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Abstract

We characterize the relaxation of the perimeter in an infinite dimensional Wiener
space, with respect to the weak L2-topology. We also show that the rescaled Allen-
Cahn functionals approximate this relaxed functional in the sense of Γ-convergence.

1 Introduction

Extending the variational methods and the geometric measure theory from the Euclidean
to the Wiener space has recently attracted a lot of attention. In particular, the theory of
functions of bounded variation in infinite dimensional spaces started with the works by
Fukushima and Hino [21, 22]. Since then, the fine properties of BV functions and sets
of finite perimeter have been investigated in [4, 5, 3, 1]. We point out that this theory is
closely related to older works by M. Ledoux and P. Malliavin [26, 27].
In the Euclidean setting it is well-known that the perimeter can be approximated by
means of more regular functionals of the form

∫ (
ε

2
|∇u|2 +

W (u)

ε

)
dx

when ε tends to zero, in the sense of Γ-convergence with respect to the strong L1-topology
[29, 28]. An important ingradient in this proof is the compact embedding of BV in L1.
A natural question is whether a similar approximation property holds in the infinite
dimensional case. The main goal of this paper is answering to this question by computing
the Γ-limit, as ε → 0, of the Allen-Cahn-type functionals (see Section 2 for precise
definitions)

Fε(u) =

∫

X

(
ε

2
|∇Hu|2H +

W (u)

ε

)
dγ.
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In the Wiener space there are two possible definitions of gradient, and consequently two
different notions of Sobolev spaces, functions of bounded variation and perimeters [4, 1].
In one definition the compact embedding of BVγ(X) in L1

γ(X) still holds [4, Th. 5.3] and
the Γ-limit of Fε is, as expected, the perimeter up to a multiplicative constant. We do
not reproduce here the proof of this fact, since it is very similar to the Euclidean one.
A more interesting situation arises when we consider the other definition of gradient,
which gives rise to a more invariant notion of perimeter and is therefore commonly used
in the literature [21, 22, 4]. In this case, the compact embedding of BVγ(X) in L1

γ(X)
does not hold anymore. In particular sequences with uniformly bounded Fε-energy are not
generally compact in the (strong) L1

γ-topology, even though they are bounded in L2
γ(X),

and hence compact with respect to the weak L2
γ(X)-topology. This suggests that the right

topology for considering the Γ-convergence should rather be the weak L2
γ(X)-topology.

A major difference with the finite dimensional case is the fact that the perimeter function
defined by

F (u) =

{
Pγ(E) if u = χE

+∞ otherwise

is no longer lower semicontinuous in this topology, and therefore cannot be the Γ-limit of
the functionals Fε. The problem is that the sets of finite perimeter are not closed under
weak convergence of the characteristic functions. However, it is possible to compute the
relaxation F of F (Theorem 4.6), which reads:

F (u) =





∫

X

√
U2(u) + |Dγu|2 dγ if 0 ≤ u ≤ 1

+∞ otherwise.

Such functional is quite familiar to people studying log–Sobolev and isoperimetric in-
equalities in Wiener spaces [6, 7, 10].
Our main result is to show that the Γ-limit of Fε, with respect to the weak L2

γ(X)-

topology, is a multiple of F (Theorem 5.3). The proof relies on the interplay between
symmetrization, semicontinuity and isoperimetry.
The plan of the paper is the following. In Section 2 we recall some basic facts about Wiener
spaces and functions of bounded variation. In Section 3 we give the main properties of
the Ehrhard symmetrizations. We also prove a Pólya-Szegö inequality and a Bernstein-
type result in the Wiener space (Propositions 3.12 and 3.5), which we believe to be
interesting in themselves. In Section 4, we use the Ehrhard symmetrization to compute
the relaxation of the perimeter (Theorem 4.6). Finally, in Section 5 we compute the
Γ-limit of the functionals Fε (Theorem 5.3) and discuss some consequences of this result.

Acknowledgements: The authors wish to thank Michele Miranda for valuable discus-
sions. The first author would like also to thank the Scuola Normale di Pisa for the kind
hospitality, and Luigi Ambrosio for the invitation and the interest in this work.
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2 Wiener space and functions of bounded variation

A clear and comprehensive reference on the Wiener space is the book by Bogachev [8]
(see also [27]). We follow here closely the notation of [4]. Let X be a separable Banach
space and let X∗ be its dual. We say that X is a Wiener space if it is endowed with a
non-degenerate centered Gaussian probability measure γ. That amounts to say that γ
is a probability measure for which x∗♯γ is a centered Gaussian measure on R for every
x∗ ∈ X∗. The non-degeneracy hypothesis means that γ is not concentrated on any proper
subspace of X.
As a consequence of Fernique’s Theorem [8, Th. 2.8.5], for every x∗ ∈ X∗, the function
R∗x∗(x) = 〈x∗, x〉 is in L2

γ(X) = L2(X, γ). Let H be the closure of R∗X∗ in L2
γ(X); the

space H is usually called the reproducing kernel of γ. Let R, the operator from H to X,
be the adjoint of R∗ that is, for ĥ ∈ H,

Rĥ =

∫

X

xĥ(x) dγ

where the integral is to be intended in the Bochner sense. It can be seen that R is a
compact and injective operator. We will let Q = RR∗. We denote by H the space RH.
This space is called the Cameron-Martin space. It is a separable Hilbert space with the
scalar product given by

[h1, h2]H = 〈ĥ1, ĥ2〉L2
γ(X)

if hi = Rĥi. We will denote by | · |H the norm in H. The space H is a dense subspace of
X, with compact embedding, and γ(H) = 0 if X is of infinite dimension.
For x∗

1, .., x
∗
m ∈ X∗ we denote by Πx∗

1,..,x∗
m

the projection from X to R
m given by

Πx∗
1,..,x∗

m
(x) = (〈x∗

1, x〉, .., 〈x∗
m, x〉).

We will also denote it by Πm when specifying the points x∗
i is unnecessary. Two elements

x∗
1 and x∗

2 of X∗ will be called orthonormal if the corresponding hi = Qx∗
i are orthonormal

in H. We will fix in the following an orthonormal base of H given by hi = Qx∗
i .

We also denote by Hm = span(h1, .., hm) and X⊥
m = Ker(Πm) = H⊥

m

X
, so that X =

R
m ⊕X⊥

m. The map Πm induces the decomposition γ = γm ⊗ γ⊥
m, with γm, γ⊥

m Gaussian
measures on R

m, X⊥
m respectively.

Proposition 2.1 ([8]). Let ĥ1, .., ĥm be in H then the image measure of γ under the map

Π
ĥ1,..,ĥm

(x) = (ĥ1(x), .., ĥm(x))

is a Gaussian in R
m. If the ĥi are orthonormal, then such measure is the standard

Gaussian measure on R
m.
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Given u ∈ L2
γ(X), we will consider the canonical cylindrical approximation Em given by

Emu(x) =

∫

X⊥
m

u(Πm(x) + y) dγ⊥
m(y).

Notice that Emu is a cylindrical functions depending only on the first m variables, and
Emu converges to u in L2

γ(X).
We will denote by FC1

b (X) the space of cylindrical C1 bounded functions that is the
functions of the form v(Πm(x)) with v a C1 bounded function from R

m to R. We denote
by FC1

b (X,H) the space generated by all functions of the form Φh, with Φ ∈ FC1
b (X)

and h ∈ H.
We now give the definitions of gradients, Sobolev spaces functions of bounded variation.
Given u : X → R and h = Rĥ ∈ H, we define

∂u

∂h
(x) = lim

t→0

u(x + th) − u(x)

t

whenever the limit exists, and

∂∗
hu =

∂u

∂h
− ĥ(u).

We define ∇Hu : X → H, the gradient of u by

∇Hu =

+∞∑

i=1

∂u

∂hi
hi

and the divergence of Φ : X → H by

divγ Φ =

+∞∑

i=1

∂∗
hi

[Φ, hi]H .

The operator divγ is the adjoint of the gradient so that for every u ∈ FC1
b (X) and every

Φ ∈ FC1
b (X,H), the following integration by parts holds:

∫

X

udivγ Φ dγ = −
∫

X

[∇Hu,Φ]Hdγ. (1)

The ∇H operator is thus closable in L2
γ(X) and we will denote by H1

γ(X) its closure in
L2

γ(X). From this, formula (1) still holds for u ∈ H1
γ (X) and Φ ∈ FC1

b (X,H).
Following [21, 4], given u ∈ L1

γ(X) we say that u ∈ BVγ(X) if

∫

X

|Dγu|H = sup

{∫

X

udivγ Φ dγ; Φ ∈ FC1
b (X,H), |Φ|H ≤ 1 ∀x ∈ X

}
< +∞.
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We will also denote by |Dγu|(X) the total variation of u. If u = χE is the characteristic
function of a set E we will denote Pγ(E) its total variation and say that E is of finite
perimeter if Pγ(E) is finite. As shown in [4] we have the following properties of BVγ(X)
functions.

Theorem 2.2. Let u ∈ BVγ(X) then the following properties hold:

• Dγu is a countably additive measure on X with finite total variation and values
in H (we will note the space of these measures by M(X,H)), such that for every
Φ ∈ FC1

b (X) we have:

∫

X

u∂∗
hj

Φ dγ = −
∫

X

Φdµj ∀j ∈ N

where µj = [hj ,Dγu]H .

• |Dγu|(X) = inf lim{
∫
X
|∇Hui|Hdγ : uj ∈ H1

γ(X), uj → u in L1
γ(X)}.

Proposition 2.3. Let u = v(Πm) be a cylindrical function then u ∈ BVγ(X) if and only
if v ∈ BVγm(Rm). We then have

∫

X

|Dγu|H =

∫

Rm

|Dγmv|.

Proposition 2.4 (Coarea formula [2]). If u ∈ BVγ(X) then for every borel set B ⊂ X,

|Dγu|(B) =

∫

R

Pγ({u > t}, B) dt. (2)

In Proposition 3.12, we will need the following extension of Proposition 2.4.

Lemma 2.5. For every function u ∈ BVγ(X) and every non-negative Borel function g,

∫

X

g(x) d|Dγu|(x) =

∫

R

(∫

X

g(x) d|DγχEt |(x)

)
dt (3)

where Et := {u > t}.

Proof. The proof of this lemma mimic the standard proof in the Euclidean case [14,
Th.2.2]. By [20, Ch.1,Th.7] we can write g as

g =

+∞∑

i=1

1

i
χAi
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where the Ai ⊂ X are Borel sets. Using the coarea formula (2), we then get

∫

X

g(x)d|Dγu|(x) =

+∞∑

i=1

1

i
|Dγu|(Ai)

=

+∞∑

i=1

1

i

∫

R

|DγχEt|(Ai) dt

=

∫

R

(∫

X

+∞∑

i=1

1

i
χAi

d|DγχEt |(x)

)
dt

=

∫

R

∫

X

g(x) d|DγχEt|(x) dt.

In [4] it is also shown that sets with finite Gaussian perimeter can be approximated by
smooth cylindrical sets.

Proposition 2.6. Let E ⊂ X be a set of finite Gaussian perimeter then there exists
smooth sets Em ⊂ R

m such that Π−1
m (Em) converges in L1

γ(X) to E and Pγ(Π−1
m (Em)) =

Pγm(Em) converges to Pγ(E) when m tends to infinity.

Note that, for half-spaces, the perimeter can be exactly computed [4, Cor. 3.11].

Proposition 2.7. Let h = Rĥ ∈ H and c ∈ R then the half-space

E = {x ∈ X : ĥ(x) ≤ c}

has perimeter

Pγ(E) =
1√
2π

e
− c2

2|h|2
H .

3 The Ehrhard symmetrization

The Ehrhard symmetrization has been introduced by Ehrhard in [18] for studying the
isoperimetric inequality in a Gaussian setting. We recall the definition and the main
properties of such symmetrization.

Definition 3.1. We define the functions Φ and α by

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt and α(x) = Φ−1(x).

we then let U(x) = Φ′ ◦ α(x) = 1√
2π

e−
α2(x)

2 .
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Notice that Φ(t) is the volume of the half-space {ĥ(x) < t} and that U(x) is the perimeter
of a half-space of volume x.

Lemma 3.2. Let ĥ1, ĥ2 ∈ H, with |h1|H = |h2|H = 1, and suppose that there exist
C1, C2 ∈ R such that

{ĥ1 < C1} ⊂ {ĥ2 < C2}.
Then ĥ1 = ĥ2.

Proof. Assume by contradiction ĥ1 6= ĥ2, and let η > 0 be such that |ĥ1 − ĥ2|L2
γ(X) ≥ η.

We shall bound from below by a positive constant the quantity

γ
({

ĥ1(x) < C1

}
∩
{
ĥ2(x) ≥ C2

})

thus contradicting the inclusion

{
ĥ1 < C1

}
⊂
{

ĥ2 < C2

}
.

Letting h be a unitary vector in H orthogonal to h1, we can write

h2 = λh1 + βh

with λ2 + β2 = 1. Up to exchanging h with −h, we can also assume that β ≥ 0. We then
have |h1 − h2|H = 2(1 − λ) and thus −1 ≤ λ ≤ 1 − η

2 .
Let us first suppose that −1 ≤ λ ≤ −1

2 , then

{
ĥ1(x) < min

(
C1,−

C2

λ

)}
∩
{

ĥ(x) ≥ 0
}
⊂
{

ĥ1(x) < C1

}
∩
{
ĥ2(x) ≥ C2

}
.

As ĥ1 and ĥ are orthogonal we have Π
ĥ1,ĥ

♯γ = γ2 and thus

γ

({
ĥ1(x) < min(C1,−

C2

λ
)

}
∩
{
ĥ(x) ≥ 0

})
=

1

2
Φ(min(C1,−C2/λ))

≥ 1

2
Φ(min(C1, 2C2)).

Hence, for −1 ≤ λ ≤ −1
2 ,

γ
({

ĥ1(x) < C1

}
∩
{
ĥ2(x) ≥ C2

})
≥ 1

2
Φ(min(C1, 2C2)).
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If now −1
2 ≤ λ ≤ 1 − η

2 , we can assume that η is such that 1 − η
2 ≥ 1

2 . Let us start by
computing the Fourier transform of Π

ĥ1,ĥ2
♯γ. Denoting by µ̃ the Fourier transform of a

measure µ (see [8, Sec. 1.2]) and letting Π := Π
ĥ1,ĥ2

, for every (z1, z2) ∈ R
2 we have

Π̃♯γ(z1, z2) =

∫

R2

eiz·xdΠ♯γ(x)

=

∫

X

eiz·Π(x)dγ(x)

=

∫

X

ei[z1ĥ1(x)+z2ĥ2(x)]dγ(x)

=

∫

X

ei[(z1+z2λ)ĥ1(x)+z2βĥ(x)]dγ(x)

=

∫

R2

ei[(z1+z2λ)x1+z2βx2]dγ2(x1, x2)

= γ̃2(z1 + λz2, βz2)

= e−
1
2
[(z1+λz2)2+β2z2

2 ]

= e−
1
2
[z2

1+z2
2+2λz1z2].

Thus, if we set K :=

(
1 λ
λ 1

)
, we have Π̃♯γ(z) = e−

1
2
ztKz. It follows that Π♯γ is a

centered Gaussian measure with density 1
2π

√
det K

e−
1
2
ztK−1z and thus

Π♯γ(z1, z2) =

√
1 − λ2

2π
e−

1
2
[z2

1+z2
2−2λz1z2]dz.

We now compute

γ
({

ĥ1(x) < C1

}
∩
{
ĥ2(x) ≥ C2

})
=

∫

X

χ{ĥ1(x)<C1}(x)χ{ĥ2(x)≥C2}(x) dγ(x)

=

∫

R2

χ{z1<C1}(z)χ{z2≥C2}(z) dΠ♯γ(z)

=

∫ C1

−∞

∫ +∞

C2

√
1 − λ2

2π
e−

1
2
[z2

1+z2
2−2λz1z2]dz1dz2

≥ 1

2π

√
3

4

∫ C1

−∞

∫ +∞

C2

e−
1
2
z2
1e−

1
2
z2
2eλz1z2dz1dz2.

Finally, when λz1z2 ≥ 0, we can bound eλz1z2 from below by 1, and when λz1z2 ≤ 0 we
can bound it form below by e−

1
2
|z1z2| so that we can always bound from below

γ
(
{ĥ1(x) < C1} ∩ {ĥ2(x) ≥ C2}

)
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by a positive constant.

We now define the Ehrhard symmetrization.

Definition 3.3. Let E ⊂ X and let m ∈ N. The Ehrhard symmetral of E along the first
m variables is defined as (see Figure 1):

E∗ :=





{
(x, xm, x⊥

m) ∈ R
m−1 × R × X⊥

m : xm < α(Em−1χE(x))
}

if m > 1

{x ∈ X : 〈x∗
1, x〉 < α(γ (E))} if m = 1.

Xm−1

xm

Em−1χE(x)

E

Es

Em−1χE(x)

α(Em−1χE)

Figure 1: The Ehrhard symmetrization.

The interest of this symmetrization is that it decreases the Gaussian perimeter, while
keeping the volume fixed.

Proposition 3.4. Let E be a set of finite perimeter and E∗ be an Ehrhard symmetral of
E, then

γ(E∗) = γ(E), (4)

Em−1χE∗ = Em−1χE and
Pγ(E∗) ≤ Pγ(E). (5)
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In particular, we have the isoperimetric inequality

Pγ(E) ≥ U(γ (E)),

with equality if and only if E is a half-space.

For the proof we refer to [7, 10], and to [4] for the extension to infinite dimensions.
We can also prove a stronger result which is a kind of Bernstein Theorem in this setting.

Proposition 3.5. The half-spaces are the only local minimizers of the Gaussian perimeter
with volume constraint.

Proof. Let E ⊂ X be a local minimizer of the (Gaussian) perimeter and let v = γ (E).
This means that, for every R > 0 and every set F of finite perimeter, with γ (F ) = v and
E∆F ⊂ BR (where BR denotes the ball of radius R centered at 0), we have

Pγ(E) ≤ Pγ(F ).

If E is not an half space then, by Proposition 3.4, there exists η > 0 such that

Pγ(E) ≥ U(v) + η.

Let αR be such that

γ (E ∩ BR) = γ ({〈x∗
1, x〉 < αR} ∩ BR) .

We have that αR tends to α(v) when R goes to infinity and Pγ({〈x∗
1, x〉 < αR}) tends to

Pγ({〈x∗
1, x〉 < α(v)}). Letting

FR = ({〈x∗
1, x〉 < αR} ∩ BR) ∪ (E ∩ Bc

R)

we get

U(v) + η ≤ Pγ(E) ≤ Pγ(FR) ≤ Pγ({〈x∗
1, x〉 < αR} ∩ BR) + Pγ(E ∩ Bc

R)

≤ Pγ({〈x∗
1, x〉 < αR}) + Pγ(BR) + Pγ(E ∩ Bc

R)

≤ Pγ({〈x∗
1, x〉 < α(v)}) + ε(R)

= U(v) + ε(R),

where we used various time the inequality (see [23])

Pγ(E ∪ F ) + Pγ(E ∩ F ) ≤ Pγ(E) + Pγ(F )

and where ε(R) is a function which goes to zero when R goes to infinity. We thus found
a contradiction.
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Remark 3.6. In the Euclidean setting, half-spaces are the only local minimizers of the
perimeter only in dimension lower than 8 (see [23]). Notice also that if we drop the
volume constraint, half spaces are no longer local minimizers for the Gaussian perimeter,
since there are no nonempty local minimizers.

In the sequel we will also need another transformation which from a finite dimensional
function gives an Ehrhard symmetric set whose sections have volume prescribed by the
original function. More precisely:

Definition 3.7. Given a measurable function v : R
m → [0, 1], we define its Ehrhard set

ESm(v) ⊂ X by

ESm(v) :=
{
(x, xm+1, x

⊥
m+1) ∈ R

m × R × X⊥
m+1 : xm+1 < α(v(x))

}
.

Given a measurable cylindrical function u : X → [0, 1] depending only on the first m
variables, that is, u = v ◦ Πm for some v : R

m → [0, 1], we set

ESm(u) := ESm(v).

The link between Ehrhard sets and Ehrhard symmetrization is the following:

Proposition 3.8. Let E be a set of finite perimeter and E∗ be its Ehrhard symmetrization
with respect to the first (m + 1) variables, then

E∗ = ESm(Em(χE)).

In the next proposition we compute the perimeter of Ehrhard sets. It slightly extends a
result in [15].

Proposition 3.9. Let u ∈ BVγm(Rm) with 0 ≤ u ≤ 1, then

Pγ(ESm(u)) =

∫

Rm

√
U(u)2 + |Dγmu|2 dγm

where
∫

Rm

√
U(u)2 + |Dγmu|2dγm =

∫

Rm

√
U(u)2 + |∇u|2 dγm + |Ds

γu|(X)

and Dγu = ∇u γ + Ds
γu is the Radon-Nikodym decomposition of Dγu.

Proof. By [15, Th. 4.3] the result holds for u ∈ H1
γm

(Rm). We will show by approximation
that the same holds for u ∈ BVγm(Rm).
Let E = ESm(u), then we can find sets En such that γ(En∆E) → 0 and Pγ(En) → Pγ(E)
as n → +∞, and all the En have smooth boundary and are Ehrhard symmetric. Thus,
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for every n ∈ N, there exists a smooth function un such that 0 ≤ un ≤ 1, En = ESm(un),
un → u in L1

γm
(Rm), and

Pγ(En) =

∫

Rm

√
U(un)2 + |Dγmun|2 dγm.

Since, by Proposition 4.4, the functional
∫

Rm

√
U(u)2 + |Dγmu|2dγm is lower semicontin-

uous in L1
γm

(Rm), we get

Pγ(E) = lim
n→∞

Pγ(En)

= lim
n→∞

∫

Rm

√
U(un)2 + |Dγmun|2 dγm

≥
∫

Rm

√
U(u)2 + |Dγmu|2 dγm.

The other inequality follows as in [15]. Let Ẽ = Πm+1(E) ⊂ R
m+1 and observe that

γm+1(Ẽ) = γ(E) and Pγm+1(Ẽ) = Pγ(E). By Vol’pert Theorem [2, Th. 3.108] there

exists a set B ⊂ R
m such that for every x ∈ B, ν

eE
m+1(x, α(uE(x))) exists and is not equal

to zero, where ν
eE
m+1 denotes the last coordinate of the unit external normal to ∂∗Ẽ. By

[15, Lemma 4.4], γm-almost every x ∈ B is a point of approximate differentiability for u.
By Lemma 4.5 and 4.6 of [15] we then have

Pγm+1(Ẽ) = Pγm+1(Ẽ,B × R) + Pγm+1(Ẽ,Bc × R)

≤
∫

B

√
U(u)2 + |∇u|2dγm +

∫

Bc

|Dγmu| +
∫

Bc

U(u) dγm .

As γm(Bc) = 0, we find that

∫

B

√
U(u)2 + |∇u|2dγm +

∫

Bc

|Dγmu| =

∫

Rm

√
U2(u) + |∇u|2dγm + |Ds

γm
u|(Rm)

and thus Pγ(E) = Pγm+1(Ẽ) ≤
∫

Rm

√
U(u)2 + |Dγmu|2dγm.

The last transformation that we consider is the analog of the Schwarz symmetrization in
the Gaussian setting, and was first introduced by Ehrhard in [19].

Definition 3.10. Let u ∈ X → R be a measurable function and let m ∈ N be fixed. We
define the m-dimensional Ehrhard symmetrization u∗ of u as follows:

• for all t ∈ R we let E∗
t be the Ehrhard symmetrization of Et := {u > t} with respect

to the first m variables;
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• we let u∗(x) := inf{t : x ∈ E∗
t }.

As (4) implies γ({u∗ > t}) = γ({u > t}) for all t ∈ R, from the Layer Cake formula it
follows that, if u ∈ L2

γ(X), then u∗ ∈ L2
γ(X) and

∫

X

|u∗|2dγ =

∫

X

|u|2 dγ . (6)

Indeed, we have

∫

X

|u|2dγ = 2

∫ +∞

0
t γ({u > t}) dt − 2

∫ 0

−∞
t γ({u < t}) dt

= 2

∫ +∞

0
t γ({u∗ > t}) dt − 2

∫ 0

−∞
t γ({u∗ < t}) dt

=

∫

X

|u∗|2dγ.

Lemma 3.11. Let u, v : X → [0,+∞) belonging to L2
γ(X), then

‖u∗ − v∗‖L2
γ (X) ≤ ‖u − v‖L2

γ(X). (7)

Proof. The proof is a straightforward adaptation of the analogous proof for the Schwarz
symmetrization [25, Th. 3.4].
Recalling (6) with p = 2, we have only to show that

∫

X

uvdγ ≤
∫

X

u∗v∗dγ. (8)

Again by the Layer Cake formula we have

∫

X

uvdγ =

∫ +∞

0

∫ +∞

0

∫

X

χ{u>t}(x)χ{v>s}(x)dγ(x) dt ds.

Thus (8) would follow from the same inequality for sets, that is,

γ (A ∩ B) ≤ γ (A∗ ∩ B∗) . (9)

Let xm ∈ R
m and assume that

∫

X⊥
m

χA(xm + y)dγ⊥
m(y) ≥

∫

X⊥
m

χB(xm + y)dγ⊥
m(y)

then by definition of the Ehrhard symmetrization we have

B∗ ∩ (xm + X⊥
m) ⊂ A∗ ∩ (xm + X⊥

m)

13



and therefore
∫

X⊥
m

χA∗(xm + y)χB∗(xm + y)dγ⊥
m(y) =

∫

X⊥
m

χA∗(xm + y)dγ⊥
m(y)

=

∫

X⊥
m

χA(xm + y)dγ⊥
m(y)

≥
∫

X⊥
m

χA(xm + y)χB(xm + y)dγ⊥
m(y)

This inequality also holds if
∫
X⊥

m
χB(xm + y)dγ⊥

m(y) ≥
∫
X⊥

m
χA(xm + y)dγ⊥

m(y) so that
finally

γ (A∗ ∩ B∗) =

∫

Xm

∫

X⊥
m

χA∗(x + y)χB∗(x + y)dγ⊥
m(y)dγm(x)

≥
∫

Xm

∫

X⊥
m

χA(x + y)χB(x + y)dγ⊥
m(y)dγm(x)

= γ (A ∩ B)

which gives (9).

As for the Schwarz symmetrization, a Pólya-Szegö principle holds for the Ehrhard sym-
metrization.

Proposition 3.12. Let u ∈ H1
γ (X), let m ∈ N and let u∗ be the m-dimensional Ehrhard

symmetrization of u. Then u∗ ∈ H1
γ and

∫

X

|∇Hu∗|2H dγ ≤
∫

X

|∇Hu|2H dγ. (10)

Moreover, if m = 1 and equality holds in (10), then

u = ũ
(
ĥ(x)

)
for some ĥ ∈ H ,

and ĥ can be chosen to be a unitary vector.

Proof. In [19, Th. 3.1], inequality (10) is proven for Lipschitz functions, in finite dimen-
sions. We extend it by approximation to Sobolev functions.
We can assume u ≥ 0, since we have (u±)∗ = (u∗)±, where u±, (u∗)± denote the positive
and negative part of u and u∗, respectively.
Let un ∈ FC1

c (X) be positive functions converging to u in H1
γ(X), then by (7), u∗

n

converges to u∗ in L2
γ(X) and thus by the lower semicontinuity of the H1

γ(X) norm we
have ∫

X

|∇Hu∗|2H ≤ lim
n→∞

∫

X

|∇Hu∗
n|2H ≤ lim

n→∞

∫

X

|∇Hun|2H =

∫

X

|∇Hu|2H .
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We now turn to the equality case for one-dimensional symmetrizations. For this we closely
follow [10] and give an alternative proof of (10), based on ideas of Brothers and Ziemer
[9] for the Schwarz symmetrization.
Let u ∈ H1

γ (X) and µ(t) = γ({u > t}) = γ({u∗ > t}). By the coarea formula (3), for all
t ∈ R we have

µ(t) = γ({u > t} ∩ {∇Hu = 0}) +

∫ +∞

t

(∫

{∇Hu 6=0}

1

|∇Hu|H
d|DγχEτ |

)
dτ.

Hence

−µ′(t) ≥
∫

{∇Hu 6=0}

1

|∇Hu|H
d|DγχEt | for a.e. t ∈ R. (11)

Since u∗ is a function depending only on one variable, arguing as in [14] we get

d

dt
γ({u∗ > t} ∩ {∇Hu∗ = 0}) = 0 for a.e. t ∈ R.

As u∗ is monotone we have that |∇Hu∗|H is constant on {u∗ = t}∩{∇Hu∗ 6= 0}. Observe
also that, being u∗ one-dimensional, {u∗ = t} has a well defined meaning. We thus find:

−µ′(t) =
Pγ({u∗ > t})
|∇Hu∗|{u∗=t}

for a.e. t ∈ R,

which implies, recalling (11),

Pγ({u∗ > t})
|∇Hu∗|{u∗=t}

≥
∫

{∇Hu 6=0}

1

|∇Hu|H
d|DγχEt| for a.e. t ∈ R. (12)

Let us note that as in [10, Lem. 4.2], using (3) with g = χ{∇Hu=0} we find

∫

X

χ{∇Hu=0}|∇Hu|Hdγ = 0 =

∫

R

∫

X

χ{∇Hu=0}d|DγχEt |(x) dt

and thus for almost every t ∈ R,

∫

X

χ{∇Hu=0}d|DγχEt|(x) = 0.

This shows that for almost every t ∈ R, ∇Hu(x) 6= 0 for |DγχEt|-almost every x ∈ X and
thus

∫

{∇Hu 6=0}

1

|∇Hu|H
d|DγχEt |(x) =

∫

X

1

|∇Hu|H
d|DγχEt|(x) for a.e. t ∈ R. (13)
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By (3), (5),(12) and (13), we eventually get

∫

X

|∇Hu∗|2dγ =

∫

R

|∇Hu∗|{u∗=t}Pγ({u∗ > t})dt

=

∫

R

Pγ({u∗ > t})2(
Pγ({u∗>t})

|∇Hu∗|{u∗=t}

)dt

≤
∫

R

Pγ({u > t})2∫
X

1
|∇Hu|H d|DγχEt |(x)

dt

≤
∫

R

∫

X

|∇Hu|H d|DγχEt |(x) dt

=

∫

X

|∇Hu|2Hdγ .

As a consequence, if equality holds in (10), then equality holds in the Gaussian isoperi-
metric inequality, that is,

Pγ(u > t) = Pγ(u∗ > t) for a.e. t ∈ R.

This implies that almost every level-set of u is a half-space, i.e. for almost every t ∈ R

there exists ĥt ∈ H such that {u > t} = {ĥt < α(µ(t))}, and without loss of generality we
can assume that |ht|H = 1. Such half-spaces being nested, by Lemma 3.2 we have that
ĥt does not depend on t and thus u(x) = v(ĥ(x)).

Remark 3.13. We notice that the fact that equality in (10) implies that u is one-
dimensional is a specific feature of the Gaussian setting, and the analogous statement does
not hold for the Schwarz symmetrization in the Euclidean case [9]. Indeed, this property is
a consequence of the fact that Gaussian measures, differently from the Lebesgue measure,
are not invariant under translations.

4 Relaxation of perimeter

In this section we compute the relaxation of the perimeter functional

F (u) :=

{
Pγ(E) if u = χE

+∞ otherwise
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with respect to the weak L2
γ(X)-topology. The fact that F is not lower semicontinuous can

be easily checked by taking the sequence En = {〈x∗
n, x〉 < 0}. Indeed, the characteristic

functions of these sets weakly converge to the constant function 1/2, which is not a
characteristic function, while the perimeter of En is constantly equal to 1/

√
2π.

We will show that the relaxation of F is equal to

F (u) :=





∫

X

√
U2(u) + |Dγu|2dγ if 0 ≤ u ≤ 1 γ − a.e.

+∞ otherwise

where ∫

X

√
U2(u) + |Dγu|2dγ =

∫

X

√
U2(u) + |∇Hu|2Hdγ + |Ds

γu|(X)

with Dγu = ∇Hudγ+Ds
γu. Observe that the functional F already appears in the seminal

work of Bakry and Ledoux [6] and in the earlier work of Bobkov [7] in the context of log-
Sobolev inequalities. This functional has been also studied in [10]. See also [4, Remark
4.3] where it appears in a setting closer to ours.

Let us first recall the definition of the lower semicontinous envelope of a function (see
[16] for more details).

Definition 4.1. Let X be a topological vector space. For every function F : X → R, its
lower semicontinuous envelope (or relaxed function) is the greatest lower semicontinuous
function that lies below F .

When X is a metric space, the following caracterization holds.

Proposition 4.2. Let X be a metric space. For every function F : X → R, and every
x ∈ X, the relaxed function F is given by

F (x) = inf

{
lim

n→∞
F (xn) : xn → x

}
.

We now show a representation formula for F which is reminiscent of the definition of
the total variation and of the nonparametric area functional (see [23]). We start with a
preliminary result.

Lemma 4.3. Let g ∈ L∞(X) with g ≥ 0, let µ ∈ M(X,H), and define

f̃(g, µ) :=
√

g2 + |h|2H dγ + |µs| ,

where µ = hγ + µs. There holds

f̃(g, µ)(X) = sup
Φ∈L1

µ(X,H)

ξ∈L1
µ(X)

{∫

X

[Φ, dµ]H +

∫

X

g ξ dγ : |Φ|2H + |ξ|2 ≤ 1 a.e. in X

}
. (14)
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Proof. The proof is adapted from [17].

Notice first that, for (λ, p) ∈ R × H, the function f(λ, p) :=
√

λ2 + |p|2H defines a

norm on the product space R × H. Moreover, if we let fλ(p) :=
√

λ2 + |p|2H , then the

convex conjugate of fλ is f∗
λ(Φ) = −λ

√
1 − |Φ|2H . We divide the proof into three steps.

Step 1. Let

M(g, µ) = sup
Φ∈L1

µ(X,H)

{∫

X

[Φ, dµ]H +

∫

X

g
√

1 − |Φ|2H dγ : |Φ|H ≤ 1 a.e. in X

}
.

We will show that

M(g, hγ) =

∫

X

f(g, h)dγ. (15)

By definition of convex conjugate, it is readily checked that M(g, hγ) ≤
∫
X

f(g, h)dγ. We
thus turn to the other inequality. By definition of the Bochner integral, for every δ > 0,
there exists hi ∈ H and Ai ⊂ X with Ai disjoints Borel sets and i ∈ [1,m] such that if
we set

θ =

m∑

i=1

χAi
hi

then |θ − h|L1
γ
≤ δ. Analogously there exists ηi ∈ X such that setting

g̃ =
m∑

i=1

χAi
ηi

we have |g̃ − g|L1
γ
≤ δ. By the observation at the beginning of the proof and the triangle

inequality we get

|f(g̃, θ) − f(g, h)| ≤ f(g̃ − g, θ − h)| ≤ |g̃ − g| + |θ − h|H .

For every i, by definition of convex conjugate, there exists ξi ∈ H with |ξi|H ≤ 1 such
that

f(ηi, hi) ≤ [ξi, hi]H + ηi

√
1 − |ξi|2H + δ.
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From this, setting Φ =
∑m

i=1 χAi
ξi we have

∫

X

f(g, h)dγ ≤
∫

X

f(g̃, θ)dγ + 2δ

=

m∑

i=1

∫

Ai

f(ηi, hi)dγ + 2δ

≤
m∑

i=1

∫

Ai

[ξi, hi]H + ηi

√
1 − |ξi|2Hdγ + 3δ

=

∫

X

[Φ, h]H + g̃
√

1 − |Φ|2Hdγ + 3δ.

Since
∣∣ g̃
√

1 − |Φ|2H − g
√

1 − |Φ|2H
∣∣ ≤ |g̃ − g| we find

∫

X

f(g, h)dγ ≤
∫

X

Φ · h − g
√

1 − |Φ|2Hdγ + 4δ

≤ M(g, hγ) + 4δ.

Since δ is arbitrary we have M(g, hγ) =
∫
X

f(g, h)dγ.

Step 2. The proof proceeds exactly as in [17] and we only sketch it. Recalling (15), it
remains to show that

M(g, hγ + µs) = M(g, hγ) + |µs|(X).

One inequality is easily obtained, since

M(g, hγ + µs) = sup
Φ

∫

X

[Φ, h]Hdγ +

∫

X

Φ · dµs +

∫

X

g(x)
√

1 − |Φ|2Hdγ

≤
(

sup
Φ

∫

X

[Φ, h]Hdγ +

∫

X

g(x)
√

1 − |Φ|2Hdγ

)
+

∫

X

|dµs|

= M(g, hγ) + |µs|(X).

For the opposite inequality, let δ > 0 be fixed then there exists Φ1 and Φ2 such that

M(g, hγ) ≤
∫

X

[Φ1, h]Hdγ +

∫

X

g(x)
√

1 − |Φ1|2Hdγ + δ

|µs|(X) ≤
∫

X

[Φ2, dµs]H + δ.
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Taking Φ equal to Φ2 on a sufficiently small neighborhood of the support of µs and equal
to Φ1 outside this neighborhood, we get

M(g, hγ) + |µs|(X) ≤
∫

X

[Φ, h]Hdγ +

∫

X

g(x)
√

1 − |Φ|2Hdγ +

∫

X

[Φ, dµs]H + Cδ

≤ M(g, hγ + µs) + Cδ

which gives the opposite inequality.

Step 3. In order to conclude the proof, it is enough to notice that for every Φ ∈ L1
µ(X,H),

with |Φ|H ≤ 1, we have

sup
ξ∈L1

µ(X)

{∫

X

[Φ, dµ]H +

∫

X

g ξ dγ : |Φ|2H + |ξ|2 ≤ 1 a.e. in X

}

=

∫

X

[Φ, dµ]H +

∫

X

g
√

1 − |Φ|2H dγ.

Proposition 4.4. Let u ∈ BVγ(X) then

F (u) = sup
Φ∈FC1

b
(X,H)

ξ∈FC1
b (X)

{∫

X

(udivγ Φ + U(u)ξ) dγ : |Φ(x)|2H + |ξ(x)|2 ≤ 1 ∀x ∈ X

}
. (16)

Proof. We apply Lemma 4.3 with µ = Du and g = U(u). Since µ is tight [4], the space
FC1

b (X,H) is dense in L1
µ(X,H) so that we can restrict the supremum in (16) to smooth

cylindrical functions Φ, ξ.

Remark 4.5. Since U is concave, the duality formula (16) is not sufficient to prove that
F is lower semicontinuous for the weak L2

γ(X)-topology. It shows however the lower-

semicontinuity of F in the strong L2
γ(X)-topology.

We now prove that F is the lower semicontinuous envelope of F .

Theorem 4.6. F is the relaxation of F in the weak L2
γ(X)-topology.

Proof. Let us first notice that F takes finite values only on functions of the closed unit
ball of L2

γ(X) which is metrizable for the weak convergence. Therefore the relaxation and
the sequential relaxation in the weak topology of L2

γ(X) coincide.
Let χEn be a sequence of sets weakly converging in L2

γ(X) to u ∈ BVγ(X), with
uniformly bounded perimeter. We shall show that

lim
n→∞

Pγ(En) ≥ F (u).
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Notice that, by weak convergence, we necessarily have 0 ≤ u ≤ 1 a.e. on X.
For all n ≥ 1 and k ≥ 2, we let Ek

n be the Ehrhard symmetral of En with respect to the
first k variables. Recalling the notation of Section 3, we have

Pγ(Ek+1
n ) ≤ Pγ(En) and Ek+1

n = ESk (EkχEn) .

As

∫

X

|DγEk(χEn)|H ≤ Pγ(En) and Ek(χEn) depends only on the first k variables, by the

compact embedding of BVγk
(Rk) into L1

γk
(Rk) we can extract a subsequence from Ek(χEn)

which converges strongly to uk := Ek(u). From this we get that Ek+1
n = ESk(EkχEn)

tends strongly to Ek+1 := ESk(u
k). By the lower semicontinuity of the perimeter we

then have
lim

n→∞
Pγ(En) ≥ lim

n→∞
Pγ(Ek+1

n ) ≥ Pγ(Ek+1).

For every ϕ ∈ FC1
b (X), with ϕ depending only of the j ≤ k first variables, there holds

∫

X

χEk+1
(x)ϕ(x)dγ(x) =

∫

X

uk(x)ϕ(x)dγ(x) =

∫

X

u(x)ϕ(x)dγ(x),

which implies that the sequence χEk+1
tends weakly to u. In order to conclude the proof

it remains to show that
lim

k→∞
Pγ(Ek+1) = F (u).

Notice that, by Proposition 3.9, there holds

Pγ(Ek+1) = F (uk).

For every Φ ∈ FC1
b (X,H) and ξ ∈ FC1

b (X), depending on the first k variables and such
that the range of Φ is included in Hk, by Proposition 4.4, we have

∫

X

(
uk divγ Φ + U(uk)ξ

)
dγ =

∫

X

(udivγ Φ + U(u)ξ) dγ ≤ F (u).

Taking the supremum in Φ, ξ and recalling (16), we then get

F (uk) ≤ F (u) for all k.

Repeating the same argument with uk+1 instead of u, we obtain that F (uk) is nonde-
creasing in k. Therefore there exists ℓ ≥ 0 such that

lim
k→∞

F (uk) = lim
k→∞

Pγ(Ek+1) = ℓ ≤ F (u).
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Assume by contradiction that ℓ < F (u). Then there exists δ > 0 such that F (uk) ≤
F (u)− δ for all k, hence there exist N ∈ N, Φ ∈ FC1

b (X,H) and ξ ∈ FC1
b (X), depending

only on the first N variables, such that
∫

X

(
uk divγ Φ + U(uk)ξ

)
dγ ≤ F (uk) ≤ F (u) − δ ≤

∫

X

(udivγ Φ + U(u)ξ) dγ − δ

2
,

but for k > N we have
∫

X

(
uk divγ Φ + U(uk)ξ

)
dγ =

∫

X

(udivγ Φ + U(u)ξ) dγ

which leads to a contradiction.

Remark 4.7. Theorem 4.6 provides an example of a nonconvex functional, namely F ,
which is lower semicontinuous for the weak L2

γ(X)-topology. We also know that semicon-
tinuity does not holds for general functional of the form

J(u) =

∫

X

f(u,Dγu)dγ

since if we take for instance f(u, p) :=
√

g2(u) + |p|2 with g such that g(1/2) > U(1/2)
and g(0) = g(1) = 0, then, letting un := {〈x∗

n, x〉 < 0}, we have un ⇀ u = 1/2 weakly in
L2

γ(X), so that

J(u) = g

(
1

2

)
> U

(
1

2

)
=

1√
2π

= lim
n→∞

J(un).

One could wonder what are the right hypotheses for a functional of this form to be lower
semicontinuous with respect to the weak topology.

5 Γ-limit for the Modica-Mortola functional

Let us briefly recall the definition of Γ-convergence. We refer to [16] for a comprehensive
treatment of the subject.

Definition 5.1. Let X be a topological space, and let Fn : X → R be a sequence of
functions. The Γ-lower limit and the Γ-upper limit of the sequence Fn is defined as

(Γ − lim
n→∞

Fn)(x) = sup
U∈N (x)

lim
n→∞

inf
y∈U

Fn(y)

(Γ − lim
n→∞

Fn)(x) = sup
U∈N (x)

lim
n→∞

inf
y∈U

Fn(y)

where N (x) denotes the set of all open neighbourhoods of x in X. When the Γ-lower limit
and the Γ-upper limit coincide, we say that the sequence Fn Γ-converges.
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As for the relaxation, if X is a metric space we have a sequential caracterization of the
Γ-convergence.

Theorem 5.2. Let X be a metric space. A sequence of functions Fn Γ-converges to
F : X → R if and only if the following two conditions hold:

• for every sequence xn converging to x, it holds lim
n→∞

Fn(xn) ≥ F (x)

• for every x ∈ X there exists a sequence xn converging to x with lim
n→∞

Fn(xn) ≤ F (x).

Let now W ∈ C1(R) be a double-well potential with minima in {0, 1}, that is, W (t) ≥ 0
for all t ∈ R, and W (t) = 0 iff t ∈ {0, 1}. We also assume W (t) ≥ C(t2 − 1) for some
C > 0 and t ∈ R. A typical example of such potential is W (t) = t2(t − 1)2.
For any ε > 0 we define the functionals Fε : L2

γ(X) → [0,+∞] as

Fε(u) :=





∫

X

(
ε

2
|∇Hu|2H +

W (u)

ε

)
dγ if u ∈ H1

γ(X)

+∞ if u ∈ L2
γ(X) \ H1

γ (X) .

We are ready to prove our main Γ-convergence result.

Theorem 5.3. When ε tends to zero the functionals Fε Γ-converge, in the weak topology
of L2

γ(X), to the functional cW F , where cW =
∫ 1
0

√
2W (t) dt.

Proof. Notice first that the Γ-limit does not change if we restrict the domain of Fε to the
functions u ∈ H1

γ(X) such that 0 ≤ u ≤ 1. This follows from the following two facts:

- for all u ∈ H1
γ (X), letting ũ = min(max(u, 0), 1), we have Fε(ũ) ≤ Fε(u);

- Fε(u) ≥
∫
X

W (u)
ε

dγ for all u ∈ H1
γ(X), which implies that the Γ-limit is concentrated

on the functions u ∈ L2
γ(X) such that u(x) ∈ {0, 1} for a.e. x ∈ X.

Since the restricted domain is contained in the unit ball of L2
γ(X), which is metrizable

for the weak L2
γ(X)-topology, by Theorem 5.2 the Γ-limit and the sequential Γ-limit of

Fε coincide.

We now compute the Γ-liminf of Fε.
Let uε ∈ H1

γ (X) be such that 0 ≤ uε ≤ 1 and Fε(uε) ≤ C for some C > 0. Then∫
X

W (uε)dγ ≤ Cε, which gives a uniform bound on ‖uε‖L2
γ(X) recalling that W (u) ≥

C(u2 − 1). As a consequence, there exists a weakly converging subsequence, still denoted
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by uε. Letting u be its weak limit, from 0 ≤ uε ≤ 1 we get 0 ≤ u ≤ 1. Using the coarea
formula (2), we obtain the estimate

Fε(uε) =

∫

X

(
ε

2
|∇Hu|2H +

W (u)

ε

)
dγ

≥
∫

X

√
2W (uε) |∇Hu|H dγ

=

∫ 1

0

√
2W (t) Pγ({uε > t}) dt .

Fix now δ > 0. From the fact that γ ({δ ≤ uε ≤ 1 − δ}) → 0 as ε → 0, it follows that,
for every sequence tε ∈ [δ, 1− δ], then functions χ{uε>tε} tend weakly to u in L2

γ(X). For
every ε > 0 let us choose tε ∈ [δ, 1 − δ] such that

∫ 1−δ

δ

√
2W (t)Pγ({uε > t})dt ≥

(∫ 1−δ

δ

√
2W (t)dt

)
Pγ({uε > tε}).

Then, by Theorem 4.6 we have

lim
ε→0

Fε(uε) ≥ lim
ε→0

(∫ 1−δ

δ

√
2W (t)dt

)
Pγ({uε > tε})

≥
(∫ 1−δ

δ

√
2W (t)dt

)
F (u) .

Since δ is arbitrary we get the Γ-liminf inequality.

The Γ-limsup is done similarly to the (Euclidean) finite dimensional case [29, 28]. Since
F is the relaxation of F in the weak L2

γ(X)-topology and since we can approximate sets
of finite perimeter by smooth cylindrical sets by Proposition 2.6, for every u ∈ BVγ(X)
with 0 ≤ u ≤ 1 there exists a sequence En of smooth cylindrical sets with χEn converging
weakly to u and such that Pγ(En) tends to F (u). This shows that we can restrict ourselves
to smooth cylindrical sets for computing the Γ-limsup of Fε.
Let m ∈ N and E = Π−1

m (Em), where Em ⊂ R
m is a smooth set with finite Gaussian

perimeter, and let
dH(x,E) := d(Πm(x), Em)

where d(x,Em) is the usual distance function from Em in R
m. Notice that

dH(x,E) = min{|x − y|H ; y ∈ E, x − y ∈ H},

moreover dH is differentiable almost everywhere with |∇HdH(x,E)|H = 1.
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Let δ > 0, αδ := max{W (t) : t ∈ [0, δ] ∪ [1 − δ, 1]} and define Wδ, Hδ : [0, 1] → R as

Wδ(t) :=





αδ if 0 ≤ t ≤ δ
W (t) if δ ≤ t ≤ 1 − δ
αδ if 1 − δ ≤ t ≤ 1.

Hδ(t) :=

∫ t

0

1√
2Wδ(s)

ds.

Finally let ηδ be the usual truncated one-dimensional transition profile defined as

ηδ(t) :=





0 if t ≤ 0

H−1
δ (t) if 0 ≤ t ≤ Hδ(1)

1 if t > Hδ(1).

Observe that ηδ is a Lipschitz function which verifies
η′2

δ

2 = Wδ(ηδ). We then set

uε(x) := ηδ

(
dH(x,E)

ε

)
.

We finally have

Fε(uε) =

∫

X

(
ε

2
|∇Huε|2H +

W (uε)

ε

)
dγ

≤
∫

X

(
ε

2
|∇Huε|2H +

Wδ(uε)

ε

)
dγ

=

∫

X

ε

2
η′δ

2
(

d(Πm(x))

ε

)( |∇Hd(Πm(x))|
ε

)2

+
1

ε
Wδ

(
ηδ(d(Πm(x)))

ε

)
dγ

=

∫

Rm

[
1

2
η′δ

2
(

d

ε

]
+ Wδ

(
ηδ

(
d

ε

))) |∇d|
ε

dγm

=

∫ Hδ(1)

0

(
η′δ

2(t)

2
+ Wδ(ηδ(t))

)
Pγm({d > εt}) dt.

The proof is completed since for every t ∈ [0,Hδ(1)], Pγm({d > εt}) tends to Pγm(Em) as
ε → 0, and ∫ Hδ(1)

0

(
η′2δ (t)

2
+ Wδ(ηδ(t))

)
dt =

∫ 1

0

√
2Wδ(t) dt .

Thus we have

lim
ε→0

Fε(uε) ≤
(∫ 1

0

√
2Wδ(t) dt

)
Pγm(Em),
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which gives the desired inequality letting δ → 0 and m → +∞.

Remark 5.4. As in the Euclidean case, a similar result can be proven for the volume
constrained problems. In this case, the proof of the Γ-liminf is exactly the same as in
Theorem 5.3, and the Γ-limsup is also very similar. The only difference comes from the
fact that we have to adapt the recovery sequence to have the right volume, and this can
be done as in [28] by slightly translating ηδ.

We now state some simple implications of the Γ-convergence result.

Proposition 5.5. Let m ∈ [0, 1] and uε be a minimizer of

minR
X

u dγ=m

∫

X

(
ε

2
|∇Hu|2H +

W (u)

ε

)
dγ (17)

then uε = vε(ĥε(x)) for some ĥε ∈ H with |hε|H = 1 and some vε minimizer of the
one-dimensional problem

minR
R

vdγ1=m

∫

R

ε

2
v′2dγ +

∫

R

W (v)

ε
dγ1. (18)

in particular, vε (strongly) converges to the characteristic function of a half-line.

Proof. For every u ∈ H1
γ(X), by Proposition 3.12, we have

∫
X

u∗dγ =
∫
X

udγ and

Fε(u
∗) ≤ Fε(u), with equality only if u is of the form u(x) = v(ĥ(x)) for some ĥ ∈ H

with |h|H = 1. Using that ĥ is the limit in L2
γ(X) of linear functions of the form R∗x∗

i ,

it is readily seen that ∇H ĥ = h, and thus we get

Fε(u) =

∫

X

(
ε

2
v′(ĥ(x))2 +

W (v(ĥ(x)))

ε

)
dγ =

∫

R

(
ε

2
v′2dγ +

∫

R

W (v)

ε

)
dγ1.

Therefore problem (17) reduces to the one-dimensional problem (18).
Using the compact embedding of H1

γ1
(R) in L2

γ1
(R) (see [4, Th. 4.10]) and the direct

method of the calculus of variations, we get that (18) has a minimizer. Moreover, by the
Γ-convergence of the one-dimensional functionals in the strong L2

γ1
(R)-topology towards

the a multiple of the perimeter (which can be obtained exactly as in the classical Modica-
Mortola Theorem since compact embedding of BVγ1(R) in L1

γ1
(R) holds), we find that

every sequence of minimizers vε of (18) has a subsequence strongly converging towards
the characteristic of the half-line of measure m.

We finally give another convergence result for the prescribed curvature problem in case
of uniqueness of minimizers.
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Proposition 5.6. Let g ∈ L2
γ(X), then the following assertions are equivalent:

• the functional

Fg(E) = Pγ(E) +

∫

E

gdγ (19)

has a unique minimizer in the class of sets of finite perimeter;

• the functional

F g(u) = F (u) +

∫

X

ugdγ (20)

has a unique minimizer in BVγ(X).

Moreover, when this holds the two minimizers coincides. Finally, if uε is a sequence in
H1

γ (X) satisfying

sup
ε

(
Fε(uε) +

∫

X

uεgdγ

)
≤ C

for some C > 0, then uε has a subsequence strongly converging to χE in L2
γ(X), where E

is the common minimizer of (19) and (20).

Proof. We first notice that the problem (19) always has a solution. Indeed, arguing as
in [12], if En is a minimizing sequence for (19), it has a subsequence weakly converging
to some u ∈ BVγ(X). By the lower semicontinuity of the total variation and the coarea
formula we then have

inf
E

(
Pγ(E) +

∫

E

gdγ

)
≥
∫

X

|Dγu|H+

∫

X

ugdγ =

∫ 1

0

(
Pγ({u > t}) +

∫

{u>t}
g(x)dγ(x)

)
dt

and thus the sets {u > t} minimize Fg for almost every t. As F is the relaxation of the
perimeter we have that the minimum values in (19) and (20) are the same and thus any
minimizer of Fg is also a minimizer of F g. This shows that if uniqueness does not hold
in (19) then it does not hold in (20), too. Now, if u is a minimizer of F g, applying the
coarea formula once again we get

inf
E

Fg(E) = F g(u) ≥
∫

X

|Dγu|H +

∫

X

ugdγ =

∫ 1

0

(
Pγ({u > t}) +

∫

{u>t}
g(x)dγ(x)

)
dt.

As above, this implies that {u > t} solves (19) for almost every t. Therefore, if the
minimizer of F g is not a characteristic function, then uniqueness does not hold neither
in (19) nor in (20). This proves the first part of the Proposition.
The second statement easily follows from Theorem 5.3. Indeed, as the functionals Fε(u)+∫
X

ugdγ Γ-converge to F g in the weak L2
γ(X)-topology, for every sequence uε bounded
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in energy, there exists a subsequence weakly converging to χE (where E is the unique
minimizer of (19) and (20)). However, by the lower semicontinuity of the norm,

m
1
2 ≥ lim

ε→0
‖uε‖L2

γ(X) ≥ ‖χE‖L2
γ(X) = m

1
2 .

Thus ‖uε‖L2
γ (X) converges to ‖χE‖L2

γ(X), which implies the strong convergence of uε.

Remark 5.7. In [24], we provide an example of functionals for which uniqueness of
minimizers holds, namely

Pγ(E) +

∫

X

(g − λ) dγ

where g : X → R is convex and λ ∈ (0,+∞) is large enough.
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