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Abstract. We consider a class of nonlocal generalized perimeters which includes fractional
perimeters and Riesz type potentials. We prove a general isoperimetric inequality for such
functionals, and we discuss some applications. In particular we prove existence of an isoperi-
metric profile, under suitable assumptions on the interaction kernel.

1. Introduction

In this paper we consider a family of geometric functionals, which in particular contains
the fractional isotropic and anisotropic perimeter. More precisely, we define the following
energy defined on measurable subsets E ⊂ RN :

(1) PerK(E) :=

∫
E

∫
RN\E

K(x− y)dxdy =
1

2

∫
RN

∫
RN

|χE(x)− χE(y)|K(x− y)dxdy

where the kernel K : RN → [0,+∞) satisfies the following assumptions:

K(x) = K(−x)(2)

min(|x|, 1)K(x) ∈ L1(RN ).(3)

The functional (1) measures the interaction between points in E and in RN \ E, weighted
by the kernel K.

Note that it is not restrictive to assume (2) since PerK(E) = Per
K̃

(E) for every E, where

K̃(x) := (K(x)+K(−x))/2. Notice also that, if K ∈ L1(RN ), then for every E with |E| <∞,
we have

(4) PerK(E) = |E|‖K‖L1(RN ) −
∫
E

∫
E
K(x− y)dxdy.
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2 A. CESARONI, M. NOVAGA

In the first part of the paper we deal with isoperimetric inequalities for such functionals.
The main result is the following (see Corollary 3.4): if K(x) ≥ µχBr(x) for some constants
µ > 0 and r > 0, then for all measurable sets E there holds

PerK(E) ≥ min(g(|E|), g(|RN \ E|)),

where g(m) := PerK?(Bm), with K? the symmetric decreasing rearrangment of K, and Bm

the ball with volume m centered at 0. We discuss some property of the function g and we
provide a Poincaré type inequality (see Proposition 4.1).

We recall that, in the case of fractional perimeters, sharp quantitative isoperimetric in-
equality, uniform with respect to the fractional exponent bounded away from 0, have been
obtained in [9] (see also [11] for an anisotropic version).

An interesting related question is understanding which conditions on K imply the compact
embedding of the functions with bounded energy JK into Lp spaces, for some p ≥ 1.

In the second part of the paper, we consider the isoperimetric problem

(5) min
E: |E|=m

PerK(E),

for a fixed volume m > 0.
In the case of the fractional perimeter, the existence of isoperimetric sets solving (5) has

been studied in [2, 9] (see also [4] where a bulk term is added to the energy), where it is shown
that balls are the unique minimizers of the fractional perimeter among sets with the same
volume. In the general case, the same result holds if the kernel K is a radially symmetric
decreasing function, as a straightforward consequence of the Riesz rearrangement inequality
[14]. So, we focus on the case in which K is not radially symmetric and decreasing. We
provide an existence result of minimizers of the relaxed problem associated to (5) under
the additional assumption that K ∈ L1(RN ) (see Theorem 5.6). The proof is based on a
concentration compactness type argument. Finally, we show that if K has maximum at
the origin (in an appropriate sense, see condition (38)), then every minimizer of the relaxed
problem is actually the characteristic function of a compact set (see Theorem 5.7).

We are left with the open problem of extending the existence result to more general inter-
action kernels satisfying only (3).

Another interesting problem is to consider kernels which are just Radon measures on RN .
In this case we don’t expect in general compactness of minimizers.

Notation. We denote by Bm(x) the ball centered at x with volume m, that is, the ball with

radius r = m
1
N ω
− 1

N
N , and by Bm for the ball centered at 0 with volume m. We also denote

by B(x, r) the ball of center x and radius r.
For every measurable set E ⊆ RN , χE denotes the characteristic function of E, that is the

function which is 1 on E and 0 outside.
We recall that given a set E with |E| < ∞, its symmetric rearrangement E? is the ball

B|E| that is the ball centered at 0 with volume |E|. Moreover the symmetric decreasing
rearrangement of a nonnegative measurable function h with level sets of finite measure is
defined as

h?(x) =

∫ +∞

0
χ{h>t}?(x)dt.

Note that if h is radially symmetric and decreasing, then h = h?. Moreover, h ∈ Lp(Rn) if
and only if h? ∈ Lp(Rn) with ‖h‖Lp(Rn) = ‖h?‖Lp(Rn), for all p ≥ 1.
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2. Generalized fractional perimeters

In this section we discuss some properties of the K perimeters.

Remark 2.1. Condition (3) implies that if E is a set with |E| < ∞ and HN−1(∂E) < ∞,
then PerK(E) <∞ (see [7, Remark 1.4]). Indeed

PerK(E) =

∫
E

∫
RN\E

K(x− y)dxdy

=

∫
RN

|(E + x) ∩ (RN \ E)|K(x)dx ≤ C
∫
RN

(|x| ∧ 1)K(x)dx

where C is a constant which depends on E.

Proposition 2.2. The following properties hold:

(1) PerK(E) = PerK(RN \ E) and

(6) PerK(E ∩ F ) + PerK(E ∪ F ) ≤ PerK(E) + PerK(F ).

(2) E → PerK(E) is lower semicontinuous with respect to the L1
loc-convergence.

Proof. We start by proving 1. The first equality is a direct consequence of the definition of
PerK . In order to prove (6), we observe that∫

E∪F

∫
RN\(E∪F )

=

∫
E

∫
RN\E

+

∫
F

∫
RN\F

−
∫
E∩F

∫
RN\(E∪F )

−
∫
E

∫
F\(E∩F )

−
∫
F

∫
E\(E∩F )

.

and∫
E∩F

∫
RN\(E∩F )

=

∫
E∩F

∫
RN\(E∪F )

+

∫
E∩F

∫
E\(F∩E)

+

∫
E∩F

∫
F\(F∩E)

.

Therefore

PerK(E ∩ F ) + PerK(E ∪ F ) = PerK(E) + PerK(F )

− 2

∫
E\(E∩F )

∫
F\(E∩F )

K(x− y)dxdy,

which gives (6).
The proof of 2. is a consequence of Fatou lemma, observing that PerK(E) =

∫
RN

∫
RN |χE(x)−

χE(y)|K(x− y)dxdy. �

2.1. Examples. A first class of examples is given by the kernels K(x) which satisfies

λ
1

|x|N+s
≤ K(x) ≤ Λ

1

|x|N+s
,

for some s ∈ (0, 1) and 0 < λ ≤ Λ. This class includes the fractional perimeters, and its
inhomogeneous and anisotropic versions.
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The fractional perimeter has been introduced in [2] and is defined as

(7) Ps(E) :=

∫
E

∫
RN\E

1

|x− y|N+s
dx dy,

for s ∈ (0, 1). It is also possible to substitute the kernel 1
|x−y|N+s with more general heteroge-

neous, isotropic kernels of the type

K(x) =
a(x)

|x|N+s

where a : RN → (0,+∞) is a measurable function such that 0 < λ ≤ a(x) ≤ Λ. The
anisoptropic fractional perimeters have been defined in [11] as follows: let B ⊆ RN be a
convex set which is symmetric with respect to the origin and let | · |B the norm in RN with
unitary ball B, then we define

(8) Ps,B(E) :=

∫
E

∫
RN\E

1

|x− y|N+s
B

dx dy.

Another class of examples, relevant for this paper, is given by the kernels K(x) ∈ L1(RN ),
for which the representation formula (4) holds.

2.2. Coarea formula. We introduce the following functional on functions u ∈ L1
loc(RN ):

(9) JK(u) =
1

2

∫
RN

∫
RN

|u(x)− u(y)|K(x− y)dxdy.

Note that JK(χE) = PerK(E) for all measurable E ⊂ RN .
We provide a coarea formula, linking the functional PerK to JK .

Proposition 2.3 (Coarea formula). The following formula holds

(10) JK(u) =

∫ +∞

−∞
PerK({u > s})ds.

Proof. First of all we observe that, for every measurable function u,

|u(x)− u(y)| =
∫ +∞

−∞
|χ{u>s}(x)− χ{u>s}(y)|ds.

Moreover for every s ∈ R
|χ{u>s}(x)− χ{u>s}(y)| = χ{u>s}(x)χRN\{u>s}(y) + χ{u>s}(y)χRN\{u>s}(x).

Therefore we get, recalling (2), and using Tonelli theorem,

2JK(u) =

∫
RN

∫
RN

|u(x)− u(y)|K(x− y)dxdy

= 2

∫
RN

∫
RN

∫ +∞

−∞
χ{u>s}(x)χRN\{u>s}(y)K(x− y)dsdxdy

= 2

∫ +∞

−∞

∫
{u>s}

∫
RN\{u>s}

K(x− y)dxdyds

= 2

∫ +∞

−∞
PerK({u > s})ds.

�
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3. Isoperimetric inequality

In this section we prove an isoperimetric inequality for generalized nonlocal perimeters.

Proposition 3.1. For every measurable set E ⊆ RN such that |E| <∞, there holds

PerK(E) ≥ PerK∗(B|E|),

where K∗ is the symmetric decreasing rearrangement of K.
In particular, if K is radially symmetric and decreasing, then

PerK(E) ≥ PerK(B|E|).

Moreover, equality holds if and only if E is a translated of B|E|.

Proof. First of all we consider the case in which K ∈ L1(RN ). Note that (χE)? = χB|E| . By

Riesz rearrangement inequality [14], we get that∫
E

∫
E
K(x− y)dxdy =

∫
RN

χE(x)(χE ∗K)(x)dx

≤
∫
RN

χB|E|(x)(χB|E| ∗K
?)(x)dx =

∫
B|E|

∫
B|E|

K?(x− y).

So, recalling (4) we get the conclusion.
Finally, if K = K?, we have that equality in the Riesz rearrangement inequality holds if and

only if χE is equal, up to translation, to its symmetric-decreasing rearrangement, therefore if
and only if E is equal, up to translation, to B|E|.

Now if K 6∈ L1(RN ), we define Kε(x) = K(x) ∧ 1
ε . Then Kε ∈ L1(RN ) and Kε converges

to K monotonically increasing. Note that

K?
ε (x) =

∫ 1
ε

0
χ{K>t}?(x)dt.

So as ε→ 0, also K?
ε → K? monotonically increasing. Therefore by the monotone convergence

theorem if E is a measurable set we get that

lim
ε→0

PerKε(E) = PerK(E) lim
ε→0

PerK?
ε
(E) = PerK?(E).

By the previous argument we get PerKε(E) ≥ PerK?
ε
(B|E|). So, we conclude sending

ε→ 0. �

For every m ≥ 0, we define
g(m) := PerK?(Bm)

where we recall that Bm is the ball centered at 0 with volume m. We also set g(+∞) = +∞.
We provide some estimates on the function g.

Lemma 3.2.

(1) If K 6∈ L1(RN ), then

(11) lim
m→0+

g(m)

m
= +∞.

(2) If K ∈ L1(RN ), then

(12) g(m) ≤ ‖K‖L1m, lim
m→0+

g(m)

m
= ‖K‖L1 .
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Proof. For x ∈ RN and m > 0 we define

K?
m(x) =

1

m

∫
Bm(x)

K?(y)dy.

We have ∫
RN

K?
m(x)dx =

1

m

∫
RN

∫
Bm

K?(x+ y)dydx

=
1

m

∫
Bm

∫
RN

K?(x)dxdy =

∫
RN

K?(x)dx.

In particular K? ∈ L1(RN ) if and only if K?
m ∈ L1(RN ) and ‖K?‖L1 = ‖K?

m‖L1 . We recall
that ‖K?‖L1 = ‖K‖L1 .

We then compute

PerK?(Bm) =

∫
Bm

∫
RN\Bm

K?(x− y)dxdy = m

∫
RN\Bm

K?
m(x)dx,

which gives (11) and (12), sending m→ 0. �

Proposition 3.3. Assume that the kernel K satisfies the following condition:

(13) there exist µ, r > 0 such that K(x) ≥ µ for all x ∈ B(0, r).

Let E be a measurable set such that PerK(E) <∞, then |E| <∞ or |RN \ E| <∞.

Proof. Let {Qi}i∈N be a partition of RN made of cubes of sidelength r/
√
n, where r is as in

(13). Note that for all x, y ∈ Qi we have K(x− y) ≥ µ.
Assume by contradiction that |E| = |RN \ E| =∞. Then three possible cases may verify:

either there exists δ > 0 such that lim supi |E∩Qi| ≤ (1−δ)|Qi| or lim supi |Qi\E| ≤ (1−δ)|Qi|
or there exist two subsequences Qin , Qjn such that limn |Qin ∩ E| = limn |Qjn \ E| = |Qi|.

Case 1: assume there exists δ > 0 such that lim supi |E ∩Qi| ≤ (1− δ)|Qi|. So there exists
i0 > 0 such that for all i ≥ i0, |Qi \ E| ≥ δ/2|Qi|. Then we get

PerK(E) ≥
∑
i

∫
Qi∩E

∫
Qi\E

K(x− y)dxdy ≥ µ
∑
i≥i0

|Qi ∩ E||Qi \ E| ≥ µ
δ

2

∑
i≥i0

|E ∩Qi|.

This implies, recalling that PerK(E) < ∞, that
∑

i |E ∩ Qi| < ∞, which is in contradiction
with |E| =∞.

Case 2: assume there exists δ > 0 such that lim supi |E ∩ Qi| ≤ (1 − δ)|Qi|. Then the
argument is the same as in Case 1, substituting E with RN \ E.

Case 3: assume that here exist two subsequences Qin , Qjn such that limn |Qin ∩ E| =
limn |Qjn \ E| = |Qi|. Therefore for δ > 0 there exists i0 such that for all jn, in ≥ i0, we get
|Qin ∩ E|, |Qjn \ E| > (1 − δ)|Qi|. By continuity we get that there exists a subsequence Q̄i

such that |Q̄i ∩ E|, |Q̄i \ E| ≥ δ|Q̄i|, So,

PerK(E) ≥
∑
i

∫
Q̄i∩E

∫
Q̄i\E

K(x− y)dxdy

≥ µ
∑
i

|Q̄i ∩ E||Q̄i \ E| ≥ µδ2
∑
i

|Q̄i|2 =∞

giving a contradiction to PerK(E) <∞.
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As a consequence, neither of the three cases can arise, which implies that either |E| or
|RN \ E| are finite.

�

From Propositions 3.1 and 3.3 we immediately get the following result:

Corollary 3.4. Assume that K satisfies condition (13). Then, for all measurable sets E
there holds

PerK(E) ≥ min(g(|E|), g(|RN \ E|)).

4. Poincaré inequality

Proposition 4.1. Assume that the kernel K satisfies (13) and that there exist k ≥ 1 and a
constant C depending on k, N such that

(14) g(m) ≥ mk

C
∀m > 0.

Then, for all u ∈ L1
loc with JK(u) <∞, there holds

(15) ‖u−m(u)‖Lk(RN ) ≤ CJK(u),

where

(16) m(u) = inf{s | |{u(x) > s}| <∞} ∈ R.

Moreover if u ∈ L1(RN ), then m(u) = 0.

Proof. The argument is similar to the one in [1, Theorem 3.47]. First of all we observe that,
since JK(u) < ∞, by the coarea formula (10) the set S of s ∈ R such that PerK({x |u(x) >
s}) < ∞ is dense in R. So by Proposition 3.3 for every s ∈ S, either |{u(x) > s}| < ∞ or
|{u(x) ≤ s}| <∞. Note that if s > m(u), then there exists t ∈ (m(u), s) such that |{u(x) >
t}| < ∞ and then |{u(x) > s}| < ∞. Analogously, if s < m(u), then |{u(x) ≤ t}| < ∞.
Moreover m(u) ∈ R. Indeed, if by contradiction this were not true, and e.g. m(u) = −∞
(the other case being similar), we would get that |{u(x) > t}| < ∞ for every t ∈ R. By the
coarea formula ∫ −n

−n−1
PerK({u(x) > t})dt ≤ 1

2
JK(u) ∀n ∈ N,

so there exist r > 0 and tn ∈ [−n − 1,−n] such that PerK({u(x) > tn} ≤ r. By the
isoperimetric inequality |{u(x) > tn}| ≤ (Cr)k, but this is contradiction with the fact that
{u(x) > tn} → RN as n→ +∞.

Finally, if u ∈ L1(RN ), m(u) = 0. Indeed, by Chebychev inequality for every s > 0, we
have that

|{x |u(x) ≤ −s}|+ |{x |u(x) > s}| ≤ |{x ||u(x)| ≥ s}| ≤ 1

s

∫
RN

|u|dx < +∞.

We denote by u+ = max(u−m(u), 0) the positive part of u−m(u). Then, by definition of
m(u), we get that |{x |u+(x) > s}| <∞ for all s > 0.
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After a change of variable, we get

(17)

∫
RN

(u+)kdx =

∫ +∞

0
|{x |u+(x) > t

1
k }|dt

= k

∫ +∞

0
|{x |u+(x) > s}|sk−1ds.

In [1, Lemma 3.48]) it is shown that, if f : (0,+∞)→ [0,+∞) is decreasing and k ≥ 1, then

k

∫ T

0
f(s)sk−1ds ≤

(∫ T

0
f(s)

1
k ds

)k

∀T > 0.

So, we apply this inequality to f(s) = |{x |u+(x) > s}|. This gives, by recalling the definition
of m(u) and using isoperimetric inequality (14),

(18) k

∫ +∞

0
|{x |u+(x) > s}|sk−1ds ≤

(∫ +∞

0
|{x |u+(x) > s}|

1
k ds

)k

≤
(
C

∫ +∞

0
JK({x |u(x) > s})ds

)k

.

Therefore, putting together (17) and (18) and recalling the coarea formula (10), we get(∫
RN

(u+)kdx

) 1
k

≤ CJK(u).

Repeating the same argument for the negative part of u−m(u), i.e. u− = −min(u−m(u), 0),
we conclude. Indeed, again by definition of m(u), we get that for all s > 0, |{x |u−(x) >
s}| <∞. �

Remark 4.2. If u ∈ L1(RN ) assumption (13) is not needed, indeed for all s ∈ R with s 6= 0
either |{u(x) > s}| <∞ or |{u(x) ≤ s}| < +∞, so that it is not necessary to use Proposition
3.3.

5. Existence of an isoperimetric profile

In this section we show the existence of an isoperimetric profile, that is, a solution to Prob-
lem (5), under suitable assumptions on the kernel K. First of all we will assume throughout
this section that K 6≡ 0 and

(19) K ∈ L1(RN ).

We observe that, if K = K?, then by Proposition 3.1 we know that the ball of volume m
is the unique minimizer of (5), up to translations.

In order to get existence of minimizers, we first consider a relaxed version of the perimeter
functional, obtained by extending it to general densities functions. More precisely, we define
the new energy as follows: given f : RN → [0, 1], with f ∈ L1(RN ), we let

(20) PK(f) :=

∫
RN

∫
RN

f(x)[1− f(y)]K(x− y)dxdy.

Note that PK(χE) = PerK(E) and the constraint 0 ≤ f ≤ 1 is inherited by the original
problem, naturally arising from the relaxation procedure.
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Note that the previous energy can be written as

(21) PK(f) = ‖f‖L1‖K‖L1 −
∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy.

The relaxed version of the isoperimetric problem (5) can be restated as follows. Given
m ≥ 0, we consider

(22) inf
f∈Am

PK(f),

where the set of admissible functions is defined as

Am =

{
f ∈ L1(RN , [0, 1]),

∫
RN

f(x)dx = m

}
.

Notice also that

lim inf
n

PerK(En) = PK(f)

where the liminf is taken over all sequences En with |En| = m, such that χEn

∗
⇀ f weakly∗

in L∞.
Due to (21), the minimization problem (22) is equivalent to the maximization problem

(23) sup
f∈Am

∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy.

We now show monotonicity and subadditivity of the energy in (23) with respect to m.

Lemma 5.1.

i) If m1 > m2 > 0 then

sup
f∈Am1

∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy ≥ sup
f∈Am2

∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy.

ii) If
∑l

i=1mi = m then

l∑
i=1

sup
fi∈Ami

∫
RN

∫
RN

fi(x)fi(y)K(x− y)dxdy ≤ sup
f∈Am

∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy.

Moreover, if the equality holds in the above inequality and if the supremum in (23) is
attained for all volumes mi’s, then mi = 0 for all i’s except one.

Proof. i) Let f ∈ Am2 and let ε > 0. Let E ⊆ RN such that f(x) < 1 − ε in E and
|E| = (m1 −m2)/ε. We define

f̃(x) := f(x) + εχE(x) x ∈ RN .

We have f̃ ∈ Am1 . Moreover, since K ≥ 0,∫
RN

∫
RN

f̃(x)f̃(y)K(x− y)dxdy =

∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy

+ 4ε

∫
RN

∫
E
f(x)K(x− y)dxdy + ε2

∫
E

∫
E
K(x− y)dxdy

≥
∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy.
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ii) We consider the case l = 2, as the case l > 2 can be treated analogously. Let fi ∈ Ami ,
and let ε > 0 and R > 0 such that

∫
RN\B(0,R) fi(x)dx ≤ ε for i = 1, 2. Note that∣∣∣∣∣

∫
RN

∫
RN

fi(x)fi(y)K(x− y)dxdy −
∫
B(0,R)

∫
B(0,R)

fi(x)fi(y)K(x− y)dxdy

∣∣∣∣∣ ≤ 2 ε ‖K‖L1 .

We fix xR ∈ RN such that (f1(x)χB(0,R)(x))(f2(x−xR)χB(xR,R)) = 0 for a.e. x, and we let

f(x) := f1(x)χB(0,R)(x) + f2(x− xR)χB(xR,R).

Then, f ∈ Am′ for some m′ ∈ [m− 2ε,m]. Hence, by item i), we get

(24) sup
g∈Am

∫
RN

∫
RN

g(x)g(y)K(x− y)dxdy ≥ sup
g∈Am′

∫
RN

∫
RN

g(x)g(y)K(x− y)dxdy

≥
∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy =
2∑

i=1

∫
B(0,R)

∫
B(0,R)

fi(x)fi(y)K(x− y)dxdy

+

∫
B(0,R)

∫
B(0,R)

f1(x)f2(y)K(x− y + xR)dxdy

≥
2∑

i=1

∫
RN

∫
RN

fi(x)fi(y)K(x− y)dxdy − 4 ε ‖K‖L1 ,

from which we conclude by the arbitrariness of ε.
Note that, since K 6≡ 0, we can always choose xR such that∫

B(0,R)

∫
B(0,R)

f1(x)f2(y)K(x− y + xR)dxdy > 0

so that the last inequality in (24) is in fact a strict inequality. �

5.1. The potential function. Given a function f ∈ Am, we can define the potential of f as

(25) V (x) :=

∫
RN

f(y)K(x− y)dy.

In the following we give some properties of the potential V .

Proposition 5.2.

i) V ∈ C(RN ) ∩ L1(RN ) ∩ L∞(RN ), with 0 ≤ V ≤ ‖K‖L1 and ‖V ‖L1 = m‖K‖L1.
ii) lim|x|→+∞ V (x) = 0.

iii) There exists x ∈ RN , density point of f , such that f(x) < 1 and V (x) > 0.

Proof. i) By definition V ∈ L1 ∩ L∞, with 0 ≤ V ≤ ‖K‖L1 and ‖V ‖L1 = m‖K‖L1 . Observe
that since f ∈ L1 and K ∈ L1,

lim
h→0

∫
RN

|f(y − x− h)− f(y − x)|K(y)dy = 0 for every x.

This implies that V is continuous.
ii) Let ε > 0 and let Aε := {f > ε}. We have

(26) V (x) =

∫
RN

K(y)f(x− y)dy ≤ ε‖K‖L1 +

∫
x−Aε

K(y)dy.
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For R > 0 we have

(27)

∫
x−Aε

K(y)dy =

∫
x−(Aε∩B(0,R))

K(y)dy +

∫
x−(Aε\B(0,R))

K(y)dy.

Since K ∈ L1(RN ) and limR→∞ |Aε \B(0, R)| = 0, for R sufficiently large we have∫
x−(Aε\B(0,R))

K(y)dy ≤ ε‖K‖L1 ,

which gives, recalling (27),∫
x−Aε

K(y)dy ≤
∫
x−(Aε∩B(0,R))

K(y)dy + ε‖K‖L1(28)

≤
∫
|y|≥|x|−R

K(y)dy + ε‖K‖L1 ≤ 2 ε ‖K‖L1 ,

for x large enough (depending on R). The thesis now follows from (26), (28) and the arbi-
trariness of ε.
iii) Since K 6≡ 0, there exist δ > 0 and a bounded set A with |A| = k > 0 such that 0 6∈ A

and K(z) ≥ δ for a.e. z ∈ A. Let x0 ∈ RN be a Lebesgue point of f such that f(x0) > 0. Let
y0 ∈ A be a point of density 1 in A, such that x0 + y0 is a density point of f and we compute

V (x0 + y0) ≥
∫
A
f(x0 + y0 − z)K(z)dz ≥ δ

∫
A
f(x0 + y0 − z)dz > 0.

If f(x0 + y0) < 1, we are done, c ≥ V (x0 + y0) > 0. If, on the other hand, f(x0 + y0) = 1
for all points y0 which are points of density 1 of A and density points for f(x0 + ·), then we
consider y1 ∈ A be a point of density 1 in A, such that x0 + y0 + y1 is a density point of f
and we compute

V (x0 + y0 + y1) ≥
∫
A
f(x0 + y0 + y1 − z)K(z)dz ≥ δ

∫
A
f(x0 + y0 + y1 − z)dz > 0.

Repeating this argument, we construct a sequence yn ∈ A of points of density 1 such that
x0 + y0 + · · ·+ yn is a density point of f , and such that V (x0 + y0 + · · ·+ yn) > 0. Note that
for some n ≥ 0, we get that f(x0 + y0 + · · ·+ yn) < 1. If it were not the case, we would get

m =

∫
RN

f(x)dx ≥
∑
n

∫
x0+nA

f(x)dx =
∑
n

|A| = +∞

which is impossible. �

5.2. First and second variation. We now compute the first and second variation of the
energy in (22).

Lemma 5.3. Let f ∈ Am be a minimizer of (22). Let S := {x |f(x) = 1} and N :=
{x |f(x) = 0}.

i) For every ψ, φ ∈ L1(RN , [0, 1]) with
∫
RN φ(x)dx =

∫
RN ψ(x)dx, and such that ψ ≡ 0

a.e. in S and φ ≡ 0 a.e. in N , the following holds

(29)

∫
RN

(ψ(x)− φ(x))V (x)dx ≤ 0.
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ii) There exists a constant c > 0 such that

(30)


V (x) ≡ c for every x ∈ RN \ (N ∪ S)

V (x) ≥ c for every x ∈ S
V (x) ≤ c for every x ∈ N.

Proof. i) We argue as in [6, Lemma 1.2]. First observe that for every λ,
∫
RN f + λ(ψ −

φ)dx =
∫
RN fdx = m. Moreover, for all λ ∈ [0, 1] and a.e. x ∈ S ∪ N , we get that

f(x) + λ(ψ(x) − φ(x)) ∈ [0, 1]. We consider two sequences ψε → ψ, φε → φ in L1 such that∫
RN ψεdx =

∫
RN φεdx =

∫
RN φdx and such that ψε(x) ≡ 0 on the set {x|f(x) > 1 − ε} and

φε ≡ 0 on the set {x |f(x) ≤ ε}. So, choosing λ > 0 sufficiently small (depending on ε) we
can show that f + λ(ψε − φε) ∈ Am. By minimality of f we get

1

λ
(PK(f + λ(ψε − φε))− PK(f)) ≥ 0.

So, sending λ→ 0 and recalling that K is symmetric (2), we get∫
RN

(ψε(x)− φε(x))(1− 2f(y))K(x− y)dx ≥ 0.

So, sending ε→ 0 and recalling that
∫
RN (φ(x)− ψ(x))dx = 0, we conclude

0 ≤
∫
RN

(ψ(x)− φ(x))(1− 2f(y))K(x− y)dx

= ‖K‖L1

∫
RN

(ψ(x)− φ(x))dx− 2

∫
RN

(ψ(x)− φ(x))V (x)dx

= −2

∫
RN

(ψ(x)− φ(x))V (x)dx.

ii) Choosing ψ, φ in (29) such that ψ = 0 = φ on S ∪ N , we can exchange the role of ψ
and φ, and obtain that in RN \ (N ∪ S), V has to be constant. So, there exists c > 0 (by
Proposition 5.2 iii)) such that V (x) ≡ c in RN \ (N ∪ S).

Choosing φ in (29) such that φ = 0 a.e. in S ∪N , we get, since
∫
RN (ψ(x) − φ(x))dx = 0,∫

RN\(N∪S)(ψ(x)− φ(x))dx = −
∫
S ψ(x)dx. We compute

0 ≥
∫
S

(ψ(x)− φ(x))V (x)dx+

∫
N

(ψ(x)− φ(x))V (x)dx+ c

∫
RN\(S∪N)

(ψ(x)− φ(x))dx

=

∫
N
ψ(x)V (x)dx+ c

∫
RN\(S∪N)

(ψ(x)− φ(x))dx =

∫
N
ψ(x)(V (x)− c)dx

for all ψ ∈ L1(RN , [0, 1]) such that ψ = 0 a.e. in S and
∫
RN (ψ(x)−φ(x))dx = 0. This implies

that V ≤ c in N . With an analogous argument, exchanging the role of ψ and φ, we get
V (x) ≥ c in S.

�

As immediate consequence of the first variation (30) and of the properties of the potential
V we obtain that every minimizer of (22) has compact support.

Proposition 5.4. Every minimizer f ∈ Am of (22) has compact support.



THE ISOPERIMETRIC PROBLEM FOR NONLOCAL PERIMETERS 13

Proof. By Proposition 5.2 lim|x|→+∞ V (x) = 0. Hence we can find R > 0 such that 0 ≤
V (x) < c for |x| > R, where c > 0 is the constant appearing in (30). By (30) this implies
immediately that the support of f is contained in BR(0). �

We now consider the second variation of the functional.

Lemma 5.5. Let f ∈ Am be a minimizer of (22) and let S, N be as in Lemma 5.3. Then,
for every ξ ∈ L1(RN , [−1, 1]) with

∫
RN ξ(x)dx = 0, and such that ξ ≡ 0 a.e. in N ∪S, it holds

(31)

∫
RN

∫
RN

ξ(x)ξ(y)K(x− y)dxdy ≤ 0.

Proof. We argue as in [6, Lemma 1.5]. Reasoning as in the proof of Lemma 5.3, item i), we
can assume that there exists a sequence ξε → ξ in L1 such that

∫
RN ξε(x)dx = 0 and ξε ≡ 0

a.e. in {x | f(x) ≤ ε or f(x) ≥ 1 − ε}. So for λ sufficiently small f + λξε ∈ Am and by
minimality we get

0 ≤ PK(f + λξε)− PK(f)

= λ

∫
RN\(N∪S)

(‖K‖L1 − 2V (x))ξε(x)dx− λ2

∫
RN

∫
RN

ξε(x)ξε(y)K(x− y)dxdy.

Recalling (30) and the fact that
∫
RN ξε(x)dx = 0, we conclude the desired inequality by letting

ε→ 0. �

5.3. Existence of minimizers.

Theorem 5.6. For every m > 0 there exists at least one f ∈ Am which solves the minimiza-
tion problem (22).

Proof. The proof is similar to that in [6, Theorem 1.9] (see also [4]), and is based on a
concentration compactness argument.

Let fn ∈ Am be a minimizing sequence, and recall that the energy can be written as

PK(fn) = m‖K‖L1 −
∫
RN

∫
RN

fn(x)fn(y)K(x− y)dxdy.

We consider a partition of RN in disjoint cubes: let Q = [0, 1]n and let Qz := z + Q for
z ∈ ZN . We fix ε > 0 small and divide the cubes in two subsets:

Iε,n := {z ∈ ZN |
∫
Qz

fn(x)dx =: mn,z ≤ ε}, Aε,n := ∪z∈Iε,nQz

and

Jε,n := {z ∈ ZN |
∫
Qz

fn(x)dx = mn,z > ε}, Eε,n := ∪z∈Jε,nQz.

For z ∈ Iε,n and w ∈ ZN , recalling Riesz rearrangement inequality, we have

(32)

∫
Qz

∫
Qw

fn(x)fn(y)K(x− y)dxdy ≤
∫
Bmn,w

∫
Bmn,z

K?(x− y)dxdy

=

∫
Bmn,w

∫
Bmn,z (x)

K?(y)dydx ≤ mn,w

∫
Bmn,z

K?(y)dy ≤ mn,w

∫
Bε

K?(y)dy,

where the last inequality follows from the fact that z ∈ Iε,n, and the previous inequality from
the fact that K? is symmetrically decreasing.
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For R > 0, we compute∫
Aε,n

∫
RN

fn(x)fn(y)K(x− y)dxdy

=
∑

w∈ZN ,z∈Iε,n,|z−w|>R

∫
Qz

∫
Qw

fn(x)fn(y)K(x− y)dxdy

+
∑

w∈ZN ,z∈Iε,n,|z−w|≤R

∫
Qz

∫
Qw

fn(x)fn(y)K(x− y)dxdy.

By (32) the second addendum can be bounded as follows∑
w∈ZN ,z∈Iε,n,|z−w|≤R

∫
Qz

∫
Qw

fn(x)fn(y)K(x− y)dxdy

≤
∑

w∈ZN

mn,w(2R)N
∫
Bε

K?(y)dy ≤ m(2R)N
∫
Bε

K?(y)dy.

On the other hand the first addendum can be bounded as∑
w∈ZN ,z∈Iε,n,|z−w|>R

∫
Qz

∫
Qw

fn(x)fn(y)K(x− y)dxdy

≤
∑

z∈Iε,n

mz,n

∫
|y|>R−

√
N
K(y)dy ≤ m

∫
|y|>R−

√
N
K(y)dy.

Collecting the two estimates, we get

(33)

∫
Aε,n

∫
RN

fn(x)fn(y)K(x− y)dxdy ≤ m(2R)N
∫
Bε

K?(y)dy +m

∫
|y|>R−

√
N
K(y)dy.

Since K ∈ L1, hence also K? ∈ L1, we can choose R = R(ε) in such a way that

lim
ε→0

R(ε) = +∞ and lim
ε→0

R(ε)N
∫
Bε

K?(y)dy = 0.

With this choice of R, from (33) we get

(34)

∫
Aε,n

∫
RN

fn(x)fn(y)K(x− y)dxdy ≤ r(ε)

where r(ε)→ 0 as ε→ 0, uniformly in n. As a consequence, we obtain

(35) PK(fn) ≥ m‖K‖L1 −
∫
Eε,n

∫
Eε,n

fn(x)fn(y)K(x, y)dxdy − 2r(ε).

Observe that, due to the fact that
∫
RN f(x)dx = m, we have #Jε,n ≤ m/ε. Given wi, wj ∈

Jε,n, up to subsequence we get that |wi − wj | → ci,j ∈ N ∪ {+∞} as n → +∞. We consider
the following sets, for l = 1, . . . ,Hε, with Hε ≤ m

ε

(36) Ql
ε,n =

⋃
wi∈Jε,n, cil<+∞

Qwi .
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Note that by construction dist(Ql
ε,n,Qk

ε,n)→ +∞ if k 6= l as n→ +∞. Moreover, always by
construction, we get that

diam(Ql
ε,n) ≤

∑
i∈{1,...Hε},cil<∞

(2cil + 2
√
N) ≤Mε,

where Mε does not depend on n.

Let f l,εn := fnχQl
ε,n

and let xl,n such that f l,εn (xl,n) > 0. Up to subsequences we can assume

that f l,εn (·+xn,l)
∗
⇀ f l,ε weakly∗ in L∞, as n→ +∞. Observe that the support of f l,εn (·+xn,l)

is contained in B(0,Mε) for every n. Moreover, since the functional PK is continuous with
respect to the tight convergence (see for instance [6]), we get that

lim
n

∫
RN

∫
RN

f l,εn (x+ xn,l)f
l,ε
n (y + xn,l)K(x− y)dxdy

=

∫
RN

∫
RN

f l,ε(x)f l,ε(y)K(x− y)dxdy.

Therefore

(37) inf
Am

PK = lim
n
PK(fn) ≥ m‖K‖L1 − lim

n

∫
Eε,n

∫
Eε,n

fn(x)fn(y)K(x− y)dxdy − 2r(ε)

= m‖K‖L1 −
Hε∑
l=1

lim
n

∫
RN

∫
RN

f l,εn (x+ xn,l)f
l,ε
n (y + xn,l)K(x− y)dxdy − 2r(ε)

= m‖K‖L1 −
Hε∑
l=1

∫
RN

∫
RN

f l,ε(x)f l,ε(y)K(x− y)dxdy − 2r(ε).

We pass to a subsequence εk → 0 such that εk is decreasing. So Hεk → H ∈ (0,+∞].

Moreover, we can relabel the sequence in such a way that f l,εkn and then also their limit
f l,εk are monotone in εk. By monotone convergence f l,εk → f l strongly in L1. Moreover
if ml =

∫
RN f

l(x)dx, then
∑H

l=1ml = m̃ ≤ m. Again by continuity of the functional with

respect to the L1-convergence, from (37) and from Lemma 5.1 we get that

sup
f∈Am

∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy

= lim
n

∫
RN

∫
RN

fn(x)fn(y)K(x− y)dxdy) ≤
H∑
l=1

∫
RN

∫
RN

f l(x)f l(y)K(x− y)dxdy

≤
H∑
l=1

sup
Aml

∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy ≤ sup
Am̃

∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy

≤ sup
Am

∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy.

Therefore the previous are all equalities, and f l is a minimizer of PK in Aml
for all l’s. In

particular, recalling again Lemma 5.1, we get that H = 1, and f1 is a minimizer of PK in
Am. �
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We finally show that, under a further condition on K, the isoperimetric problem (5) admits
a solution.

Theorem 5.7. Assume that for a.e. x ∈ RN there exists εx > 0 such that for all ε < εx

(38)

∫
B(0,2ε)

|B(0, ε) ∩B(z, ε)|(K(z)−K(x+ z))dz > 0.

Then, for every m > 0 there exists a compact set E ⊆ RN such that |E| = m and E solves
the isoperimetric problem (5).

Proof. By Theorem 5.6 there exists at least one f ∈ Am which solves the minimization
problem (22). Moreover the support of f is compact due to Proposition 5.4.

Assume by contradiction that f is not a characteristic function. Then there exist x̄ 6= ȳ
Lebesgue points of f such that 0 < f(x̄), f(ȳ) < 1. Let ε < 1

2 |x̄− ȳ| and define the function

ξ(x) := χB(x̄,ε)−χB(ȳ,ε). Therefore, by the second variation formula (31), for every ε < 1
2 |x̄−ȳ|

we get

0 ≥
∫
RN

∫
RN

ξ(y)ξ(x)K(x− y)dxdy

= 2

∫
B(0,ε)

∫
B(0,ε)

(K(x− y)−K(x̄− ȳ − (x− y))dxdy

= 2

∫
B(0,2ε)

|B(0, ε) ∩B(z, ε)|(K(z)−K(x̄− ȳ + z))dz,

which contradicts (38), and concludes the proof. �

Remark 5.8. A sufficient condition for (38) to hold is that

(39) lim inf
z→0

(K(z)−K(z + x)) > 0 for a.e. x ∈ RN .

In particular this condition is always verified if K is positive definite, that is,{∫
RN

∫
RN φ(x)φ(y)K(x− y)dxdy ≥ 0 ∀φ ∈ L1(RN )∫

RN

∫
RN φ(x)φ(y)K(x− y)dxdy = 0 iff φ ≡ 0.
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