ε be such that xε1 = (−tε1, u(−tε1)) and xε2 = (tε2, u(tε2)). We see that ξε is

maximal if u(−tε1) = 0, and then tε1 = ε. In that case, tan ξε =
u(tε2)
ε+tε2

. Since u(tε2) . ε1+β,

and t2ε . ε, we obtain

ξε ∼ tan ξε .
ε1+β

ε
= εβ,

proving (4.7). This concludes the proof of (4.5). �

We pass now to the main result of this section.
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Theorem 4.4. Every minimizer of (4.1) is C1,1. Moreover, for every Q0 and every
Q ≤ Q0, the C1,1 character of ∂E depends only on Q0, the Lipschitz character of ∂E and
‖f‖Lp(∂E).

Proof. Let E be a minimizer of (4.1), x0 ∈ ∂E be fixed and let ε ≤ ε0. With the above
notation in force, we begin by observing that using Eε as a competitor, by minimality of
E for (4.1), and by means of the estimate

||E| − 1| − ||Eε| − 1| ≥ −||E| − |Eε|| = −∆V,

we get

Q2∆I0 ≥ ∆P − Λ∆V. (4.8)

We are thus going to estimate ∆I0, ∆P and ∆V in terms of ε and γε. This will give us a
quantitative decay estimate for γε. This in turn, in light of (4.9) below and Lemma 4.2,
will provide the desired regularity of E.

Step 1 (Volume estimate): In this first step, we prove that

∆V ∼ ε2γε . (4.9)

By construction, we have ∆V = |E| − |Eε| = |E ∩H+
ε |. By convexity, we first have that

the triangle with vertices x0, x
ε
1, x

ε
2 is contained inside E∩H+

ε . By convexity again, letting
x̄ε1 be the point of ∂Bε(x0) diametrically opposed to xε1 (and similarly for x̄ε2), we get that
E ∩H+

ε is contained in the union of the triangles of vertices xε2, x
ε
1, x̄

ε
1 and xε1, x

ε
1, x̄

ε
2 (see

Figure 4).
Therefore, we obtain

∆V ∼ ε2 cos γε sin γε ∼ ε2γε.

Step 2 (Perimeter estimate): Since the triangle with vertices x0, x
ε
1, x

ε
2 is contained

inside E ∩H+
ε , it holds

∆P = P (E)− P (Eε) ≥ 2ε (1− cos γε) & εγ
2
ε . (4.10)

Step 3 (Non-local energy estimate): We now estimate ∆I0. Since µε is a competitor
for I0(Eε), recalling that Π is the identity outside Σε, we have

∆I0 = I0(Eε)− I0(E)

≤
∫
∂Eε×∂Eε

fε(x)fε(y) log

(
1

|x− y|

)
−
∫
∂E×∂E

f(x)f(y) log

(
1

|x− y|

)
=

∫
∂E×∂E

f(x)f(y) log

(
1

|Π(x)−Π(y)|

)
−
∫
∂E×∂E

f(x)f(y) log

(
1

|x− y|

)
=

∫
∂E×∂E

f(x)f(y) log

(
|x− y|

|Π(x)−Π(y)|

)
.
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Figure 4. ∆V is contained in the union of the triangles of vertices
xε1, x

ε
2, x̄

ε
1 and xε1, x

ε
2, x̄

ε
2.

Since for x, y ∈ Σc
ε, |Π(x)−Π(y)| = |x− y|,

∆I0 ≤
∫

Σ3ε×Σ3ε

f(x)f(y) log

(
|x− y|

|Π(x)−Π(y)|

)
+ 2

∫
Σε

∫
Γε

f(x)f(y) log

(
|x− y|
|Π(x)− y|

)
=: I1 + 2I2.

We first estimate I1:

I1 =

∫
Σ3ε×Σ3ε

f(x)f(y) log

(
1 +
|x− y| − |Π(x)−Π(y)|

|Π(x)−Π(y)|

)
≤
∫

Σ3ε×Σ3ε

f(x)f(y)
|x− y| − |Π(x)−Π(y)|

|Π(x)−Π(y)|
.

Since for any x, y ∈ Σ3ε we have (with equality if x, y ∈ Σε),

cos(γε(x, y))|x− y| ≤ |Π(x)−Π(y)|,

we get

I1 ≤
∫

Σ3ε×Σ3ε

f(x)f(y)

(
1

cos(γε(x, y))
− 1

)
.
∫

Σ3ε×Σ3ε

γ2
ε (x, y)f(x)f(y). (4.11)



16 MICHAEL GOLDMAN, MATTEO NOVAGA, AND BERARDO RUFFINI

Figure 5. The angle ̂zΠ(x)x equals γ(x, y).

Using then Hölder’s inequality (recall that f ∈ Lp(∂E) for some p > 2) to get∫
Σ3ε

f ≤
(∫

Σ3ε

fp
)1/p

H1(Σ3ε)
p−1
p . ε

p−1
p , (4.12)

and γε(x, y) . 1, we obtain

I1 . ε
2 p−1

p . (4.13)

We can now estimate I2:

I2 =

∫
Σε

∫
Γε

f(x)f(y) log

(
1 +

(
|x− y| − |Π(x)− y|

|Π(x)− y|

))
≤
∫

Σε

∫
Γε

f(x)f(y)

(
|x− y| − |Π(x)− y|

|Π(x)− y|

)
.

Denote by z the projection of Π(x) on the line containing x and y. Then, since the
projection is a 1-Lipschitz function, it holds |z − y| ≤ |Π(x)− y|. Thus,

|x− y| − |y −Π(x)| = |x− z|+ |z − y| − |y −Π(x)| ≤ |x− z|.

Arguing as in Step 1, we get |x−Π(x)| ≤ |xε2− xε2| . εγε. Furthermore, the angle ̂zΠ(x)x
equals γε(x, y) (see Figure 5), so that
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|x− y| − |y −Π(x)| ≤ |x− z| = |x−Π(x)| sin(γε(x, y)) . εγεγε(x, y).

On the other hand, since |y − x| ≥ 2ε (indeed |x− x0| ≤ ε and |y − x0| ≥ 3ε), we have

|y −Π(x)| ≥ |y − x| − |x−Π(x)| & |y − x| − ε & |y − x|.
Therefore,

I2 . εγε

∫
Σε

∫
Γε

f(x)f(y)γε(x, y)

|y − x|
. (4.14)

There exists M > 0 which depends only on the Lipschitz character of ∂E such that for
x ∈ Σε and y ∈ Γε ∩BM (x0),

|y − x| ≥ min
i=1,2

|y − xεi |.

Let ΓNε := Γε ∩BM (x0) and ΓFε := Γε ∩Bc
M (x0). We then have

I2 . εγε

(∫
Σε×ΓNε

f(x)f(y)γε(x, y)

mini |y − xεi |
+

∫
Σε×ΓFε

f(x)f(y)γε(x, y)

)
=: IN2 + IF2 .

We begin by estimating IF2 . Since γε(x, y) . 1, using Hölder’s inequality we find

IF2 . εγε

(∫
Γε

f

)(∫
Σε

f

)
≤ εγε‖f‖LpH1(Γε)

1− 1
p ‖f‖LpH1(Σε)

1− 1
p

. εγεH1(Σε)
1− 1

p

. ε2− 1
pγε.

(4.15)

We can now estimate IN2 . Recall that

IN2 := εγε

∫
Σε×ΓNε

f(x)f(y)γε(x, y)

mini |y − xεi |
. (4.16)

As before, we use γε(x, y) . 1 together with Hölder’s inequality applied twice to get∫
Σε×ΓNε

f(x)f(y)γε(x, y)

mini |y − xεi |
. ε1−1/p

(∫
ΓNε

1

mini |y − xεi |p/(p−1)

)(p−1)/p

.

Since E is convex, its boundary can be locally parametrized by Lipschitz functions so that,
if M is small enough (depending only on the Lipschitz regularity of ∂E), then for y ∈ ΓNε ,
mini `(y, x̃

ε
i ) ∼ mini |y − x̃εi | (where `(x, y) denotes the geodesic distance on ∂E). From

this we get ∫
ΓNε

1

mini |y − xεi |p/(p−1)
. ε−1/(p−1).

From this we conclude that

IN2 . γεε
2− 2

p . (4.17)
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Step 4 (C1,β regularity): We now prove that E has boundary of class C1,β. To this
aim, we can assume that ∆V � ∆P . Indeed, if ∆V & ∆P , thanks to (4.9) and (4.10),
we would get γε . ε and thus ∆V . ε3, which by Lemma 4.2 would already ensure the
C1,1 regularity of ∂E. Using (4.8), (4.10), (4.13), (4.15) and (4.17), we get

Q2(ε
1− 2

p + γε(ε
1− 1

p + ε
1− 2

p )) & γ2
ε . (4.18)

Now since ε
1− 1

p . ε1− 2
p , this reduces further to

Q2(ε
1− 2

p + γεε
1− 2

p ) & γ2
ε . (4.19)

We can now distinguish two cases. Either Q2ε
2( 1

2
− 1
p

) & γ2
ε and then γε . Qε

( 1
2
− 1
p

)
or

Q2γεε
1− 2

p & γ2
ε and then γε . Q2ε

1− 2
p . Thus in both cases, since p > 2, we find γε . Qεβ

for some β > 0 and we can conclude, by means of (4.9) and Lemma 4.2, that ∂E is C1,β.

Step 5 (C1,1 regularity): Thanks to Lemma 3.6, we get that f ∈ L∞ with ‖f‖L∞
depending only on the Lipschitz character of ∂E and on ‖f‖Lp . Using this new information,
we can improve (4.13), (4.15) and (4.17) to

I1 . ε
2, IF2 . γεε

2, and IN2 . γεε
2| log ε|. (4.20)

Arguing as in Step 4, we find γε . Qε1/2 and thus ∂E is of class C1,1/2. In order to get
higher regularity, we need to get a better estimate on γε(x, y).

Going back to (4.11) and using (4.5) with β = 1/2, we find the improved estimate

I1 . ε
3. (4.21)

If we also use (4.5) in (4.16), we obtain

IN2 . εγε

∫
Σε×ΓNε

ε1/2 + |x− y|1/2

mini |y − x̃εi |

. εγε

∫
Σε×ΓNε

ε1/2 + mini{|x− x̃εi |1/2 + |y − x̃εi |1/2}
mini |y − x̃εi |

. εγε

∫
Σε×ΓNε

ε1/2 + mini |y − x̃εi |1/2

mini |y − x̃εi |

. ε2γε

∫
ΓNε

ε1/2

mini |y − x̃εi |
+

1

mini |y − x̃εi |1/2

. ε2γε(ε
1/2| log ε|+ 1) . ε2γε.

As in the beginning of Step 4, we can assume that ∆V � ∆P , so that by (4.8) and (4.10)
we have Q2∆I0 & ∆P & εγ2

ε . By the previous estimate for IN2 , (4.21) and the second
inequality in (4.20) we eventually get

Q2ε2γε ∼ Q2(ε3 + ε2γε) & εγ
2
ε ,

which leads to γε . Q2ε. By using again Lemma 4.2, the proof is concluded. �
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5. Minimality of the ball for N = 2 and Q small

We now use the regularity result obtained in Section 4 to prove that for small charges,
the only minimizers of FQ,0 in dimension two are balls.

Theorem 5.1. Let N = 2 and α = 0. There exists Q0 > 0 such that for Q < Q0, up to
translations, the only minimizer of (1.1) is the ball.

Proof. Let EQ be a minimizer of FQ,0 and let B be a ball of measure one. By minimality
of EQ, we have

P (EQ)− P (B) ≤ Q2 (I0(B)− I0(EQ)) ≤ Q2I0(B). (5.1)

Using the quantitative isoperimetric inequality (see [8]), we infer

|EQ∆B|2 . P (EQ)− P (B) ≤ Q2I0(B).

This implies that EQ converges to B in L1 as Q → 0. From the convexity of EQ, this
implies the convergence also in the Hausdorff metric. Since the sets EQ are all uniformly
bounded and of fixed volume, they are uniformly Lipschitz. Theorem 4.4 then implies
that ∂EQ are C1,1−regular sets with C1,1 norm uniformly bounded. Therefore, thanks to
the Arzelà-Ascoli’s Theorem, we can write

∂EQ = {(1 + ϕQ(x))x : x ∈ ∂B} ,
with ‖ϕQ‖C1,β converging to 0 as Q → 0 for every β < 1. From Lemma 3.6 we infer

that the optimal measures µQ for EQ are uniformly C0,β and in particular are uniformly
bounded. Using now [11, Prop 6.3], we get that for small enough Q,

‖µQ‖2L∞ (P (EQ)− P (B)) & I0(B)− I0(EQ)

Putting this into (5.1), we then obtain

P (EQ)− P (B) . Q2(P (EQ)− P (B))

from which we deduce that for Q small enough, P (EQ) = P (B). Since, up to translations,
the ball is the unique solution of the isoperimetric problem, this implies EQ = B. �

6. Asymptotic behavior as Q→ +∞

In this section we characterize the limit shape of (suitably rescaled) minimizers of FQ,α,
with α ∈ [0, 1], as the charge Q tends to +∞. For this, we fix a sequence Qn → +∞.

6.1. The case α ∈ [0, 1). For n ∈ N, we let Vn := Q
− 2N(N−1)

1+(N−1)α
n (so that Vn → 0 as

n→ +∞) and

An,α :=
{
E ⊂ RN convex body, |E| = Vn

}
,

F̂n,α(E) := V
−N−2
N−1

n P (E) + Iα(E) for E ∈ An,α.
It is straightforward to check that if E is a minimizer of (1.1), then the rescaled set

Ê := Q
− 2(N−1)

1+(N−1)α
n E

is a minimizer of F̂n,α in the class An,α.
We begin with a compactness result for a sequence of sets of equibounded energy.
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Proposition 6.1. Let α ∈ [0, 1) and let En ∈ An,α be such that

sup
n
F̂n,α(En) < +∞.

Then, up to extracting a subsequence and up to rigid motions, the sets En converge in the
Hausdorff topology to the segment [0, L]× {0}N−1, for some L ∈ (0,+∞).

Proof. The bound on Iα(En) directly implies with (2.2) (or (2.3) in the case α = 0) that
the diameter of En is uniformly bounded from below.

Let us show that the diameter of En is also uniformly bounded from above. Arguing
as in Theorem 2.3, let Rn =

∏N
i=1[0, λni ] be the parallelepipeds given by Lemma 2.2, and

assume without loss of generality that λn1 ≥ λn2 ≥ · · · ≥ λnN . In the case α > 0, (2.1)
directly gives the bound while for α = 0, we get using (2.1) and (2.3), that |I0(Rn)| is
uniformly bounded, from which the bound on the diameter follows, using once again (2.1).

Moreover, from (2.2) and (2.3), we obtain that λni ∼ V
1

N−1
n (where the constants depend on

F̂n,α(En)), for i = 2, . . . , N . The convex bodies En are therefore compact in the Hausdorff
topology and any limit set is a non-trivial segment of length L ∈ (0,+∞). �

In the proof of the Γ−convergence result we will use the following result.

Lemma 6.2. Let 0 < γ < β with β ≥ 1, V > 0 and L > 0, then

min

{∫ L

0
fγ :

∫ L

0
fβ = V, f concave and f ≥ 0

}
=

(β + 1)γ/β

γ + 1
L

1− γ
β V γ/β. (6.1)

Proof. For L, V > 0, let

M(L, V ) := min

{∫ L

0
fγ :

∫ L

0
fβ = V, f concave and f ≥ 0

}
.

Let us now prove (6.1). By scaling, we can assume that L = V = 1. Thanks to the
concavity and positivity constraints, existence of a minimizer for (6.1) follows. Let f be
such a minimizer. Let us prove that we can assume that f is non-increasing. Notice first
that by definition, there holds

M(1, 1) =

∫ 1

0
fγ .

Up to a rearrangement, we can assume that f is symmetric around the point 1/2, so that
f is non-increasing in [1/2, 1] and∫ 1

1/2
fγ =

1

2
M(1, 1) = M(1/2, 1/2).

Letting finally for x ∈ [0, 1], f̂(x) := f(1
2(x + 1

2)), we have that f̂ is non-increasing,
admissible for (6.1) and ∫ 1

0
f̂γ = 2

∫ 1

1/2
fγ = M(1, 1),

so that f̂ is also a minimizer for (6.1).
Assume now that f is not affine in (0, 1). Then there is x > 0 such that for all 0 < x ≤ x

f(x) > f(0)− (f(0)− f(1))x.
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Let f̃ := λ− (λ− f(1))x with λ > f(0) chosen so that∫ 1

0
fβ−1f̃ =

∫ 1

0
fβ. (6.2)

Now, let g := f̃ − f . Since f + g = f̃ is concave, for every 0 ≤ t ≤ 1, f + tg is a concave
function. For δ ∈ R, let ft,δ := f + t(g + δ(1− x)). Let finally δt be such that∫ 1

0
fβt,δt =

∫ 1

0
fβ.

Thanks to (6.2) and since β ≥ 1, |δt| = O(t). Since ft,δt is concave, by the minimality of
f we get ∫ 1

0
fγt,δt −

∫ 1

0
fγ ≥ 0.

Dividing by t and taking the limit as t goes to zero, we obtain∫ 1

0
fγ−1g ≥ 0.

Let z ∈ (0, 1) be the unique point such that f̃(z) = f(z) (so that f̃(x) > f(x) for x < z

and f̃(x) < f(x) for x > z). We then have,

0 ≤
∫ 1

0
fβ−1 f̃ − f

fβ−γ

=

∫ z

0
fβ−1 f̃ − f

fβ−γ
+

∫ 1

z
fβ−1 f̃ − f

fβ−γ

<
1

fβ−γ(z)

(∫ z

0
fβ−1(f̃ − f) +

∫ 1

z
fβ−1(f̃ − f)

)
=

1

fβ−γ(z)

∫ 1

0
fβ−1(f̃ − f),

which contradicts (6.2).

We are left to study the case when f is linear. Assume that f(1) > 0 and let

δ :=

∫ 1
0 f

β−1∫ 1
0 xf

β−1
> 1,

so that in particular,
∫ 1

0 f
β−1(1− δx) = 0. Up to adjusting the volume as in the previous

case, for t > 0 small enough, f + t(1− δx) is admissible. From this, arguing as above, we
find that ∫ 1

0
fγ−1(1− δx) ≥ 0.

By splitting the integral around the point z̄ = δ−1 ∈ (0, 1) and proceeding as above,
we get again a contradiction. As a consequence, we obtain that f(x) = λ(1 − x), with

λ = (β + 1)1/β so that the volume constraint is satisfied. This concludes the proof of
(6.1). �
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We now prove the following Γ−convergence result.

Theorem 6.3. For α ∈ [0, 1), the functionals F̂n,α Γ–converge in the Hausdorff topology,
as n→ +∞, to the functional

F̂α(E) :=



CN L
1

N−1 +
Iα([0, 1])

Lα
if E ' [0, L]× {0}N−1 and α > 0

CN L
1

N−1 + I0([0, 1])− logL if E ' [0, L]× {0}N−1 and α = 0

+∞ otherwise,

where E ' F means that E = F up to a rigid motion, and CN := ω
1/(N−1)
N−1 N (N−2)/(N−1)

with ωN the volume of the ball of radius one in RN (so that for N = 2 we have C2 = 2).

Proof. By Proposition 6.1 we know that the Γ-limit is +∞ on the sets which are not
segments.

Let us first prove the Γ-limsup inequality. Given L ∈ (0,+∞), we are going to
construct En symmetric with respect to the hyperplane {0} × RN−1. For t ∈ [0, L/2], we

let r(t) :=
(

NVn
ωN−1L

)1/(N−1) (
1− 2t

L

)
and then

En ∩
(
R+ × RN−1

)
:=
{(
t, BN−1

r(t)

)
: t ∈ [0, L/2]

}
,

where BN−1
r(t) is the ball of radius r(t) in RN−1. With this definition, |En| = Vn, so that

En ∈ An,α. We then compute

P (En) = 2

∫ L/2

0
HN−2(SN−2)r(t)N−2

√
1 + |r′|2

= 2(N − 1)ωN−1

(
NVn
ωN−1L

)N−2
N−1

∫ L/2

0

(
1− 2t

L

)N−2
(

1 +
cN
L2

(
Vn
L

) 2
N−1

)1/2

= CNV
N−2
N−1
n L

1
N−1 + o

(
V

N−2
N−1
n

)
.

Letting µα be the optimal measure for Iα([−L/2, L/2]), we then have

F̂n,α(En) ≤ CnL
1

N−1 + Iα([0, L]) + o(1),

which gives the Γ-limsup inequality.
We now turn to the the Γ-liminf inequality. Let En ∈ An,α be such that En → [0, L]×

{0}N−1 in the Hausdorff topology. Since Iα is continuous under Hausdorff convergence,
it is enough proving that

lim inf
n→+∞

V
−N−2
N−1

n P (En) ≥ CN L
1

N−1 . (6.3)

Let Ln := diam(En). By Hausdorff convergence, we have that Ln → L. Moreover, up
to a rotation and a translation, we can assume that [0, Ln] × {0}N−1 ⊂ En. For N = 2,
we directly obtain P (En) ≥ 2Ln which gives (6.3). We thus assume from now on that
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N ≥ 3. Let Ẽn be the set obtained from En after a Schwarz symmetrization around the

axis R × {0}N−1. By Brunn’s principle [3], Ẽn is still a convex set with P (En) ≥ P (Ẽn)

and |En| = |Ẽn|. We thus have that

Ẽn =
⋃

t∈[0,Ln]

{t} ×BN−1
r(t)

for an appropriate function r(t), and, by Fubini’s Theorem,∫ LN

0
r(t)N−1 =

Vn
ωN−1

.

By the Coarea Formula [2, Th. 2.93], we then get

P (Ẽn) ≥ HN−2(SN−2)

∫ Ln

0
r(t)N−2

√
1 + |r′(t)|2 ≥ HN−2(SN−2)

∫ Ln

0
r(t)N−2.

Applying then Lemma 6.2 with γ = N − 2 and β = N − 1, we obtain (6.3). �

Remark 6.4. For α ∈ [0, 1) and N ≥ 2, it is easy to optimize F̂α in L and obtain the
values LN,α given in Theorem 1.4.

From Proposition 6.1, Theorem 6.3 and the uniqueness of the minimizers for F̂α, we
directly obtain the following asymptotic result for minimizers of (1.1).

Corollary 6.5. Let α ∈ [0, 1) and N ≥ 2. Then, up to rescalings and rigid motions,
every sequence En of minimizers of (1.1) converges in the Hausdorff topology to [0, LN,α]×
{0}N−1.

6.2. The case N = 2, 3 and α = 1. In the case α ≥ 1, the energy Iα is infinite on
segments and thus a Γ−limit of the same type as the one obtained in Theorem 6.3 cannot
be expected. Nevertheless in the Coulombic case N = 3, α = 1 we can use a dual
formulation of the non-local part of the energy to obtain the Γ−limit. As a by-product,
we can also treat the case N = 2, α = 1.

For N = 2, 3 and n ∈ N, we let

An,1 :=
{
E ⊂ R3 convex body, |E| = Q−2(N−1)

n (logQn)−(N−1)
}
,

F̂n,1(E) := Q2(N−2)
n (logQn)N−2 P (E) +

I1(E)

logQn
, for E ∈ An,1 .

As before, if E is a minimizer of (1.1), then the rescaled set

Ê := Q
− 2(N−1)

N
n (logQn)−

(N−1)
N E

is a minimizer of F̂n,1 in An,1.
Let Cε := [0, 1]× Bε ⊂ R3 be a narrow cylinder of radius ε > 0 (where Bε denotes a

two-dimensional ball of radius ε). We begin by proving the following estimate on I1(Cε):

Proposition 6.6. It holds

lim
ε→0

I1(Cε)

| log ε|
= 2 . (6.4)
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As a consequence, for every L > 0,

lim
ε→0

I1([0, L]×Bε)
| log ε|

=
2

L
. (6.5)

Proof. Estimate (6.4) is well-known (see for instance [22]). We include here a proof for
the reader’s convenience.

To show that

lim
ε→0
| log ε|−1I1(Cε) ≤ 2,

we use µε := 1
πε2

χCε as a test measure in the definition of I1(Cε). Then, noting that for
every y ∈ Cε, ∫

Cε+y

dz

|z|
≤
∫

[−1/2,1/2]×Bε

dz

|z|
,

we obtain

I1(Cε) ≤
1

π2ε4

∫
Cε×Cε

dxdy

|x− y|
=

1

π2ε4

∫
Cε

(∫
Cε+y

dz

|z|

)
dy

≤ 1

πε2

∫ 1/2

−1/2

∫
Bε

1

(z2
1 + |(z2, z3)|2)1/2

=
4

ε2

∫ 1/2

0

∫ ε

0

r

(z2
1 + r2)1/2

=
4

ε2

∫ 1/2

0

√
z2

1 + ε2 − z1

=
4

ε2

(
1

8

√
1 + 4ε2 − 1

8
+
ε2

2
log

(
1

2ε
+

√
1 +

1

4ε2

))
= 2| log ε|+ o(| log ε|).

In order to show the opposite inequality, we recall the following definition of capacity
of a set E:

Cap(E) := min

{∫
R3

|∇φ|2 : χE ≤ φ, φ ∈ H1
0 (R3)

}
Then , if E is compact, we have [20, 11]

I1(E) =
4π

Cap(E)
.

Thus (6.4) will be proved once we show that

Cap(Cε)| log ε| ≤ 2π + o(1). (6.6)

For this, let λ > 0 and µ > 0 to be fixed later and let

fλ(x′) :=


1 for |x′| ≤ ε

1− log(|x′|/ε)
log(λ/ε)

for ε ≤ |x′| ≤ λ

0 for |x′| ≥ λ
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and

ρµ(z) :=



0 for z ≤ −µ
z + µ

µ
for − µ ≤ z ≤ 0

1 for 0 ≤ z ≤ 1

1− z − 1

µ
for 1 ≤ z ≤ 1 + µ

0 for z ≥ 1 + µ.

We finally let φ(x′, z) := fλ(x′)ρµ(z). Since ρµ, fλ ≤ 1 and |ρ′µ| ≤ µ−1, by definition of
Cap(Cε), we have

Cap(Cε) ≤
∫ 1

0

2π

log(λ/ε)2

∫ λ

ε

1

r
+ C

(
µ

log(λ/ε)
+
λ2

µ

)
≤ 2π

log(λ/ε)
+ C

(
µ

log(λ/ε)
+
λ2

µ

)
.

We now choose λ := | log ε|−1 � ε and µ := | log λ|−1 = (log | log ε|)−1 so that log(λ/ε) =
| log ε|+ log | log ε|, µ→ 0 and µ� λ so that

µ

log(λ/ε)
+
λ2

µ
= o(| log ε|−1)

and we find (6.6).
Estimate (6.5) then follows by scaling. �

As a simple corollary we get the two dimensional result

Corollary 6.7. It holds

lim
ε→0

I1([0, 1]× [0, ε])

| log ε|
= 2 . (6.7)

Proof. The upper bound is obtained as above by testing with µε := ε−1χ[0,1]×[0,ε]. By
identifying [0, 1]× [0, ε] with [0, 1]× [0, ε]×{0} ⊂ Cε we get that I1([0, 1]× [0, ε]) ≥ I1(Cε).
This gives together with (6.4) the corresponding lower bound. �

We can now prove a compactness result analogous to Proposition 6.1.

Proposition 6.8. Let En ∈ An,1 be such that supn F̂n,1(En) < +∞. Then, up to extract-
ing a subsequence and up to rigid motions, the sets En converge in the Hausdorff topology
to a segment [0, L]× {0}N , for some L ∈ (0,+∞).

Proof. We reason as in the proof of Proposition 6.1. Since the case N = 2 is easier, we
focus on N = 3. Let Rn =

∏3
i=1[0, λi,n] be given by Lemma 2.2 and let us assume without

loss of generality that i 7→ λi,n is decreasing. Then (2.1) applied with V = Q−4
n (logQn)−2,

directly yields an upper bound on λ1,n (and thus on diam(En)).
We now show that the diameter of En is also uniformly bounded from below. Unfor-

tunately, (2.2) does not give the right bound and we need to refine it using (6.4). As in
Proposition 6.1, the energy bound I1(En) . logQn, directly implies that

λ1,n &
1

logQn
,
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from which, using (2.1) and
∏3
i=1 λi,n ∼ Q−4

n (logQn)−2, we get

λ2,n . Q
−2
n .

In particular, it follows that

λ2,n

λ1,n
.

logQn
Q2
n

.

By Proposition 6.6, letting εn := Q−2
n logQn we get

λ1,n logQn & λ1,nI1(En) ∼ λ1,nI1 (Rn)

= I1

(
3∏
i=1

[
0,
λi,n
λ1,n

])
& I1 (Cεn)

∼ | log εn| ∼ logQn ,

which implies

λ1,n & 1 ,

and gives a lower bound on the diameter of En.
Arguing as in the proof of (2.2), we then get

λ3,n ≤ λ2,n . Q
−2
n (logQn)−1 . (6.8)

It follows that the sets En are compact in the Hausdorff topology, and any limit set
is a segment of length L ∈ (0,+∞). �

Arguing as in Theorem 6.3, we obtain the following result.

Theorem 6.9. The functionals F̂n,1, Γ–converge in the Hausdorff topology, to the func-
tional

F̂1(E) :=

CN L
1

N−1 +
4

L
if E ' [0, L]× {0}N−1

+∞ otherwise,

where CN is defined as in Theorem 6.3.

Proof. Since the case N = 2 is easier, we focus on N = 3. The compactness and lower
bound for the perimeter are obtained exactly as in Theorem 6.3. For the upper bound,
for L > 0 and n ∈ N, we define En as in the proof of Theorem 6.3, by first letting Vn :=

Q−4
n (logQn)−2 (recall that N = 3) and then for t ∈ [0, L/2], r(t) :=

(
3Vn
πL

)1/2 (
1− 2t

L

)
and

En ∩
(
R+ × R2

)
:=

⋃
t∈[0,L

2
]

{t} ×B2
r(t)

where B2
r(t) is the ball of radius r(t) in R2.

As in the proof of Theorem 6.3, we have

lim
n→+∞

Q2
n logQn P (En) = C3 L

1
2 .
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Let µn be the optimal measure for I1(En), and let εn :=
(

3Vn
πL

)1/2
. For L > δ > 0, there

holds [−L−δ
2 , L−δ2 ]×B2

εn ⊂ En so that by (6.5),

I1(En) ≤ I1

([
−L− δ

2
,
L− δ

2

]
×B2

εn

)
=
| log Vn|
(L− δ)

+ o(| log Vn|).

Recalling that | log Vn| = 4| logQn|+ o(| logQn|), we then get

lim
n→+∞

I1(En)

log(Qn)
≤ 4

L− δ
.

Letting δ → 0+, we obtain the upper bound.

We are left to prove the lower bound for the non-local part of the energy. Let En be be
a sequence of convex sets such that En → [0, L]×{0}2 and such that |En| = Q−4

n (logQn)−2.

We can assume that supn F̂n,1(En) < +∞, since otherwise there is nothing to prove. Let
δ > 0. Up to a rotation and a translation, we can assume that [0, L − δ] × {0}2 ⊂ En ⊂
[0, L+ δ]× R2 for n large enough. Let now x1 = (x1

1, x
1
2, x

1
3) be such that

|(x1
2, x

1
3)| = max

x∈En
|(x2, x3)|.

Up to a rotation of axis R×{0}2, we can assume that x1 = (a, `n1 , 0) for some `n1 ≥ 0. Let
finally x2 be such that

|x2 · e3| = max
x∈En

|x · e3|

so that x2 = (b, c, `n2 ) with `n2 ≤ `n1 . Since by definition En ⊂ [0, L+δ]×[−`n1 , `n1 ]×[−`n2 , `n2 ],
we have Q−4

n (logQn)−2 = |En| . `n1 `
n
2 (L + δ). On the other hand, by convexity, the

tetrahedron T with vertices 0, x1, x2 and (L − δ, 0, 0) is contained in En. We thus have
|En| ≥ |T |. Since

|T | = 1

8
|det(x1, x2, (L− δ, 0, 0))| = 1

8
(L− δ)`n1 `n2 ,

we also have Q−4
n (logQn)−2 & `n1 `

n
2 (L− δ). Arguing as in the proof of (2.2), we get from

the energy bound, (L− δ)`n1 . Q−2
n (logQn)−1, and thus

`n1 `
n
2 &

1

(L− δ)Q4
n(logQn)2

.

From this we get `n1 ∼ `n2 ∼ Q−2
n (logQn)−1, where the constants involved might depend

on L. We therefore have En ⊂ [0, L+ δ]×BCQ−2
n (logQn)−1 for C large enough. From this

we infer that

lim inf
n→+∞

I1(En)

logQn
≥ lim inf

n→+∞

I1([0, L+ δ]×BCQ−2
n (logQn)−1)

logQn

≥ 2 lim inf
n→+∞

I1([0, L+ δ]×BCQ−2
n (logQn)−1)

log(CQ−2
n (logQn)−1)

≥ 4(L+ δ)−1,

where the last inequality follows from (6.5). Letting δ → 0, we conclude the proof. �
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Remark 6.10. As before, optimizing F̂1 with respect to L, one easily obtains the values
of LN,1 given in Theorem 1.4.

Remark 6.11. By analogy with results obtained in the setting of minimal Riesz energy
point configurations [12, 21], we believe that for every N ≥ 2, α > 1 and L > 0, (6.5) can
be generalized to

lim
ε→0

Iα([0, L]× [0, ε]N−1)

ε1−α =
Cα
Lα

, (6.9)

for some constant Cα depending only on α. This result would permit to extend Theorem
6.9 beyond α = 1. Let us point out that showing that the right-hand side of (6.9) is bigger
than the left-hand side can be easily obtained by plugging in the uniform measure as a
test measure. However, we are not able to prove the reverse inequality.
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