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In Euclidean spaces, it is well known that hyperplanes are local minimizers of the perimeter

and that balls are the (unique) solutions to the isoperimetric problem i.e. they have the least

perimeter among all the sets having a given volume. The situation of course changes for

interfacial energies which are no longer homogeneous nor isotropic but it is still natural to

investigate the existence of local minimizers which are plane-like and of compact isoperimetric

sets in this context. More precisely, for an open set Ω ⊆ Rd and a set of finite perimeter E

(see [1]), we will consider interfacial energies of the form

E(E,Ω) :=

∫
∂∗E∩Ω

F (x, νE)dHd−1

where Hd−1 is the (d − 1)-dimensional Hausdorff measure, νE is the internal normal to E,

∂∗E is the reduced boundary of E, and the function F (x, p) is Lipschitz continuous and

periodic in x, convex and one-homogeneous in p, and satisfies

c0|p| ≤ F (x, p) ≤ c−1
0 |p| ∀(x, p) ∈ Rd × Rd (1)

for some c0 ∈ (0, 1]. When Ω = Rd, we will simply denote by E , the functional E(·,Rd).

Given a volume v > 0, we are interested in the following isoperimetric problem

min
|E|=v

E(E). (2)

We will show the existence of compact minimizers of problem (2). The idea is to use the

Direct Method of the calculus of variations together with a kind of concentration compactness

argument to deal with the invariance by translations of the problem. Notice that a similar

strategy has been used to prove existence of minimal clusters (see [2, Th. 29.1]).

We first recall Almgren’s Lemma (for the proof see [2, Lem. II.6.18]).

Lemma 0.1. If E is a set of finite perimeter and A is an open set of Rd such that Hd−1(∂∗E∩
A) > 0 then there exists σ0 > 0 and C > 0 such that for every σ ∈ (−σ0, σ0) there exists a

set F such that

• F∆E b A,

• |F | = |E|+ σ,
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• |E(F,A)− E(E,A)| ≤ C|σ|.

We now prove that any minimizer (if it exists) is necessarily compact.

Proposition 0.2. For every v > 0, every minimizer E of (2) has bounded diameter.

Proof. The proof follows the classical method to prove density estimates for minimizers of

isoperimetric problems (see for instance [1]). Fix v > 0 and let E be a minimizer of (2). Let

then f(r) := |E\Br|. Let us assume that the diameter of E is not finite, so that f(r) > 0 for

every r > 0. Without loss of generality, we can also assume that Hd−1(∂∗E ∩ B1) > 0. Let

σ0 and C be given by Lemma 0.1 with A = B1, and fix R > 1 such that f(R) ≤ σ0 then for

every r > R there exists F such that

• F∆E b B1,

• |F | = |E|+ f(r),

• |E(E,Br)− E(F,Br)| ≤ Cf(r).

Letting G := F ∩Br we have |G| = |E| thus, by minimality of E, we find

E(E) ≤ E(G) ≤ E(F,Br) + c−1
0 Hd−1(∂Br ∩ F ) ≤ E(E,Br) + Cf(r) + c−1

0 Hd−1(∂Br ∩ E)

and thus

c0Hd−1(∂∗E\Br) ≤ E(E,B
c

r) ≤ Cf(r) + c−1
0 Hd−1(∂Br ∩ E).

Recalling that f ′(r) = −Hd−1(∂Br ∩ E) and Hd−1(∂∗E ∩ ∂Br) = 0 for a.e. r > 0, we get

c0Hd−1(∂∗(E\Br)) = c0Hd−1(∂∗E\Br)− c0f ′(r) ≤ Cf(r)−
(
c0 + c−1

0

)
f ′(r)

for a.e. r > 0. By the isoperimetric inequality [1] it then follows

c1f(r)
d−1
d ≤ c2f(r)− f ′(r)

for some constants c1, c2 > 0. If now R1 > R is such that f(r)
1
d ≤ c1

2c2
, we get

c1
2
f(r)

d−1
d ≤ −f ′(r)

and thus
(
f1/d

)′ ≤ − c1
2 , which leads to a contradiction.

We now prove the existence of compact minimizers for every volume v > 0.

Theorem 0.3. For every v > 0 there exists a compact minimizer of (2).

Proof. To simplify the notations, let us assume that v = 1. Let Ek be a minimizing sequence

meaning that |Ek| = 1 and E(Ek) → inf |E|=1 E(E). For every k ∈ N, let {Qi,k}i∈N be a

partition of Rd into disjoint cubes of equal volume larger than 2, such that the sets Ek ∩Qi,k
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are of decreasing measure, and let xi,k = |Ek ∩Qi,k|. By the isoperimetric inequality, there

exist 0 < c < C such that

c
∑
i

x
d−1
d

i,k = c
∑
i

min (|Ek ∩Qi,k|, |Qi,k\Ek|)
d−1
d

≤
∑
i

P (Ek, Qi,k)

≤
∑
i

c0E(Ek, Qi,k)

≤ c0E(Ek) ≤ C

hence
∞∑
i=1

xi,k = 1 and

∞∑
i=1

x
d−1
d

i,k ≤
C

c
. (3)

Since xi,k is nonincreasing with respect to i, from (3) it follows that

∞∑
i=N

xi,k ≤
C

c

1

N1/d
for any N ∈ N . (4)

Indeed, for all N ∈ N we have

1

N
≥ 1

N

N∑
i=1

xi,k ≥
1

N

N∑
i=1

xN,k ≥ xN,k

which implies

∞∑
i=N

xi,k =

∞∑
i=N

x
1
d

i,k x
d−1
d

i,k ≤ x
1
d

N,k

∞∑
i=N

x
d−1
d

i,k ≤ C

c

1

N1/d

and proves (4).

Up to extracting a subsequence, we can suppose that xi,k → αi ∈ [0, 1] as k → +∞ for every

i ∈ N, so that by (4) we have ∑
i

αi = 1. (5)

Fix zi,k ∈ Qi,k. Up to extracting a further subsequence, we can suppose that d(zi,k, zj,k)→
cij ∈ [0,+∞], and

(Ek − zi,k)→ Ei in the L1
loc-convergence

for every i ∈ N. And it is not very difficult to check that Ei are minimizers of (2) under the

volume constraint vi := |Ei|. Notice that by Proposition 0.2, each Ei is bounded.

We say that i ∼ j if cij < +∞ and we denote by [i] the equivalence class of i. Notice that

Ei equals Ej up to a translation, if i ∼ j. We want to prove that∑
[i]

vi = 1, (6)
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where the sum is taken over all equivalence classes. For all R > 0 let QR = [−R/2, R/2]d be

the cube of sidelength R. Then for every i ∈ N,

|Ei| ≥ |Ei ∩QR| = lim
k→+∞

|(Ek − zi,k) ∩QR| .

If j is such that j ∼ i and cij ≤ R
2 , possibly increasing R we have Qj,k − zi,k ⊆ QR for all

k ∈ N, so that

lim
k→+∞

|(Ek − zi,k) ∩QR| ≥ lim
k→+∞

∑
cij≤R

2

|Ek ∩Qj,k| =
∑

cij≤R
2

αj .

Letting R→ +∞ we then have

|Ei| ≥
∑
i∼j

αj

hence, recalling (5), ∑
[i]

|Ei| ≥ 1,

thus proving (6) (since the other inequality is clear).

Let us now show that ∑
[i]

E(Ei) ≤ inf
|E|=1

E(E). (7)

Choosing a representative in each equivalence class [i] and reindexing, from now on we shall

assume that cij = +∞ for all i 6= j. Let I ∈ N be fixed. Then for every R > 0 there exists

K ∈ N such that for every k ≥ K and i, j less than I, we have

d(zi,k, zj,k) > R.

For k ≥ K we thus have

E(Ek) ≥
I∑

i=1

∫
∂Ek∩(BR+zi,k)

F (x, νEk) dHd−1

=

I∑
i=1

∫
∂(Ek−zi,k)∩BR

F (x, νEk) dHd−1

=

I∑
i=1

E(Ek − zi,k, BR)

From this, and the lower-semicontinuity of E , we get

inf
|E|=1

E(E) ≥
I∑

i=1

lim inf
k→∞

E(Ek − zi,k, BR) ≥
I∑

i=1

E(Ei, BR).

Letting R→∞ and then I →∞ (if the number of equivalence classes is finite then just take

I equal to this number), we find (7). Let finally di := diam(Ei) and F :=
⋃

i (Ei + 2die1)

where e1 is a unit vector then |F | = 1 and

E(F ) =
∑
i

E(Ei) ≤ inf
|E|=1

E(E)
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and thus F is a minimizer of (2) (notice that by Proposition 0.2, we must have Ei = ∅ for i

large enough).
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