Prova scritta di Istituzioni di Analisi Matematica

3 giugno 2014

Esercizio 1. Si consideri l'operatore $T: L^1((0,1)) \to C^0([0,1])$ definito da

$$T(f)(x) = \int_0^x tf(t) dt \qquad \text{per ogni } f \in L^1((0,1)).$$

- i) Mostrare che T è un operatore lineare e continuo, e calcolarne la norma.
- ii) Vedere che T è a valori nel sottospazio $W^{1,1}((0,1))$.
- iii) Calcolare gli autovalori di T e dedurne che T è iniettivo.
- iv) Dire se T è surgettivo sul sottospazio $\{g \in W^{1,1}((0,1)): g(0) = 0\}.$
- v) Dire se T è compatto.

Esercizio 2. Sia X uno spazio vettoriale normato e sia C un sottoinsieme aperto e limitato di X che contiene l'origine ed è simmetrico rispetto ad essa (cioè $x \in C$ se e solo se $-x \in C$). Definiamo per ogni $T \in X'$

$$||T||_C = \sup_{y \in C} T(y).$$

- i) Mostrare che $\| \|_C$ definisce una norma su X'.
- ii) Mostrare che $(X', || ||_C)$ è uno spazio di Banach.

Esercizio 3. Sia $S:L^2((0,+\infty)) \to \ell^2$ l'operatore definito da

$$S(f)_n = \int_n^{n+1} f(t) dt.$$

- i) Mostrare che S è un operatore lineare e continuo, e calcolarne la norma.
- ii) Dire se S è iniettivo.
- iii) Dire se S è surgettivo.

Soluzioni.

Soluzione Esercizio 1.

i)-ii) Per ogni $f \in L^1((0,1))$ la funzione xf(x) appartiene a $L^1((0,1))$ per cui T è ben definito, inoltre $T(f)'(x) = xf(x) \in L^1((0,1))$ e quindi T ha valori in $W^{1,1}((0,1))$. T è lineare per la linearità dell'integrale. Vediamo che T è anche limitato: per ogni $x \in [0,1]$ si ha

$$|T(f)(x)| \le \int_0^x t|f(t)| dt \le x \int_0^x |f(t)| dt \le \int_0^1 |f(t)| dt$$

da cui segue $||T(f)||_{\infty} \leq ||f||_{L^1}$. Per calcolare la norma di T è necessario ottimizzare le disuguaglianze sopra. Cerco quindi f di segno costante (ad es. positiva) il cui supporto sia concentrato vicino a t = 1 e che abbia norma 1.

Presa per $n \in \mathbb{N}$, la successione $\{f_n\}$ definita da

$$f_n(t) = 0$$
 se $0 \le t \le 1 - \frac{1}{n}$ e $f_n(t) = n$ se $1 - \frac{1}{n} < t \le 1$

ha che $||f_n||_{L^1} = 1$ e

$$T(f_n)(x) = 0$$
 se $0 \le x \le 1 - \frac{1}{n}$ e $T(f_n)(x) = \frac{n}{2}(x^2 - 1) + 1 - \frac{1}{2n}$ se $1 - \frac{1}{n} < x \le 1$.

Poiché $||T(f_n)||_{\infty} = 1 - 1/(2n)$, si conclude che ||T|| = 1.

iii) Sia $\lambda \in \mathbb{R}$ fissato e sia $f \in L^1((0,1))$ tale che $T(f) = \lambda f$. Visto che T è a valori in $W^{1,1}((0,1))$ e vale T(f)'(x) = xf(x) si ottiene che f deve stare in $W^{1,1}((0,1))$ e verificare l'equazione

$$\lambda f'(x) = xf(x) \qquad x \in [0, 1] \qquad f(0) = 0$$

in senso classico. A λ fissato la soluzione di questo problema è unica, essendo l'equazione soddisfatta da $f\equiv 0$ si ha che l'autovettore f deve coincidere con la funzione identicamente nulla, ossia nessun λ reale è autovalore. In particolare T è iniettivo.

iv) T non è surgettivo. Presa g(x) = x, analogamente a quanto visto sopra, l'equazione T(f) = g equivale a

$$1 = g'(x) = xf(x)$$
 $x \in [0, 1]$ $f(0) = 0$

che non ha soluzione in $L^1((0,1))$.

v) T non è compatto. La motivazione è che, presa una qualsiasi successione di funzioni $\{f_n\}$ equilimitate in $L^1((0,1))$, si può soltanto dedurre che $\{T(f_n)\}$ è equilimitata in $W^{1,1}((0,1))$. Questo non basta ad assicurare che la successione sia anche equicontinua. Ad esempio presa $\{f_n\}$ definita da

$$f_n(t) = 0$$
 se $0 \le t \le \frac{1}{2}$ o $\frac{1}{2} + \frac{1}{n} < t \le 1$

$$f_n(t) = n$$
 se $\frac{1}{2} < t < \frac{1}{2} + \frac{1}{n}$,

si ha che $||f_n||_{L^1} = 1$ per ogni n, ma $T(f_n)$ converge puntualmente quasi ovunque a

$$f(t) = 0$$
 se $0 \le t \le \frac{1}{2}$ e $f(t) = \frac{1}{2}$ se $\frac{1}{2} < t \le 1$,

che non è una funzione continua.

Soluzione Esercizio 2.

i) Poiché C è limitato esiste M > 0 tale che $||y||_X \leq M$ per ogni $y \in C$, dove $||\cdot||_X$ denota la norma di X. Per ogni $T \in X'$, si ha allora

$$||T||_C = \sup_{y \in C} T(y) \le \sup_{y \in C} |T(y)| \le \sup_{y \in C} ||T||_{X'} ||y|| \le M||T||_{X'} < +\infty \qquad (*)$$

dove indichiamo con $\| \|_{X'}$ la norma duale standard di X' associata a $\| \cdot \|$.

Vediamo ora che $\|\cdot\|_C$ verifica tutte le proprietà di una norma su X':

a) Per ogni $T, S \in X'$ si ha che $||T + S||_C \le ||T||_C + ||S||_C$. Questo segue da

$$||T + S||_C = \sup_{y \in C} (T(y) + S(y)) \le \sup_{y \in C} T(y) + \sup_{y \in C} S(y) \le ||T||_C + ||S||_C.$$

b) Per ogni $\lambda \in \mathbb{R}$ e per ogni $T \in X'$ si ha $\|\lambda T\|_C \leq |\lambda| \|T\|_C$. Fissati $\lambda \in \mathbb{R}$ e $T \in X'$ se $\lambda \geq 0$ l'uguaglianza segue subito per omogeneità. Se $\lambda < 0$ invece

$$\|\lambda T\|_C = \sup_{y \in C} \lambda T(y) \le \sup_{y \in C} |\lambda| T(-y) \le |\lambda| \sup_{y \in C} T(y),$$

dove nell'ultima uguaglianza abbiamo usato che C = -C.

c) $||T||_C \ge 0$ e $||T||_C = 0$ se e solo se T = 0.

La prima affermazione segue subito dalla definizione di $||T||_C$ e dalla simmetria di C.

Assumiamo ora che $||T||_C \neq 0$. Poiché C è aperto e contiene lo zero si ha che esiste r > 0 tale che la palla di centro l'origine e raggio r è contenuta in C, i.e. $B(0,r) \subseteq C$. Ne segue che

$$||T||_C = \sup_{y \in C} T(y) \ge \sup_{y \in B(0,r)} T(y) = r||T||_{X'}$$
 (**)

 $da cui ||T||_C > 0.$

ii) Dalle disuguaglianze (*), (**) si ha che la norma $\|\cdot\|_C$ è equivalente alla norma $\|\cdot\|_{X'}$. Dato che, per la completezza di \mathbb{R} , $(X', \|\cdot\|_{X'})$ è uno spazio normato completo anche $(X', \|\cdot\|_C)$ lo è.

Soluzione Esercizio 3.

i) La linearità di S segue dalla linearità dell'integrale. Per vedere che S è continuo, osserviamo che

$$||S(f)||_{\ell^2}^2 = \sum_{n=1}^{\infty} \left(\int_n^{n+1} f(t) dt \right)^2 \le \sum_{n=1}^{\infty} \int_n^{n+1} f(t)^2 dt = ||f||_{L^2}^2.$$
 (1)

per ogni $f \in L^2((0, +\infty))$. In particolare $||S||_{L(L^2, \ell^2)} \leq 1$. Per vedere che la norma è proprio uguale a 1 è suffuciente notare che la disuguaglianza in (1) diventa un'uguaglianza se la funzione f è costante su tutti gli intervalli del tipo (n, n+1), con $n \in \mathbb{N}$.

ii) Verifichiamo che S non è iniettivo. Se consideriamo la funzione definita da

$$f(t) = \frac{\sin(2\pi t)}{n}$$
 per $t \in (n, n+1)$,

abbiamo $f \in L^2((0,+\infty))$ e $S(f)_n = 0$ per ogni $n \in \mathbb{N}$, quindi l'operatore S non è iniettivo.

iii) Verifichiamo che S è surgettivo. Dato $(x_n)_{n\in\mathbb{N}}\in\ell^2$ consideriamo la funzione definita da $f(t)=x_n$ per $t\in(n,n+1)$. Si ha $S(f)_n=x_n$ per ogni $n\in\mathbb{N}$, quindi l'operatore S è surgettivo.